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Abstract

In this paper, we analyse the generalization ability of bi-
nary classifiers for the task of deepfake detection. We find
that the stumbling block to their generalization is caused by
the unexpected learned identity representation on images.
Termed as the Implicit Identity Leakage, this phenomenon
has been qualitatively and quantitatively verified among
various DNNs. Furthermore, based on such understand-
ing, we propose a simple yet effective method named the ID-
unaware Deepfake Detection Model to reduce the influence
of this phenomenon. Extensive experimental results demon-
strate that our method outperforms the state-of-the-art in
both in-dataset and cross-dataset evaluation. The code is
available at https://github.com/megvii-research/CADDM.

1. Introduction
Recently, face-swap abusers use different face manip-

ulation methods [17, 29, 29, 31, 65] to generate fake im-
ages/videos. Those images/videos are then used to spread
fake news, make malicious hoaxes, and forge judicial ev-
idence, which have caused severe consequences. In order
to alleviate such situations, an increasing number of deep-
fake detection methods [12,14,42,59,60,63] have been pro-
posed to filter out manipulated images/videos from massive
online media resources, ensuring the filtered images/videos
are genuine and reliable.

Previous methods usually dealt with the task of deep-
fake detection with binary classifiers [1,2,10,46,51]. These
methods have achieved great detection accuracy in detect-
ing the seen attacks learned in the training datasets (i.e. the
in-dataset evaluations). However, when confronted with
media generated from newly-proposed deepfake methods
(i.e. the cross-dataset evaluations), these methods often suf-
fered from significant performance drops. Though plenty of
researchers have designed effective methods [32, 74, 75] to
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Figure 1. The Implicit Identity Leakage phenomenon. Since the
fake image retains some features of its source image, its identity
should not be completely regarded as its target image. As a conse-
quence, there exists an implicit gap between genuine identities and
fake identities in the training set, which is unintentionally captured
by binary classifiers. When confronted with images manipulated
by unseen face-swap methods, the classifier tends to misuse iden-
tity information and make false predictions.

improve the generalization of deepfake detection models, it
still lacks a thorough analysis of why binary classifiers fail
to perform well on the cross-dataset evaluation.

In this paper, given well-trained binary classifiers of
deepfake detection, we find that the stumbling block for
their generalization ability is caused by the mistakenly
learned identity representation on images. As shown in Fig.
1 (a), a deepfake image is usually generated by replacing
the face of the source image with the face of the target im-
age. However, we notice that the procedure of synthesizing
the fake image [5, 17, 29] may cause the information loss
of ID representations. The identity of the fake image can
not be considered as the same as either its target image or
its source image. In particular, when the face of the target
image is swapped back with the face of the fake image, it is
noticeable that the identity of the target image is altered.

In this way, as shown in Fig. 1 (b), when learning a
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deepfake detection model, there exists an implicit decision
boundary between fake images and genuine images based
on identities. During the training phase, binary classifiers
may accidentally consider certain groups of identities as
genuine identities and other groups of identities as fake
identities. When tested on the cross-dataset evaluation, such
biased representations may be mistakenly used by binary
classifiers, causing false judgments based on the facial ap-
pearance of images. In this paper, we have qualitatively
and quantitatively verified this phenomenon (termed as the
Implicit Identity Leakage) in binary classifiers of various
backbones. Please see Sec. 3 and Sec. 5.2 for analyses.

Furthermore, based on such understanding, we propose
a simple yet effective method named the ID-unaware Deep-
fake Detection Model to reduce the influence of Implicit
Identity Leakage. Intuitively, by forcing models to only fo-
cus on local areas of images, less attention will be paid to
the global identity information. Therefore, we design an
anchor-based detector module termed as the Artifact Detec-
tion Module to guide our model to focus on the local artifact
areas. Such a module is expected to detect artifact areas on
images with multi-scale anchors, each of which is assigned
a binary label to indicate whether the artifact exists. By lo-
calizing artifact areas and classifying multi-scale anchors,
our model learns to distinguish the differences between lo-
cal artifact areas and local genuine areas at a finer level, thus
reducing the misusage of the global identity information.

Extensive experimental results show that our model
accurately predicted the position of artifact areas and
learned generalized artifact features in face manipulation
algorithms, successfully outperforming the state-of-the-art.
Contributions of the paper are summarized as follows:

• We discover that deepfake detection models super-
vised only by binary labels are very sensitive to the
identity information of the images, which is termed as
the Implicit Identity Leakage in this paper.

