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Abstract

Feature matching is a challenging computer vision task
that involves finding correspondences between two images
of a 3D scene. In this paper we consider the dense approach
instead of the more common sparse paradigm, thus striv-
ing to find all correspondences. Perhaps counter-intuitively,
dense methods have previously shown inferior performance
to their sparse and semi-sparse counterparts for estimation
of two-view geometry. This changes with our novel dense
method, which outperforms both dense and sparse methods
on geometry estimation. The novelty is threefold: First, we
propose a kernel regression global matcher. Secondly, we
propose warp refinement through stacked feature maps and
depthwise convolution kernels. Thirdly, we propose learn-
ing dense confidence through consistent depth and a bal-
anced sampling approach for dense confidence maps.

Through extensive experiments we confirm that our pro-
posed dense method, Dense Kernelized Feature Matching,
sets a new state-of-the-art on multiple geometry estimation
benchmarks. In particular, we achieve an improvement on
MegaDepth-1500 of +4.9 and +8.9 AUC@5◦ compared to
the best previous sparse method and dense method respec-
tively. Our code is provided at the following repository:
https://github.com/Parskatt/DKM .

1. Introduction

Two-view geometry estimation is a classical computer
vision problem with numerous important applications, in-
cluding 3D reconstruction [38], SLAM [30], and visual re-
localisation [27]. The task can roughly be divided into two
steps. First, a set of matching pixel pairs between the im-
ages is produced. Then, using the matched pairs, two-view
geometry, e.g., relative pose, is estimated. In this paper, we
focus on the first step, i.e., feature matching. This task is
challenging, as image pairs may exhibit extreme variations
in illumination [1], viewpoint [22], time of day [37], and
even season [46]. This stands in contrast to small baseline
stereo and optical flow tasks, where the changes in view-
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Figure 1. Qualitative comparison. We compare our proposed
approach DKM with the previous SotA method PDC-Net+ [48]
on Milan Cathedral. Top row, image A and B. Middle row and
bottom row, forward and reverse warps for PDC-Net+ and DKM
weighted by certainty. DKM provides both superior match accu-
racy and certainty estimation compared to previous methods.

point and illumination are typically small.
Traditionally, feature matching has been performed by

sparse keypoint and descriptor extraction, followed by
matching [26,36]. The main issue with this approach is that
accurate localization of reliable and repeatable keypoints
is difficult in challenging scenes. This leads to errors in
matching and estimation [13,23]. To tackle this issue, semi-
sparse or detector-free methods such as LoFTR [41] and
Patch2Pix [53] were introduced. These methods do not de-
tect keypoints directly but rather perform global matching at
a coarse level, followed by mutual nearest neighbour extrac-
tion and sparse match refinement. While those methods de-
grade less in low-texture scenes, they are still limited by the
fact that the sparse matches are produced at a coarse scale,
leading to problems with, e.g., repeatability due to grid ar-
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tifacts [17]. By instead extracting all matches between the
views, i.e., dense feature matching, we face no such issues.
Furthermore, dense warps provide affine matches for free,
which yield smaller minimal problems for subsequent esti-
mation [3, 4, 15]. While previous dense approaches [39, 47]
have achieved good results, they have however failed to
achieve performance rivaling that of sparse or semi-sparse
methods on geometry estimation.

In this work, we propose a novel dense matching method
that outperforms both dense and sparse methods in homog-
raphy and two-view relative pose estimation. We achieve
this by proposing a substantially improved model architec-
ture, including both the global matching and warp refine-
ment stage, and by a simple but strong approach to dense
certainty estimation and a balanced dense warp sampling
mechanism. We compare qualitatively our method with the
previous best dense method in Figure 1.

Our contributions are as follows. Global Matcher: We
propose a kernelized global matcher and embedding de-
coder. This results in robust coarse matches. We describe
our approach in Section 3.2 and ablate the performance
gains in Table 5. Warp Refiners: We propose warp re-
finement through large depthwise separable kernels using
stacked feature maps as well as local correlation as input.
This gives our method superior precision and is described
in detail in Section 3.3 with corresponding performance im-
pact ablated in Table 6. Certainty and Sampling: We
propose a simple method to predict dense certainty from
consistent depth and propose a balanced sampling approach
for dense matches. We describe our certainty and sampling
approach in more detail in Section 3.4 and ablate the per-
formance gains in Table 7. State-of-the-Art: Our exten-
sive experiments in Section 4 show that our method sig-
nificantly improves on the state-of-the-art. In particular,
we improve estimation results compared to the best previ-
ous dense method by +8.9 AUC@5◦ on MegaDepth-1500.
These results pave the way for dense matching based 3D
reconstruction.

