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Abstract

We develop a simple yet surprisingly effective implicit
representing scheme called Multiplicative Fourier Level of
Detail (MFLOD) motivated by the recent success of mul-
tiplicative filter network. Built on multi-resolution feature
grid/volume (e.g., the sparse voxel octree), each level’s fea-
ture is first modulated by a sinusoidal function and then
element-wisely multiplied by a linear transformation of pre-
vious layer’s representation in a layer-to-layer recursive
manner, yielding the scale-aggregated encodings for a sub-
sequent simple linear forward to get final output. In con-
trast to previous hybrid representations relying on inter-
leaved multilevel fusion and nonlinear activation-based de-
coding, MFLOD could be elegantly characterized as a lin-
ear combination of sine basis functions with varying am-
plitude, frequency, and phase upon the learned multilevel
features, thus offering great feasibility in Fourier analysis.
Comprehensive experimental results on implicit neural rep-
resentation learning tasks including image fitting, 3D shape
representation, and neural radiance fields well demonstrate
the superior quality and generalizability achieved by the
proposed MFLOD scheme.

1. Introduction

Classical geometric modeling techniques in computer
graphics represent signals by storing discrete samples in
array- or grid-based formats. It is nontrivial to adapt them
to learning-based framework due to the lack of differentia-
bility. Recently, neural implicit functions have emerged as
an attractive alternative, which parameterize the continu-
ous mapping between low dimensional coordinates and im-
age/object domain signals using neural network, for exam-
ple, as the representation of 3D shapes [5, 23, 29, 42] and
radiance fields [16, 25].

Prior works commonly use a large multi-layer percep-
tron (MLP) to parameterize the learning function. To cir-
cumvent the well-known low frequency spectral bias of neu-
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Figure 1. Implicit Neural Representations from Spectral Per-
spective. (a) Most implicit neural representations can be cate-
gorized into global support-based method. A large network is
required to enrich the basis coefficients for representing high-
frequency details. (b) Our method can also be well-characterized
like the global method, enabling explicit bandwidth control for
each LOD. This allows for representing high-fidelity details at fine
levels and smooth overall shape at coarse levels.

ral networks [31], frequency encoding [15, 25, 33, 34, 40] is
usually adopted to map input coordinates to a higher dimen-
sional space. A useful property of these pure MLP methods
is that the entire function can be theoretically characterized
as a linear combination of Fourier bases [6, 49], facilitating
the design of neural representation from the spectral point
of view, such as explicitly manipulating the bandwidth [15],
representing overall signal and details separately [46], bal-
ancing representation generalization and spectrum cover-
age [40]. However, solely relying on the Fourier bases to ex-
press local high-frequency details is inefficient since these
bases normally have (infinite) global support [49], resulting
in the requirement of employing over-sized MLP to accom-
modate a large set of basis coefficients.

Most recently, hybrid representations [27,38,39] emerge
for their efficiency and high-fidelity. They employ a multi-
level feature grid/volume to capture local details, and thus
allow the use of a much smaller MLP as decoder. Yet, the
interleaved multilevel fusion and nonlinear activation-based
decoding make the entire function hard to characterize and
not amenable to Fourier analysis like pure MLP methods.
Specifically, little is known of how multilevel features are
combined to get the final output.

We address the above limitations with our proposed im-
plicit feature representation framework named Multiplica-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1808



tive Fourier Level of Detail (MFLOD). Within a multi-
resolution feature grid framework, MFLOD inherits the ef-
ficiency merits of hybrid methods, and in the meantime,
as multilevel local features are modulated with a rich set
of frequency basis functions, the resulting representation is
feasible in Fourier analysis. More concretely, each feature
point within a multi-resolution feature grid/volume (e.g.,
the sparse voxel octree) is interpolated according to its spa-
tial distances to the griding points, modulated by a sinu-
soidal filter, and then element-wisely multiplied by a lin-
ear transformation of previous layer’s representation in a
layer-to-layer recursive manner. After that, a simple lin-
ear forward is sufficient to decode these multilevel encod-
ings to the final implicit function value. To enable mean-
ingful levels of detail, we explicitly manipulate the spec-
tral bandwidth of each level. This allows for representing
high-fidelity details at fine levels and smooth overall shape
at coarse levels, as shown in Fig. 1.