• We propose a simple yet effective method termed as
the ID-unaware Deepfake Detection Model to reduce
the influence of the ID representation, successfully
outperforming other state-of-the-art methods.

• We conduct extensive experiments to verify the Im-
plicit Identity Leakage phenomenon and demonstrate
the effectiveness of our method.

2. Related Work
With the development of Generative Adversarial Net-

work (GAN) [8, 19, 26, 27, 38] techniques, forgery im-
ages/videos have become more realistic and indistinguish-
able. To deal with attacks based on different face manip-
ulation algorithms, researchers tried to improve their deep-
fake detectors [24, 44, 50] from different perspectives, such

as designing different loss functions [3], extracting richer
features [15,69], and analyzing the continuity between con-
secutive frames [23, 47]. Most of these deepfake detection
methods can be roughly summarized into two categories.

2.1. Binary Classifiers

Many researchers [1, 2, 10, 46, 51] treated the deepfake
detection task as a binary classification problem. They used
a backbone encoder to extract high-level features and a clas-
sifier to detect whether the input image has been manip-
ulated. Durall et al. [16] first proposed a model analyz-
ing the frequency domain for face forgery detection. Masi
et al. [43] used a two-branch recurrent network to extract
high-level semantic information in original RGB images
and their frequency domains at the same time, by which
the model achieved good performance on multiple public
datasets. Li et al. [30] designed a single-center loss to
compress the real sample classification space to further im-
prove the detection rate of forged samples. Binary classi-
fiers achieved high detection accuracy on in-dataset evalu-
ation, but they could not maintain good performance when
facing unseen forged images.

2.2. Hand-crafted Deepfake Detectors

Many works attempted to improve the generalization ca-
pability of deepfake detectors by modeling specific hand-
crafted artifacts among different face manipulation meth-
ods. Li et al. [33] believed that some physical characteris-
tics of a real person cannot be manipulated in fake videos.
They designed an eye blinking detector to identify the au-
thenticity of the video through the frequency of eye blink-
ing. Since 3D data can not be reversely generated from the
fake image, Yang et al. [70] did the face forgery detection
task from the perspective of non-3D projection generation
samples. Sun et al. [61] and Li et al. [32] focused on pre-
cise geometric features (face landmark) and blending ar-
tifacts respectively when detecting forged images. Liu et
al. [37] equipped the model with frequency domain infor-
mation since the frequency domain is very sensitive to up-
sampling operations (which are often used in deepfake de-
tection models), and used a shallow network to extract rich
local texture information, enhancing the model’s general-
ization and robustness.

In summary, hand-crafted deepfake detectors guided the
model to capture specific artifact features and indicated ma-
nipulated images/videos by responding to these features.
However, these methods have a common limitation: when
forgeries do not contain specific artifacts that are introduced
in the training phase, they often fail to work well.

3. Implicit Identity Leakage
The Implicit Identity Leakage denotes that the ID repre-

sentation in the deepfake dataset is captured by binary clas-
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Figure 2. ID linear classification on frozen features of binary
classifiers. Results show that binary classifiers of different back-
bones learned ID representation of images, even without explicit
supervision of identity labels.

sifiers during the training phase. Although such identity in-
formation enhances the differences between real and fake
images when testing the model on the in-dataset evaluation,
it tends to mislead the model on the cross-dataset evalua-
tion. In this section, we conduct thorough experiments to
verify this hypothesis. First, we conduct the ID linear clas-
sification experiment to verify that binary classifiers capture
identity information during the training phase. Second, we
quantified the influence of such ID representation on the in-
dataset evaluation and cross-dataset evaluation respectively,
to verify its effect on the task of deepfake detection.

3.1. Verifying the Existence of ID Representation

Hypothesis 1: The ID representation in the deepfake
dataset is accidentally captured by binary classifiers dur-
ing the training phase when without explicit supervision.

In this section, we performed the ID linear classifica-
tion experiment to verify that binary classifiers accidentally
learn the ID representation on images.