2. Related Work
Global Matching: Traditionally, global matching has been
performed by computing pair-wise descriptor distances for
detected keypoints in the two images, with match extrac-
tion performed by mutual nearest neighbours in the distance
matrix, see e.g. [10, 11, 26]. Instead of directly computing
pair-wise distances, one can first condition the descriptors
based on the complete set of detections. Sarlin et al. [36]
proposed a graph neural network approach to condition the
descriptors, and optimal transport instead of mutual near-
est neighbours for match extraction. Detector-free methods
instead perform global matching uniformly over the image
grid at a coarse scale [32, 33, 45, 53]. This has the benefit
of avoiding the detection problem [41]. These methods typ-

ically extract matches by (soft-)mutual-nearest neighbours,
or optimal transport [32, 41]. In contrast to detector-free
methods, dense methods must produce a dense warp. This
warp is typically predicted by regression based on the global
4D-correlation volume [29,47,49]. In this work we propose
a Gaussian Process (GP) formulation of the matching prob-
lem, as detailed in Section 3.2.
Match Refinement: For detector-free methods, match
refinement is typically performed by extracting patches
around the sparse matches. Zhou et al. [53] propose
to refine matches by CNN regression. Sun et al. [41]
use transformers, with additional improvements by later
work [7, 44, 50]. Dense methods in contrast refine matches
by dense warp refinement. Troung et al. [47, 49] proposed
a local-correlation based warp refinement network. In this
work, we propose to use stacked feature maps combined
with large depth-wise convolution kernels. Our approach to
refinement is described in Section 3.3.
Match Certainty and Sampling: Although the dense
paradigm provides subpixel-level feature matching capabil-
ities, it also comes with inaccurate correspondences in un-
matchable regions, resulting in a need for certainty estima-
tion. Wiles et al. [51] and Melekhov et al. [29] proposed
matchability branches aiming at predicting the presence or
the absence of a pixel correspondence. Recently, in PDC-
Net [49] and PDC-Net+ [48], the warp estimation was for-
mulated in a probabilistic manner, thus pairing the proposed
feature correspondences along with certainty estimates by
means of mixture models. We found, however, that their
estimated certainty is often confident for unmatchable pairs
(Figure 7). In this work, we propose to model certainty as
the likelihood of a pixel having a consistent pairwise match
in terms of 3D reconstruction, which provides potent cer-
tainty maps as illustrated in Figure 1. However, in down-
stream tasks, e.g., relative pose, the reliability of the ex-
tracted correspondence is not the sole factor influencing the
performance. For estimation, planar warps are a well known
degenerate case [8], and the five-point problem is often ill-
conditioned [6,12]. Hence, well distributed matches are im-
portant for estimation [2,18]. Motivated by this, we propose
a balanced sampling mechanism that provides the estimator
with diverse matches. We describe the certainty estimation
and balanced sampling in more detail in Section 3.4.

3. Method
In the following sections we describe our approach to

geometry estimation by dense matching. For an overview,
see Figure 2. We first provide a general overview of the
dense matching framework (Section 3.1). We then describe
our approach for improving the global matcher Gθ (Sec-
tion 3.2), the warp refiners Rθ (Section 3.3), and certainty
estimation along with match sampling (Section 3.4). Lastly,
we discuss our loss formulation (Section 3.5).
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Figure 2. An overview of geometry estimation by dense matching. I: In the first stage, a multistride feature pyramid is extracted. We
follow previous approaches and use ResNet encoders with shared weights. II: In the second stage coarse global matches are established.
We improve this stage by viewing it as a embedded probabilistic regression problem combined with a strong embedding decoder. We
describe our approach in more detail in Section 3.2. III: The coarse warp is then refined. We propose a stacked feature map approach
combined with large depthwise kernels, which increases performance. This is detailed in Section 3.3. IV: Finally, for geometry estimation
a robust certainty estimate is crucial for selecting a set of reliable matches. We find that letting the network learn to classify consistent
depth yields a trustworthy certainty estimate. Further combining this with balanced sampling yields even better results. We discuss this in
Section 3.4. V: Once a set of matches have been selected, we use standard robust solvers for estimation as previous methods.

3.1. Preliminaries

In this paper we consider the task of estimating 3D scene
geometry from two images (IA, IB). For matching we
choose the dense feature matching paradigm, i.e., to esti-
mate a dense warp WA→B and a dense certainty pA→B,
that is zero for unmatchable pixels. From this complete set
of certain and uncertain matches, a subset of matches are
sampled (without replacement). Finally, a robust estima-
tion method is used to infer the geometry from the sampled
matches. The task can be divided into five stages.