In addition to introducing MFLOD, we conduct in-depth
theoretical study from the spectral and neural tangent ker-
nel (NTK) [10] approximating perspectives, showing that
the proposed method has better spectrum coverage and gen-
eralization. Comprehensive experimental results on im-
plicit neural representation learning tasks including image
fitting, 3D shape representation, and neural radiance fields
well demonstrate the superior quality and generalizability
achieved by the proposed MFLOD scheme.

2. Related Work
Our work is most related to previous research on implicit

neural representation, random Fourier features, and level of
detail.
Implicit Neural Representation. Representing signals as
a continuous function parameterized by neural network is
gaining popularity. The networks can be optimized as either
signed distance functions (SDFs) [8, 11, 14, 24, 29, 42, 50]
or occupancy functions [5, 23]. Using differentiable ren-
dering [28, 41], it can also be trained using multiview 2D
images, showing promising results in 3D shape reconstruc-
tion [12,28,44,45] and novel view synthesis [3,7,13,16,20,
25, 36, 47, 48]. Most of these approaches use MLP with
ReLU activation. To learn the high-frequency variation,
motivated by the success of Fourier transform in machine
learning, some approaches have suggested integrating sinu-
soidal mapping into the networks [6,15,25,34,40]. Surpris-
ingly, both of these models are under a unified formulation
and thus have similar expressive power.

Feature grid/volume [17, 30, 35] is another effective
choice to represent high-frequency local details, which dis-
cretizes the spatial space into a multi-resolution regular grid
and stores local features in grid points, managed in mem-
ory as octree [39] or hashtable [27]. Given a query point,
grid sampling is conducted at each scale. The interpolated

features from different scales are fused together and then
decoded by a small MLP with nonlinear activation. Com-
pared with pure MLP methods, this hybrid representation
seems more difficult to characterize. In this work, we step
further in theoretical interpretability based on local features’
modulation with Fourier basis functions.

Random Fourier Features (RFF). A seminal work by
Rahimi & Recht [32] shows that projecting the inputs into
random Fourier bases vastly improves the expressiveness
of models. Many subsequent machine learning algorithms
apply RFF to improve the performance in many domain
areas [1, 9, 37, 43]. Specifically, RFF in deep implicit
functions [6, 25, 40] acts as an encoding to improve the
high-frequency representing capability. Instead of apply-
ing RFF to raw coordinate inputs, we first map the coor-
dinates to multilevel learnable embeddings which are then
transformed into Fourier space, enabling explicit bandwidth
control for each level.

Level of Detail (LOD). Level of Detail [18] in computer
graphics is used to mitigate flickering and accelerate ren-
dering by reducing model complexity. The creation of 3D
shapes LOD usually depends on mesh decimation, which
has difficulty in blending between LODs, while SDF meth-
ods such as NGLOD [39] can reduce blending flickering.
Our MFLOD represents 3D shapes by SDF, and thus inher-
its this property. Also, the bandlimited behavior of each
LOD leads to smoother results at coarse levels.

3. Prerequisite: Implicit Neural Representa-
tion from Frequency Perspective

The goal of an implicit neural representation is to encode
a continuous target signal using a neural network f : Rn →
Rc, by representing the mapping between input coordinates
x ∈ Rn, e.g., positions, and signal values ȳ ∈ Rc, e.g.,
signed distances.

Classical neural network architectures are known for
their strong spectral bias towards lower frequencies [31],
which prevents them from being used in implicit represen-
tation tasks. A series of recent studies circumvent the spec-
tral bias of neural network by mapping the coordinate to a
high-dimensional Fourier space. Main solutions such as Po-
sition Encoding [25], Fourier Feature Network (FFN) [40],
and SIREN [34] can be decomposed into a Fourier mapping
γ(x) = sin(ωx+ ϕ) followed by a multi-layer perceptron,
where the filter ω ∈ Rd×n (d is the mapping dimension) can
modulate the spectral bias of neural network, with larger
scale ω biasing these networks towards higher frequencies.