Inspired by previous unsupervised pre-training methods
[7,21], we finetuned the frozen features extracted from clas-
sifiers to evaluate the generalization of the learned ID rep-
resentation. Given a binary classifier trained on FF++ [56],
we measured the linear classification accuracy of identi-
ties on features extracted from the classifier for FF++ [56],
Celeb-DF [36] and a face recognition dataset LFW [25]. To
be specific, we froze the input feature to the last linear layer
of ResNet-18/34/50 [22], Xception [9] and Efficient-b3 [62]
to demonstrate the universality of such phenomenon. Fig. 2
shows that linear classification on features of different clas-
sifiers converged to varying degrees and achieved varying
degrees of accuracy for identity classification. Such results
also indicate that although classifiers were never trained
on Celeb-DF and LFW before, they still extracted substan-

Datasets ResNet-18 ResNet-34 ResNet-50 Xception EfficientNet-b3

FF++ 81.53 89.77 99.58 97.32 94.87
Celeb-DF 46.88 47.22 49.47 47.23 44.43

Table 1. Quantifying the influence of the ID representation on
the task of deepfake detection. Results show that although ID
representation could boost the performance of the in-dataset eval-
uation, i.e. FF++, it would hinder the improvements of the cross-
dataset evaluation, i.e. Celeb-DF.

tial information about identities from images, especially on
strong backbones (e.g., Efficient-b3). In other words, deep-
fake detectors accidentally learned the ID representation of
images, without explicit supervision in particular.

3.2. Quantifying the Influence of ID Representation

Hypothesis 2: Although the accidentally learned ID
representation may enhance the performance on the in-
dataset evaluation, it tends to mislead the model on the
cross-dataset evaluation.

After verifying the existence of ID representation in
features of binary classifiers, we performed another
experiment to verify its effect on deepfake detection.

The key challenge is how to attribute the output of the
binary classifier to the ID representation of the input im-
age quantitatively. Intuitively, the identity of an image is
not decided by each image region individually, e.g. mouths,
eyes and noses. Instead, these regions usually collaborate
with each other to form a certain pattern, e.g. the identity of
the input image. Thus, we used the multivariate interaction
metric [71] to quantify the influence of the ID representa-
tion. Such a metric can be considered as the attribution
score disentangled from the output score of the input im-
age, which is assigned to the interaction of multiple units.
Let N = {1, 2, 3, ..., n} denote all the units of an input im-
age. The multivariate interaction caused by the subset of
units S ⊆ N is calculated as

I([S]) = ϕ([S]|N[S])−
∑
i∈S

ϕ(i|Ni) (1)

where ϕ([S]|N[S]) denotes the Shapley value [57] of the
coalition [S], which indicates the contribution of [S] to
the output score. ϕ(i|Ni) denotes the Shapley value of
the unit i, which indicates the contribution of the unit i.
NS = N/S ∪ {[S]} and Ni = N/i ∪ {i}.

In practice, to reduce the computational cost, we sam-
pled 5 frames from each video and divided the input image
into 16 × 16 girds. S was set as S = N in experiments,
since the input faces are usually cropped and aligned to ex-
pand the whole images as a common protocol for the deep-
fake detection [74, 75]. In this way, we used I([N ]) as the
score of each image and calculated the frame-level AUC to
show the effect of ID representation.
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Figure 3. The overall framework of the ID-unaware Deepfake
Detection Model. N and C denote the number of images and
channels. With the help of the Artifact Detection Module, our
model aims to focus on the local representation of images to indi-
cate face forgeries.

Understanding I([N ]). I([N ]) can be rewritten as
I([N ]) = ϕ([N ]|N[N ])−

∑
i∈N ϕ(i|Ni) = [f(N)−f(∅)]−∑

i∈N [f({i})− f(∅)]. Here f denotes the binary classifier,
which outputs a scalar score for an input image. Then, we
have f(N) = I([N ])+

∑
i∈N [f({i})−f(∅)]+f(∅). f(∅)

is a constant, representing the output of the classifier when
setting the input image as the baseline value. In this way, we
can disentangle the output score of the classifier f(N) into
two variables, i.e. I([N ]) and

∑
i∈N [f({i})−f(∅)], which

measures the overall interaction among multiple units and
the local utility of each unit respectively. Therefore, when
setting I([N ]) as the output score for each image, if the cal-
culated frame-level AUC > 0.5, I([N ]) can be considered
to contribute positively to the classification task. Mean-
while, if the calculated frame-level AUC < 0.5, I([N ]) can
be considered to contribute negatively.

Results are shown in Table 1. We used ResNet-18/34/50,
Xception and Efficient-b3 as the backbones of classifiers to
clarify the broad effect of ID representation for deepfake
detection models. All classifiers were trained on FF++. In
general, when tested during the in-dataset evaluation, all
classifiers achieved AUC > 0.5, indicating the enhancement
for differences between real and fake images. In contrast,
all classifiers achieved AUC < 0.5 when tested during the
cross-dataset evaluation, which indicates the misguidance
of ID representation. Such results verify our hypothesis.

4. ID-unaware Deepfake Detection Model
Based on the understanding of the Implicit Identity

Leakage, we further propose a simple yet effective method
termed as the ID-unaware Deepfake Detection Model to im-
prove the generalization ability of binary classifiers.
Motivation. It has been widely acknowledged that object
detection modules focus on local areas of images, instead
of the global representation [34, 39, 41, 73]. Inspired by the
fact that local areas usually do not reflect the identity of
images, we designed the Artifact Detection Module in our
model to focus on local artifact areas on images, so as to
pay less attention to the global identity. By preventing our
model from learning the global ID representation of images,
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Figure 4. Overview of the Multi-scale Facial Swap (MFS). MFS
manipulates the paired fake image and source image in two ways,
namely global swap, and partial swap, to generate new fake images
with the ground truth of artifact areas.

the influence of Implicit Identity Leakage can be reduced.
Moreover, to facilitate the training of the Artifact De-

tection Module, we propose the Multi-scale Facial Swap
method to generate fake images with the ground truth of
artifact area positions, which also enriches artifact features
in the training phase.

4.1. Artifact Detection Module

The overall architecture of the Artifact Detection Mod-
ule (ADM) is shown in Fig. 3. ADM takes the extracted
features from the backbone as the input and detects the po-
sition of artifact areas based on multi-scale anchors. Specif-
ically, at the end of the backbone, four extra layers of dif-
ferent scales are added, where the sizes of the feature maps
decrease following the tuple (7×7, 5×5, 3×3, 1×1). In the
training stage, the Multi-scale Detection Module is placed
after the first three extra layers, detecting artifact areas on
fake images with multi-scale default anchors on images.
Similar to [40, 53, 54], each feature map grid is associated
with multiple default anchors with different scales on the
input images. The Multi-scale Detection Module adds a de-
tector and a classifier after each extra layer to output the po-
sition offsets (N ×4) and confidences of categories (N ×2,
i.e. the fake or genuine anchor) for each default anchor on
images. A default anchor box is annotated as fake if the
Intersection over Union (IoU) between the anchor box and
the ground truth of artifact areas is greater than the thresh-
old. Moreover, the final 1× 1 feature maps of ADM create
a short connection with the end of the backbone, which fur-
ther enriches the artifact features learned by the ADM. Its
output is then fed into a fully connected layer to generate
the final prediction.

To summarize, ADM determines if there exist artifact
areas in multi-scale anchors. Such architecture helps our
model to pay less attention to the global identity features on
images, reducing the influence of Implicit Identity Leakage.

4.2. Multi-scale Facial Swap

The training of the Artifact Detection Module requires
fine and local position annotations of artifact areas on im-

3997



ages, which are usually not available in public deepfake
datasets [36, 56]. To this end, we propose the Multi-scale
Facial Swap (MFS) method, which uses multi-scale slid-
ing windows and different blending functions to create new
fake images with the position annotations of artifact areas.
Besides, the new fake images also further enrich artifact fea-
tures in the training set.

The procedure of MFS is shown in Fig. 4. To generate
the new fake image with the position annotations of artifact
areas, MFS manipulates the paired fake image and source
image in two ways, i.e. global swap and partial swap. Dur-
ing the procedure of partial swap, MFS firstly selects a slid-
ing window of a random size to locate the artifact area. In
order to find the local area where artifacts most likely exist,
the sliding window is selected by the following equation:

xt, yt = argmax
x,y

x+h∑
i=x

y+w∑
j=y

DSSIM(IF , IS)i,j . (2)

where DSSIM(·) indicates the structural dissimilarity
[68], a larger value of which usually suggests that the areas
are more probable to contain artifacts. x, y denote the top-
left position of the sliding window on images. h, w denote
the height and width of the sliding window. IF , IS denote
the fake image and source image. Based on the selected
sliding window, we then calculate a mask M to generate
the new fake image. Specifically, we get the ground truth
of the artifact area by cropping out the sliding window area
on the fake image, and generating a new fake image (I ′F ) as
follows:

I ′F = BLENDING(IF , IS ,M). (3)

where BLENDING(·) denotes different blending methods
(e.g., Poisson blending [48] and alpha blending [32]). Take
alpha blending [32] as an example: I ′F = IF ∗ M + IS ∗
(1−M). The artifact area position of I ′F is [xt, yt, xt + h,
yt + w]. During the procedure of global swap, the sliding
window size is equal to the source image. As shown in Fig
4, MFS then generates the new fake image similar to Face-
x-ray [32], which also provides more diverse face regions
with elastic deformation [55].

Overall, with multi-scale sliding windows and different
blending methods, MFS generates fake images with ground
truth of artifact area positions. It supports the training of our
model and further enriches artifact features in the dataset.