Additionally, Yüce et al. [49] derive a unified formula-
tion by observing that all analytic activation functions, e.g.,
ReLU and sinusoidal, can be approximated using polyno-
mials with a naı̈ve Taylor expansion [22]. Thus, the entire
implicit function can be expressed as a linear combination

1809



1. Query Multilevel Feature Volume

Supported Data Structure

2. Features Transformation and Combination

Hash Table

…

… …

Octree

…

Random Fourier Feature

LOD Outputs

Element-wise Multiplication

Linear Layer Output Layer

Supervision

RFF Bandwidth

Figure 2. Illustration of the MFLOD in 2D. Given a query point x, we traverse the multilevel feature-volume to find all voxels containing
x. Per-voxel vector zℓ is obtained by interpolating the corner features of the voxel at x, which is then transformed to Fourier space by
applying a sinusoidal filter with explicit controlled bandwidth. Then, the linear transformation (no nonlinear activation) and multiplication
are applied in a layer-to-layer recursive manner. We introduce simple linear forward to each intermediate layer to obtain LOD outputs.

of certain integer harmonics of the initial Fourier mapping
γ(x):

y =

Nsine∑
j=0

ᾱj sin(ω̄jx+ ϕ̄j), (1)

where the support frequencies ω̄j are completely deter-
mined by the γ(x), and the support number Nsine grows
exponentially with the network depth.

Limitation. Although the improvement from the Fourier
mapping is remarkable, we still need to tune the frequen-
cies of the initial mapping γ(x) to balance the recovery
of high-frequency details and the suppression of aliasing
artifact caused by the initial Fourier mapping with high-
frequency [49]. We hold that the expression limitation
stems from the fact that the Fourier bases have global
support, which results in high-frequency components with
large weight in Eq. (1) when fitting the spikes in target sig-
nals, thereby increasing the chances of yielding aliased re-
construction in other spatial locations due to the periodicity
of Fourier bases.

Another line of solutions turns to multilevel feature grid
for detailed representation. However, these methods rely on
interleaved multilevel fusion and nonlinear activation-based
decoding, which make the entire implicit function more dif-
ficult to characterize than that based on a pure MLP.

4. Methodology

Motivated by the above limitations, we aim to design
a well-characterized representation which can reconstruct
high-fidelity details and scale to different LOD, based on the
idea of multilevel Fourier modulation at the learnable local

feature space (i.e., in contrast to coordinate values). Fig-
ure 2 shows a visual overview of our method. We present
our method in Sec. 4.1 and then provide a frequency spec-
trum analysis in Sec. 4.2, followed by implementation de-
tails in Sec. 4.3.

4.1. Multiplicative Fourier Level of Detail

Feature Volume. MFLOD builds on a multilevel feature
grid/volume [27, 38, 39], which contains a collection of
learnable features that are organized in tree-structured reg-
ular grid, such as the sparse voxel octree.

We denote the tree-structured feature-volume as Z . Each
voxel V in Z holds anm dimensional learnable feature vec-
tor z

(j)
V ∈ Z at each of its eight corners (indexed by j),

which are shared if neighbor voxels exist. Each level ℓ ∈ N
of the feature-volume defines a LOD for the geometry. As
the tree depth L in the multi-resolution hierarchy increases,
the surface is represented with finer discretization, allowing
reconstruction quality to scale with memory usage.

Given a query point x ∈ R3 and desired LOD level L,
we traverse the tree up to level L to find all voxels V1:L =
{V1, . . . , VL} containing x. For each level ℓ ∈ {1, . . . , L},
we compute per-voxel shape vector zℓ = ψ(x; ℓ,Z) by tri-
linearly interpolating the corner features of the voxels at x.
Transformation and Combination. After traversing the
tree and extracting multi-resolution features z1:L, typi-
cal methods would aggregate these features using summa-
tion [39] or concatenation [27], where the multilevel fusion
is then decoded by an MLP with non-linear activation.

In order to promote the amenability of neural LOD rep-
resentation to Fourier analysis, in this work, we replace the
previous paradigm of aggregate-decode with transform-
combine. Namely, multilevel features z1:L are transformed
into a Fourier feature space and then linearly combined
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from coarse to fine, allowing their analysis much more fea-
sible than that for aggregate-decode paradigm.