4.3. Loss Function

The overall loss function is a weighted sum of the global
classification loss Lcls and detection loss Ldet,

L = βLdet + Lcls. (4)

where β is a positive scalar which controls the trade-off be-
tween Ldet and Lcls.

Lcls is the cross entropy loss to measure the accuracy
of the final prediction, i.e. fake or genuine images. Ldet

is the detection loss to guide the learning of ADM. Similar
to [18, 40, 52], it contains confidence loss (Lconf ) and lo-
cation loss (Lloc). Lconf is the binary cross-entropy loss to
measure the predicted result for each anchor, i.e. the fake
or genuine anchors. Lloc is a Smooth L1 loss [18] to mea-
sure the position offsets between ADM predictions and the
ground truth of artifact areas,

Ldet =
1

N
(Lconf (x, c) + αLloc(x, l, g)). (5)

where N is the number of positive anchor boxes, i.e., fake
anchors; x ∈ {0, 1} is an indicator for matching the default
anchor to the ground truth of artifact areas; c denotes the
class confidences; l and g denote the ADM predicted box
and the artifact area ground truth box; α denotes a positive
weight. Please see supplementary materials for details.

5. Experiment
In this section, we first introduced our experimental set-

tings. Then, we compared our model with binary classi-
fiers in terms of the Implicit Identity Leakage, to show the
effectiveness of our method. After that, we explored the
contribution of each component in our model. Finally, we
compared our approach with other SOTA deepfake detec-
tion methods.

5.1. Experiment Setting

Datesets. We trained our models on the widely-used dataset
FaceForensics++ (FF++) [56]. FF++ contains 4320 videos,
i.e. 720 original videos collected from YouTube and 3600
fake videos generated by FaceShifter [31], FaceSwap [29],
Face2Face [65], Deepfakes [17] and NeuralTextures [64].

We evaluated our approach performance on the follow-
ing datasets: (1) FF++ [56], which contains 140 original
videos and 700 fake videos. (2) DFDC-V2 [13], which
has 2500 real videos and 2500 fake videos. (DFDC-V2
is widely acknowledged as the most challenging data set,
since its real videos are close to life, while the artifact areas
in its forgery videos are smaller than other datasets). (3)
Celeb-DF [36] includes 178 real videos and all fake videos
are generated by only one forgery algorithm.
Implementation Details. During the training phase, we
set the batch size to 128 and the image size to 224 × 224.
MFS sliding window scale was randomly selected from [40,
80], [80, 120], [120, 160], [224, 224]. All images were
aligned by face landmarks which were extracted by a de-
tector [72]. Similar to [32, 75], we also used regular data
augmentations (DA) to further improve the model general-
ization, such as Random Crop, Gaussian Blur/Noise, and
JPEG Compression. We select common classification mod-
els pre-trained on ImageNet [11] as the model backbones,
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Figure 5. Comparison in terms of the Implicit Identity Leak-
age between the binary classifier and our model. Fig. 5a and
5c show the feature space with L2 normalization of the binary
classifier and our model. Fig. 5b and 5d show the linear classifica-
tion of identities on features of our model and the binary classifier.
Results show that our model paid less attention to the ID represen-
tation of images.

including ResNet-34 [22] and EfficientNet-b3/b4 [62]. We
set the number of total epochs to 200, each of which had 512
randomly selected mini-batches. α and β in the loss func-
tion were set to 1 and 0.1 by default. The learning rate was
set to 3.6×10−4 at initialization and decreased to 1×10−4

and 5 × 10−5 at epoch 10 and epoch 20 respectively for
fine-tuning. We used Adam [28] as our optimizer. In the
inference process, we chose 32 frames at an equal interval
from each video, using deepfake detection video-level AUC
following [32, 56] to report detector performance.

5.2. Experimental Analysis

Comparison of Implicit Identity Leakage. We designed
experiments to compare our model with the binary classifier
in terms of the phenomenon of Implicit Identity Leakage, in
order to demonstrate that our model alleviates this problem.
Each model used the EfficientNet-b3 as the common back-
bone and was trained on the FF++ dataset. We randomly
sampled 100 images with 10 identities and used t-SNE [66]
to visualize the high dimensional features extracted from
the final layer of different models in 2D. Each point repre-
sents the features of an image. Different markers of points
represent features of images with different identities.