First, we apply layer normalization [2] right after the
grid interpolation, followed by a sinusoidal transform with
learnable filters, both of which are performed independently
at each level:

ẑℓ = LayerNorm(zℓ),

gℓ(zℓ) = sin(ωℓẑℓ + ϕℓ), (2)

with filter parameters θfilter
ℓ = {ωℓ ∈ Rd×m, ϕℓ ∈ Rd},

where m and d are grid feature dimension and mapping
dimension, respectively. LayerNorm is introduced before
sinusoidal filter for better spectral manipulation. We term
such a representation the Fourier LOD, as the above sinu-
soidal filter corresponds naturally to Random Fourier Fea-
tures [32] representation.

After that, we employ multiplicative network [6] to
achieve linear combination of Fourier LOD, where the net-
work is composed of elementwise multiplication and fully
connected layer without non-linear activation. The net-
work’s configuration is therefore determined, with depth
equal to LOD maximum level L and hidden dimension
matching the mapping dimension d. We refer to the inter-
mediate activation as tℓ ∈ Rd, and we allow intermediate
outputs of the network yℓ ∈ Rc at the ℓth layer, defined as
follows (see also Fig. 2):

t1 = g1(z1),

tℓ = gℓ(zℓ) ◦ (W ℓtℓ−1 + bℓ), 1 < ℓ ≤ L (3)

yℓ = W out
ℓ tℓ + boutℓ ,

where ◦ denotes elementwise multiplication. The param-
eters of the network are θnet

ℓ = {W ℓ ∈ Rd×d, bℓ ∈
Rd,W out

ℓ ∈ Rc×d, bout
ℓ ∈ Rc}.

A useful and compelling property of this formulation is
that the network output can be expressed equivalently as a
sum of sines, each of which consists of a linear combina-
tion of linear modulated grid features z1:L. Ultimately, the
output of MFLOD at level ℓ can be characterized as (see
supplemental §1.1):

yℓ =

Nℓ
sine−1∑
j=0

ᾱj sin(ω̄j
1z1 + ω̄j

2z2 + · · ·+ ω̄j
ℓzℓ+ϕ̄

j), (4)

where the coefficients ᾱj , ω̄j and ϕ̄j are determined by the
parameters of filters and network. Moreover, linear layer
W ℓtℓ−1 increases the number of sine terms in tℓ−1 expo-
nentially and elementwise multiplication ◦ results it to dou-
ble, along with the additional terms contributed by bias bℓ,
the number of terms in the sum at LOD level ℓ is given as
N ℓ

sine =
∑ℓ

i=0 2
idi+1. The key element of the proof for

Eq. (4) is the trigonometric identity:

sin(τ1z1 + φ1) ◦ sin(τ2z2 + φ2)

=
1

2
[sin(τ1z1 + τ2z2 + φ1 + φ2 −

π

2
) (5)

+ sin(τ1z1 − τ2z2 + φ1 − φ2 +
π

2
)].

Each additional multiplicative layer creates both a sum and
difference combination of multilevel features in the sinu-
soidal terms. When the ℓth level Fourier features gℓ(zℓ)
is fed into the network through multiplication, zℓ would
be linearly combined with previous coarser features z1:ℓ−1

within all sinusoidal terms.
Note that the sinusoidal transform is conducted upon

learnable feature instead of raw coordinate values [6,15,33].
In other words, the coordinate x is enriched with multilevel
features, where the fine levels endow the entire function the
capability to reconstruct local high-frequency components
without introducing aliasing artifact [49] that stems from
the deficient global support.

4.2. Spectrum Analysis

Figure 3. Distribution of activations at initialization. The pro-
posed initialization scheme maintains a standard normal distribu-
tion after sinusoidal transform and each linear layer, and activa-
tions closely match the analytical derivations (black lines).
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Figure 4. Distribution of ωℓẑℓ + ϕℓ at initialization. When grid
feature dimension m=1, the distribution is similar with that shown
in BACON [15]. As m increases, it approximates a Gaussian dis-
tribution that has a wider spectrum coverage in theory.

Bandlimited Initialization Scheme. We derive a princi-
pled initialization scheme to provide a reasonable scaling
of activations throughout the multiplicative layer, sinusoidal
filter, and feature-volume. Activations of intermediate lay-
ers are illustrated in Fig. 3. More importantly, the behavior
of incorporating finer levels gradually gives us the chance
to explicitly manipulate the bandwidth of each level for
smoother reconstruction at coarse levels (see Fig. 7).
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Figure 5. Comparison of Generalization Ability. (a) Models are
trained on half resolution of a 512 × 512 image and required for
reconstruction at full resolution. FFN [40] with high-frequency
initial mapping and NGLOD show noisy interpolation. While
MFLOD achieves smoother interpolation and better spectrum cov-
erage. (b) We gradually reduce the NeRF training views to demon-
strate the interpolating capability in novel view synthesis. The
PSNR curves show that our approach is more insensitive to the re-
duction of training views.

We initialize the feature-volume Z entries using the
uniform distribution U(−10−4, 10−4) to provide a small
amount of randomness. After normalization, ẑ distributes
as U(−

√
3,
√
3) at initialization. Since sinusoidal transform

is performed independently at each level and corresponding
to random Fourier features, each LOD explicitly controls
a certain bandwidth. We initialize the sinusoidal filter pa-
rameter for each level separately: ωℓ ∼ U(−Bℓ, Bℓ) and
ϕℓ ∼ U(−π, π), where Bℓ is a hyperparameter controlling
the bandwidth. Note that the distribution of ωℓẑℓ + ϕℓ de-
pends on the grid feature dimension m, as shown in Fig. 4.
When there is only one dimension (ωℓ ∈ Rd×1), the distri-
bution degenerates to (see supplemental §1.2):

ωℓẑℓ + ϕℓ ∼ 1

2
√
3Bℓ

log(
Bℓ

min(|x/
√
3|, Bℓ)

), (6)

which is similar to that shown in BACON [15]. When
m > 1, the probability density is the sum of independent
random variables sampled from the above distribution. As

m increases, it will approach the Gaussian distribution ac-
cording to the central limit theorem. After applying sinu-
soidal function, gℓ(zℓ) is approximately arcsine distributed
with variance 0.5. Now, we set Wℓ ∼ U(−

√
6/d,

√
6/d)

following BACON. Then we have that Wℓtℓ−1 + bℓ con-
verges to the standard normal distribution with increasing
d. Finally, the elementwise multiplication is the product of
arcsine distributed and standard normal random variables
which again has a variance of 0.5. Applying the next linear
layer results in another standard normal distribution, as well
as after all subsequent linear layers.

Spectrum Coverage and Inductive Bias. In the context of
implicit neural representation, the inductive bias is mainly
related to the spectrum coverage [49]. For the pure MLP
methods, the set of frequencies that define the initial map-
ping γ(x) completely determines the frequency support of
the entire function in Eq. (1), it is consequently fundamen-
tal to guarantee these supports cover the spectrum of target
signal. However, it has been proven that the low frequency
initial mapping γ(x) cannot cover the spectrum and thus ex-
hibits underfit, while the high-frequency often leads to over-
fitting and noisy interpolation [40] (see Fig. 5 (a)). Specifi-
cally, for instance, matching the spikes in target signals in-
troduces high-frequency components with large weight in
Eq. (1), thereby increasing the chances of yielding aliased
reconstruction in other spatial locations due to the periodic-
ity of Fourier bases [49].

As for the feature-volume methods, there is little theoret-
ical understanding from spectrum perspective because those
existing are not amenable to Fourier analysis. Intuitively, an
inherent flaw of these methods is that the fine levels trained
on local signals tend to overfit. Experimentally, we find
that underfit is rare for the models with fine-grained feature-
volume discretization, but overfit often occurs, as illustrated
in Fig. 5. Feature-volume methods with aggregate-decode
mechanism (e.g. NGLOD [39] and NGP [27]) show severe
artifacts in interpolating new pixels and novel views, ex-
posing that they may fail to achieve harmonious collabo-
ration across multilevel. Instead, our proposed paradigm of
transform-combine gives a more effective way to coordinate
the features across multilevel and, as a consequence, shows
more convincing interpolation results.

NTK for Generalization Analysis. To further understand
why MFLOD has better generalization, we use neural tan-
gent kernel (NTK) [10] to describe the implicit networks. In
the context of approximating deep network with kernel re-
gression, implicit neural representations can be interpreted
as signal dictionaries whose atoms are the eigenfunctions
of their NTK at initialization [49]. Under this view, the
study of the inductive bias (trend to underfit or overfit) is
equivalent to the study of the capabilities of its NTK dic-
tionary. Eigenfunctions of the empirical NTK are demon-
strated in Fig. 6. As σ values of FFNs increase, the eigen-
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Figure 6. First Eigenfunctions of the Empirical NTK [10] of
different representations at initialization. Eigenfunctions of FFN
become more intricate as σ increases, corresponding to more over-
fitting tendencies (Fig. 5). NGLOD [39] and MFLOD share the
same dense octree feature-volume. Evaluated at initialized z1:L,
MFLOD has less tendencies to overfit than NGLOD.

functions demonstrate more intricate patterns, meaning that
FFNs gradually tend to overfit, which is consistent with ex-
perimental phenomenon in Fig. 5 (a).