In Fig. 5a (left), on the in-dataset evaluation, the binary
classifier successfully distinguished the differences between
the fake images and genuine images. However, features of
different identities were visually separable, which shows the
binary classifier partially learned the identity information of
images. When tested in the Celeb-DF, as shown in Fig. 5a
(right), such unnecessary knowledge about identity infor-

Models DA MFS ADM Test Set (AUC (%))
FF++ Celeb-DF DFDC-V2

ResNet-34

× × × 99.88 64.05 48.73
× ✓ × 98.70 76.35 (↑12.30) 59.97 (↑11.24)
✓ × × 99.74 80.07 (↑16.02) 62.46 (↑13.73)
✓ ✓ × 99.75 86.68 (↑22.63) 67.94 (↑19.21)
✓ ✓ ✓ 99.70 91.15 (↑27.10) 71.49 (↑22.76)

Table 2. Experimental results for the effect of different compo-
nents of our model. Here DA denotes the Data Augmentations.
Each model was trained by FF++ and tested on FF++, Celeb-DF,
and DFDC-V2. Our model shows a significant improvement in
cross-dataset evaluation.

mation tended to be misused by the binary classifier, hin-
dering its performance.

In contrast, on the in-dataset evaluation for our model
(Fig. 5c (left)), features of different identities were visually
inseparable and overlapped with each other, which shows
that our model reduced the influence of Implicit Identity
Leakage. When tested in the Celeb-DF (Fig. 5c (right)),
our model indicated fake images by detecting artifact ar-
eas with less influence of the identity information and still
roughly distinguished the differences between fake images
and genuine images. Such results show that ADM helped
our model alleviate the phenomenon of Implicit Identity
Leakage. Moreover, we also conduct further experiments to
quantitatively compare our model with the binary classifier
in terms of the phenomenon of Implicit Identity Leakage.
Please see supplementary materials for more analysis.

Meanwhile, we conduct the same ID linear classifica-
tion experiment as before to compare the existence of ID
representation in features of our model and the binary clas-
sifier. We used ResNet-34 as the backbone. Fig. 5b and
5d show that linear classification on features of binary clas-
sifiers was easier to converge and achieved better accuracy
than features of our model. Such results indicate that fea-
tures of binary classifiers contained more information about
identities than our model, further verifying the phenomenon
of Implicit Identity Leakage (IIL) and the remedy effect of
our method to alleviate its negative influence.

5.3. Ablation Studies

Effect of Different Components. To confirm the effective-
ness of our model, we evaluated how data augmentations
(DA), MFS, and ADM affected the accuracy of our model.
We trained models on FF++ and tested the performance
on FF++, Celeb-DF, and DFDC-V2. We denote the model
without DA, MFS, and ADM as the baseline. As shown in
Table 2, the baseline achieved the best performance in the
in-dataset evaluation. However, the baseline only achieved
64.05% and 48.73% of AUC on Celeb-DF and DFDC-V2.

Similar to [32, 75], we also added regular data augmen-
tations (DA), such as Random Crop, Gaussian Blur/Noise,
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Models Backbones Test Set (AUC (%))
FF++ Celeb-DF

Multi-task [45] - 76.30 54.30
Xception [56] Xception 99.58 49.03
MMMS [67] Transformer 99.50 65.70
SPSL [37] Xception 96.91 76.88
Local-Relation [6] - - 78.26
Two-branch [43] DenseNet 93.20 73.40
DSP-FWA [35] ResNet-50 93.00 64.60
F 3-Net [49] Xception 98.10 65.17
MAT [74] Efficient-b4 99.61 68.44
SLADD [4] Xception 98.40 79.70
Face-x-ray [32] HRNet 99.17 80.58
PCL+I2G [75] ResNet-34 99.11 90.03
SBI [58] Efficient-b4 99.64 93.18

Ours
ResNet-34 99.70(↑0.06) 91.15
Efficient-b3 99.78(↑0.14) 93.08
Efficient-b4 99.79(↑0.15) 93.88(↑0.70)

Datasets Xception SPSL PCL+I2G MAT SBI Ours

[56] [37] [75] [74] [58] Res-34 Effi-b3 Effi-b4

DFDC-V2 45.60 66.16 67.52 70.99 72.42 71.49 73.74 73.85(↑1.43)

Table 3. Comparison with the SOTA in FF++ (top), Celeb-
DF (top) and DFDC-V2 (bottom). All methods were trained on
FF++. Some numbers are missing because these methods do not
provide training codes or pre-trained models.

and JPEG Compression to the baseline. As shown in Table
2, when DA were added, our model got AUC improvements
of 16.02% and 13.73% on Celeb-DF and DFDC-V2 com-
pared with the baseline. We argue that these augmentations
may disrupt the identity information of the data to some de-
gree and improve the model generalization.