Analyzing hybrid neural representation is slightly differ-
ent from pure MLP methods. To the best of our knowl-
edge, we are the first to explain the hybrid neural represen-
tation using kernel regression theory. Specifically, we use
a large grid feature dimension to separate raw coordinates
in feature space z1:L at initialization as much as possible.
Then the empirical NTK for two coordinates x1,x2 corre-
sponds to the matrix product between the Jacobian of the
network evaluated at z1

1:L and z2
1:L (see supplemental §2).

Following the conclusions of [49], the eigenfunctions in-
dicate that MFLOD may more easily learn representation
than NGLOD [39] because the eigenfunctions of MFLOD
do not exhibits highly high-frequency patterns that are non-
compatible with natural signals.

4.3. Implementation

Multiscale Supervision. Recall that MFLOD gradually
incorporates finer level feature as the network depth ℓ in-
creases. Thus, it is straightforward to train MFLOD to fit a
signal at multiple scales simultaneously, by introducing out-
put layers at intermediate stages throughout the network and
supervising these outputs. Compared with the aggregate-
decode methods (e.g. NGLOD [39]) that require training
individual MLP decoder for each of the L levels, as a side
benefit, our method is more succinct and natural in generat-
ing LOD outputs. Moreover, because the outputs are ban-
dlimited, MFLOD can be trained in a semi-supervised fash-
ion where the supervisory signal does not need to match the
desired bandwidth of the output.

Model Architecture. MFLOD is designed to be com-
patible with a variety of feature-volume data structures,
such as dense/sparse octree [39] and multi-resolution
hashtable [27]. In all experiments, we set grid feature di-
mensionsm=8, and Fourier space dimensions d=32. Since

the computational cost is related to the level of feature-
volume, we restrict the max level L=6. As a result, the
number of parameters introduced by transform-combine is
7.0K at most, in addition to a negligible simple linear output
layer for each level, the total number of parameters has the
same order of magnitude as the small MLP that is used in
NGLOD [39] and NGP [27]. In order to adapt the hashtable
with NGP’s default setting (i.e. L=16,m=2) to MFLOD,
we simply concatenate every four levels together, resulting
in a proxy feature-volume with L=4,m=8.
Non-spatial Input Dimensions. The feature-volume Z has
a relatively lower dimension. All our experiments oper-
ate either in 2D or 3D. However, it is frequently useful to
input auxiliary dimensions to the neural network, such as
the view direction in neural radiance fields (NeRF) [25]. In
such case, we can enlarge the per-level’s output dimension
and view MFLOD as an encoding. We show more details in
NeRF experiment.

NGLOD
0.9980.973 0.993

BACON
0.9870.962 

(IoU) 0.972

MFLOD
0.9990.980 0.991

Coarse Fine

Figure 7. Comparison of Levels of Detail. BACON [15] strug-
gles in recovering high-frequency details even at the finest level,
while NGLOD [39] fails to generate smooth overall shape at the
coarse level. In contrast, MFLOD can reconstruct both high-
fidelity details and smooth overall shape, suggesting a large benefit
to our novel paradigm and bandwidth control for each LOD.
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Figure 8. Comparison of Convergence. Test errors over train-
ing step on SDFs and NeRFs in terms of mean absolute percent-
age error (MAPE) and peak signal to noise ratio (PSNR), respec-
tively. MFLOD exhibits comparable or faster convergence rates
than other hybrid approaches.
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Figure 9. Qualitative Comparison on Mesh Reconstruction. All methods are trained for 15000 steps. We render surface normals to
highlight geometric details. MFLOD achieves the highest intersection over union (IoU). Although both NGLOD [39] and our MFLOD
show high-fidelity visual quality (almost saturated), MFLOD exhibits much smoother visual effect at the coarse level (Fig. 7).

5. Experiments

To demonstrate/highlight the versatility and high quality
of MFLOD, we extensively experiment: 1) 3D shape rep-
resentation to verify its ability in high-fidelity detail recon-
struction at fine levels and overall smoothness achieved at
coarse levels, 2) image fitting and 3) novel view synthesis
to show its generalizing ability.

We implement MFLOD in CUDA and integrate it with
instant-ngp [26,27] framework for meaningful comparison.
All our experiments are conducted on an RTX 3090 GPU.

5.1. 3D Shape Representation
To evaluate the quality of 3D shape representation, we fit

our network on ShapeNet [4], Stanford 3D scanning reposi-
tory1, and selected models from TurboSquid2. We compare
MFLOD to Frequency Encoding [25], SIREN [34], BA-
CON [15], NGLOD [39], and Instant-NGP [27]. Since the
ground-truth geometry is accessible, we use a sparse octree
tailored to the reference shape as the feature-volume, and
thus the difference with NGLOD is how to decode the mul-
tilevel features to final outputs.

Table 1 shows comparative results on ShapeNet and
Stanford3D, in terms of commonly used Chamfer distance
and intersection over union (IoU) over uniformly sampled
points, where the Chamfer distances are evaluated on 105

1http://graphics.stanford.edu/data/3Dscanrep/
2https://www.turbosquid.com/

uniformly sampled points on the surface of reconstruc-
tion. For ShapeNet, we sample 100, 50, and 50 shapes re-
spectively from chair, car, and airplane categories. BA-
CON needs to tune the per-shape’s predefined frequency
to achieve optimal performance, thus we only report the
results on Standford3D using their released configuration.
Our method exhibits similar numeric quality with NGLOD
at finer level, but better results at coarser level. Figure 7
gives a visual comparison at different levels of detail. Com-
pared with NGLOD, both BACON and our method can gen-
erate smoother surface at coarse levels, while BACON can-
not achieve high fidelity even at the finest level. We also
attempt to recover high-frequency details for BACON by
increasing the predefined frequency (from 384) to 512 and
640, but find unexpected aliasing artifacts occurred, reflect-
ing the limitation of global supports in representing high-
frequency details.

To further demonstrate the effectiveness of MFLOD, we
qualitatively compare the reconstruction quality on Tur-
boSquid which contains much more intricate geometry de-
tails, as shown in Fig. 9.

5.2. Image Fitting
Learning the 2D coordinate to RGB color mapping has

become a popular benchmark for testing a model’s ability to
represent high-frequency detail [19, 34, 40]. We train mod-
els on half resolution and evaluate them on full resolution
to show the generalization on unseen pixels during training.
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ShapeNet-200 Standford3D

# Inference Param. IoU↑ Chamfer↓ IoU↑ Chamfer↓
Frequency 125K 89.7 0.038 0.958 0.0419
SIREN 125K 91.1 0.299 0.982 0.0057
BACON 531K - - 0.979 0.0054
Instant-NGP (T = 219) 6.2K 93.2 0.0094 0.995 0.0020
NGLOD / LOD 2 7.2K 89.1 0.0413 0.974 0.0069
MFLOD / LOD 2 2.7K 90.9 0.0231 0.984 0.0055
NGLOD / LOD 3 7.2K 92.5 0.0099 0.989 0.0043
MFLOD / LOD 3 4.1K 92.6 0.0106 0.990 0.0045
NGLOD / LOD 4 7.2K 93.8 0.0097 0.996 0.0026
MFLOD / LOD 4 4.4K 93.9 0.0072 0.995 0.0023
NGLOD / LOD 5 7.2K 93.9 0.0072 0.998 0.0022
MFLOD / LOD 5 5.8K 94.3 0.0063 0.999 0.0021

Table 1. Per-shape Mesh Reconstruction. MFLOD achieves the
highest quality. For coarse level such as LOD2, it outperforms
NGLOD significantly even with a smaller number of parameters.
(Chamfer distance multiplied by 103).

MIC FICUS CHAIR HOTDOG MATERIALS DRUMS SHIP LEGO avg.