Besides, ADM and MFS further improved the cross-
dataset evaluation performance. ADM guided our model
to learn artifact representations of local areas, thus reducing
the influence of Implicit Identity Leakage. MFS-generated
images shared similar identity information with source im-
ages (see Fig. 6 for example). Such aligned ID representa-
tion eliminated the misguidance of ID information between
genuine and fake images to some degree, which also helped
to reduce the influence of Implicit Identity Leakage. As
shown in Table 2, beyond the effect of DA, our proposed
method (i.e., MFS and ADM) still led to further yet remark-
able improvements (e.g., 11.08% on Celeb-DF and 9.03%
on DFDC-V2 in Tab.2). Such improvements based on a
strong baseline model (i.e., a model trained with DA.) could
further validate the efficacy of our proposed method w.r.t. a
weak baseline model.

5.4. Comparison with state-of-the-art methods

As shown in Tab. 3, we compared our model with other
deepfake detection methods on three public deepfake detec-
tion datasets. In Tab. 3, models were trained on FF++ and
tested on FF++, Celeb-DF and DFDC-V2. Moreover, we
also provided visual results of our method in Fig. 6, which
demonstrate that our model successfully indicates fake im-
ages manipulated by different deepfake algorithms and re-

Method Saturation Contrast Block Noise Blur Pixel Avg
Xception [56] 99.3 98.6 99.7 53.8 60.2 74.2 81.0
Face-x-ray [32] 97.6 88.5 99.1 49.8 63.8 88.6 81.2
LipForensices [20] 99.9 99.6 87.4 73.8 96.1 95.6 92.1
Ours 99.6 99.8 99.8 87.4 99.0 98.8 97.4

Table 4. Robustness evaluation on FF++. Results show that our
method achieved better robustness image perturbations.

gresses the bounding box of the artifact areas.
In-dataset Evaluation. Previous methods exploiting bi-
nary classifiers usually achieved great performances on the
in-dataset evaluation (e.g. 99.58% on FF++ for Xception
[56].). Meanwhile, hand-crafted methods forced models
to learn specific artifact features on images, which limited
model performance on the in-dataset evaluation a bit (e.g.
99.17% on FF++ for Face-x-ray [32]). Compared with the
above methods, by reducing the influence of Implicit Iden-
tity Leakage, our method automatically learned various ar-
tifact features on images and achieved even better perfor-
mance on the in-dataset evaluations. Specifically, compared
with the best performing method SBI [58], our approach
(Efficient-b4 based) still improved AUC 0.15% on the FF++
for the in-dataset evaluation.
Cross-dataset Evaluation. Hand-crafted methods forced
models to learn specific artifact features on images, improv-
ing the performance on the cross-dataset evaluation (e.g.
80.58% on Celeb-DF for Face-x-ray [32]). These methods
can also be seen as reducing the influence of IIL by guid-
ing models to learn hand-crafted artifact features, instead of
ID-relevant information. Nevertheless, such human-defined
artifact features may fail to reflect the generalized represen-
tations inside all manipulated areas, which limits their fur-
ther improvements. In contrast, by reducing the influence
of Implicit Identity Leakage, our method learned general-
ized artifact features on forgery data, achieving better gen-
eralization in the cross-dataset evaluations. In particular, in
Table 3 (bottom), our model achieved 1.43% higher AUC
than SBI [58] in the recently released DFDC-V2, which is
widely considered as the most challenging dataset. More-
over, our approach also achieved 0.70% higher AUC for the
cross-dataset evaluation on Celeb-DF in Table 3 (top).

In summary, compared with previous methods, our
method significantly improved the performance on both the
in-dataset and cross-dataset evaluations, showing the effec-
tiveness of reducing the influence of Implicit Identity Leak-
age to learn generalized artifact features on face forgeries.
Robustness Evaluation. We also evaluated the robustness
of our model to different kinds of image perturbations, fol-
lowing the same robustness experiment setting in LipForen-
sics [20]. Results in Tab. 4 show that our method achieved
97.4% of video-level AUC on average, higher than Lip-
Forensics (i.e., 92.1%).
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Training set Model DF F2F FS NT FF++

DF Xception [56] 99.38 75.05 49.13 80.39 76.34
Ours+Xception [56] 100.00 83.94 58.33 68.98 77.81 (↑1.47)

F2F Xception [56] 87.56 99.53 65.23 65.90 79.55
Ours+Xception [56] 99.88 99.97 79.40 82.38 90.41 (↑10.86)