NeRF (∼hours) 32.91 30.13 33.00 36.18 29.62 25.01 28.65 32.54 31.005
NSVF (∼hours) 34.27 31.23 33.19 37.14 32.68 25.18 27.93 32.29 31.739
BACON (∼hours) 28.45 23.75 30.73 31.94 24.30 24.18 25.67 30.42 27.430
MIPNeRF (∼hours) 38.04 33.19 37.14 39.31 32.56 27.02 33.08 35.74 34.510
Instant-NGP (5 min) 36.22 33.51 35.00 37.40 29.78 26.02 31.10 36.39 33.176

MFLOD-A (5 min) 37.33 33.48 35.42 37.51 31.40 26.42 31.80 36.44 33.727
MFLOD-B (∼7 min) 37.44 33.53 35.46 37.51 31.67 26.89 31.81 36.98 33.910

Table 2. Novel View Synthesis on NeRF Synthetic Dataset.
MFLOD-A and -B represent training NeRF wo/w multilevel su-
pervision. MFLOD-B is trained for the same iteration as -A, show-
ing consistent improvement at the cost of about two more minutes
training overhead.

For the image in Fig. 5, FFN [40] achieves a PSNR of 24.88
dB with a Fourier mapping scale σ=10. While increasing σ
can improve the high-frequency expressions in theory, over-
fitting often occurs in practice and results in noisy inter-
polation. For hybrid methods, NGLOD [39] and MFLOD
share the same dense 2D feature-grid (L=4,m=8) with the
finest grid resolution equal to half of the training resolution.
MFLOD achieves 26.03 dB PSNR while NGLOD exhibits
overfitting. We attribute this to the MLP cannot achieve as
good collaboration across multilevel features as ours.

5.3. Neural Radiance Fields
In NeRF setting, a volumetric shape is represented in

terms of a spatial (3D) density function and a spatiodirec-
tional (5D) emission function. To adapt our architecture
to NeRF, we change the output yL to 16 values, the first
of which we treat as log-space density. The view direc-
tion is projected onto the first 16 coefficients of the spheri-
cal harmonics basis, which is a natural frequency encoding
over unit vectors. It is then concatenated with yL, followed
by a 1-hidden-layer color MLP with ReLU activation (64
neurons wide). Note that the ReLU can be effectively ap-
proximated using Chebyshev polynomial [21], thus the final
functions of MFLOD on NeRF can still be characterized as

MFLODReference Instant-NGPMipNeRF

9.4K[7 Layer MLP]+12.2M613K[12 Layer MLP]+0 11.2K[7 Layer]+12.2M

Figure 10. Qualitative Comparison on Neural Radiance Fields.
MFLOD(-B) captures higher frequency details than global meth-
ods (such as MipNeRF) and the hybrid method baseline of NGP.
The intermediate density output layer and color MLP of MFLOD
are discarded after training, and the number of inference parame-
ter is similar with NGP.

linear combination of Fourier bases.
The underlying data structure used for NeRF exper-

iments is multi-resolution hashtable with default setting
in NGP (L=16,m=2), which is then adapted to a proxy
(L=4,m=8) by simply concatenating every four levels to-
gether. We train the model by backpropagating through a
differentiable ray marcher driven by 2D RGB images from
known camera poses. Since MFLOD is designed for LOD,
we also train NeRF with intermediate supervision. Table 2
shows the comparison with NeRF [25], NSVF [16], MIP-
NeRF [3], BACON [15], and NGP [27], in terms of peak
signal to noise ratio (PSNR). When the training time is lim-
ited to 5 min, MFLOD outperforms NGP on most scenes,
especially those contain high-frequency details, such as
MATERIALS. Even compared with offline methods that re-
quire training for hours, our PSNR is still competitive.

To further understand the effectiveness of MFLOD on
NeRF, we compare convergence rate and qualitative results
in Fig. 8 and Fig. 10.

6. Conclusion
In this work, we take steps towards making hybrid neu-

ral representations interpretable. Our approach can be ele-
gantly characterized as a linear combination of Fourier ba-
sis function upon the learned multilevel features, enabling
analysis and bandwidth manipulation at each level of detail.
This allows for representing high-fidelity details at fine lev-
els and smoother overall signal at coarse levels. Moreover,
we conduct in-depth theoretical study from the spectral and
NTK perspective, as well as the experiments in image in-
terpolation and novel view synthesis, demonstrating that
MFLOD has better generalizing ability than other methods.
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