FS Xception [56] 70.12 61.70 99.36 68.71 74.91
Ours+Xception [56] 93.42 74.00 99.92 49.86 79.30 (↑4.39)

NT Xception [56] 93.09 84.82 47.98 99.50 83.42
Ours+Xception [56] 100.00 97.93 86.76 99.46 96.04 (↑12.62)

Training set Model Test Set Training set Model Test Set
FF++ DFDC-V2 DFDC-V2 FF++

FF++

ResNet-34 99.88 48.73

DFDC-V2

ResNet-34 92.49 60.56
Ours+ResNet-34 99.70 71.49 Ours+ResNet-34 94.85 77.32

Effi-b3 99.75 54,12 Effi-b3 94.31 60.87
Ours+Effi-b3 99.78 73.74 Ours+Effi-b3 95.67 84.43

Table 5. Cross-method evaluation in FF++ (top) and gener-
alization evaluations between FF++ and DFDC-V2 (bottom).
Our method achieved better generalization capabilities.

Cross-method Evaluation. We also conducted the cross-
method experiment on FF++, where our model was trained
on one type of manipulated data and tested on the remain-
ing three. Results in Tab. 5 (top) show that our approach
demonstrated superior cross-method generalization to bi-
nary classifiers [56] under the same setting. Such results in-
dicate that the impact of the learned ID representations also
hindered the cross-method generalization of binary classi-
fiers for deepfake detection to varying degrees, which com-
plements the proposed hypotheses in Sec. 3. Note that com-
pared with previous hand-crafted methods like [32], which
additionally enriched the training data with specific artifact
features, there still exists a performance gap.

To point out, one of the most important motivations of
our method lies in the goal to train a robust deepfake de-
tection model, which can automatically learn various yet
faithful artifact features from the ever-increasing number of
training data. To this end, by reducing the impact of IIL,
Sec. B in supplementary materials shows that our method
successfully captured generalized artifact features as the
types of training forgeries increased. Compared with previ-
ous hand-crafted methods [32, 61, 75] designed for specific
artifact features, such a data-driven training scheme helps
to release the pressure to continuously devise new methods
for the newly-proposed types of forgeries, which is of great
value for real-life applications. Therefore, results in Tab. 5
(top) are expected due to the limited artifact features in the
original single type of forgeries, which, however, could be
easily solved by scaling up the training data.

Furthermore, we evaluated the generalization capabili-
ties of our method in a more challenging scenario. FF++
and DFDC-V2 were collected with both different manip-
ulation methods and different original videos, making the
generalization between these datasets even more difficult.
To this end, Tab. 5 (bottom) demonstrates the efficacy of
our method compared with binary classifiers [22, 62].

Models FF++ Celeb-DF DFDC-V2

SBI [58] 99.64 93.18 72.42
Ours+SBI [58] 99.33(↓ 0.31) 94.15(↑ 0.97) 79.57(↑ 7.15)

Table 6. Combination with the method of SBI [58]. Results
show that when combining SBI with our method, the performance
on the cross-dataset evaluation was significantly improved.
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Figure 6. Visual results on various facial manipulation algo-
rithms. We used NMS in [18, 40, 52] to select the bounding box
position with the highest score as the final prediction. When the
score was less than the threshold, no anchor box would be pre-
dicted, as was the case for real images. The result shows that our
model indicated fake images based on local artifact areas.

Potential Applicability. Since the Artifact Detection Mod-
ule is convenient to add to the end of different backbones,
our method can also be potentially applied to other SOTA
methods as a plug-and-play module to further boost perfor-
mance. To simplify the story, we combined our method with
SBI [58] for instance. The model of [58] is a binary clas-
sifier, which can be easily modified by adding the Artifact
Detection Module. As shown in Table 6, when combined
with SBI, our method achieved significantly better results
during the cross-dataset evaluation. Such results show the
potential applicability of our study, which we believe could
help advance the field.

6. Conclusion

In this paper, we discover the phenomenon termed as Im-
plicit Identity Leakage through experimental verification:
the deepfake detection model is sensitive to the identity
information of the data, which reduces the model gener-
alization ability on unseen datasets. To this end, we pro-
pose ID-unaware Deepfake Detection Model to alleviate the
Implicit Identity Leakage phenomenon. Extensive experi-
ments demonstrate that by reducing the influence of Implicit
Identity Leakage, our model successfully learns generalized
artifact features and outperforms the state-of-the-art meth-
ods. In summary, this research provides a new perspective
to understand the generalization of deepfake detection mod-
els, which sheds new light on the development of the field.
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