In stage I, a feature pyramid is extracted for A and B,

{φA
l }Ll=1 = Fθ(I

A) , {φB
l }Ll=1 = Fθ(I

B) , (1)

where Fθ is an encoder (we use a ResNet50 [16] pretrained
on ImageNet-1K [34]), and l ∈ {1, . . . , L} are the indices
for the multiscale features (in our approach l = 1 corre-
sponds to the rgb values of stride 1, and l = L corre-
sponds to deep features of stride 2L−1 = 32). We denote
the coarse features as (φA

coarse, φ
B
coarse) and fine features as

(φA
fine, φ

B
fine). In this work the coarse features correspond to

stride {32, 16} and the fine features to {8, 4, 2, 1}.
In stage II, we estimate a coarse global warp and cer-

tainty from the deep features with a global matcher Gθ.
Here potential global matches are embedded by the embed-
der Eθ. We propose to construct the embeddings as solu-
tions to a probabilistic regression problem using a Gaussian
Process (GP) formulation. After the embeddings have been
computed, an embedding decoder Dθ decodes the embed-
dings into a dense warp and certainty, i.e.,{ (

Ŵ
A→B
coarse , p̂

A→B
coarse

)
= Gθ(φ

A
coarse, φ

B
coarse),

Gθ(φ
A
coarse, φ

B
coarse) = Dθ

(
Eθ(φ

A
coarse, φ

B
coarse)

)
.

(2)

We describe the global matching in detail in Section 3.2.
In stage III, we refine the coarse warp of Gθ, i.e.,(
Ŵ

A→B
, p̂A→B) = Rθ

(
φA

fine, φ
B
fine, Ŵ

A→B
coarse , p̂

A→B
coarse

)
, (3)

where Ŵ is the predicted warp, p̂ is the predicted certainty,
and Rθ is a set of refiners. This is typically done by local
correlation volume refinement. In this work we additionally
stack the warped feature maps of B, and use large depthwise
kernels. We describe this in detail in Section 3.3.

In stage IV, reliable and accurate matches need to be se-
lected for estimation of scene geometry. For sparse methods
this is done at the coarse level by mutual nearest neighbour
matching and certainty thresholding. For dense matching,
we are free to choose any method, which is an advantage.
In this work we sample the estimated warp using a balanced
sampling approach. We describe this in Section 3.4.

Finally, in stage V, a robust estimator is used to estimate
geometry. We use RANSAC like previous work.

3.2. Constructing the Global Matcher Gθ

For an overview of our global matcher, see Figure 3.
Global Matching as Regression: In this work we con-
struct the global match embeddings as the solution to a
(embedded) coordinate regression problem. We phrase this
problem as finding a mapping φ → χ where χ are (embed-
dings of) spatial coordinates in image B. We can choose
any suitable regression framework to infer the mapping for
the pixels in A. In this work we consider GP regression. As
a general framework for non-parametric regression, it is a
natural choice for our formulation of feature matching.

In GP regression, the output (embedded coordinates)
χ ∈ RH·W×C , where H,W is the height and width, and C
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Figure 3. Illustration of the proposed Global Matcher. The Gaussian Process (GP) , using an exponential cosine similarity (cos sim)
kernel, and, given features and coordinate embeddings, produces an embedded predicive posterior for the warp. The CNN embedding
decoder Dθ decodes the GP output to find the most likely warp and certainty over the grid in image A. For more details, see Section 3.2.

is dimensionality of the coordinate embedding, is regarded
as a collection of random variables, with the main assump-
tion being that these are jointly Gaussian. A GP is uniquely1

defined by its kernel that defines the covariance between
outputs, and hence must be a positive-definite function to
be admissible. We choose the common assumption [54]
that the coordinate embedding dimensions are uncorrelated,
which makes the kernel block diagonal. We choose the ex-
ponential cosine similarity kernel [24], which is defined by

k(φ,φ′) = exp

(
τ

(
⟨φ,φ′⟩√

⟨φ,φ⟩⟨φ′, φ′⟩+ ε
− 1

))
, (4)

since we empirically found it to work well. We found the
squared exponential kernel to perform similarly in early ex-
periments, and other kernels could also be considered. We
initialize τ = 5 and keep it fixed and set ε = 10−6.

With the standard assumption [31] that the measure-
ments (φB

coarse, χ
B
coarse) are observed with i.i.d. noise, the an-

alytic formulae for the posterior conditioned on the features
of B are given by{

µA→B = KAB(KBB + σ2
nI)

−1χB
coarse,

ΣA→B = KAA −KAB(KBB + σ2
nI)

−1KBA,
(5)

where KAA,KAB,KBA,KBB denotes the kernel matri-
ces, µA→B is the posterior mean, σn = 0.1 is the standard
deviation of the measurement noise, and ΣA→B is the pos-
terior covariance. We refer to Rasmussen [31] for details on
GP regression.
Coordinate Embeddings: One challenge with coordinate
regression is how to deal with multimodality. GP posteri-
ors are unimodal in the output space, and hence multimodal
matches can degrade performance. To deal with this issue
we use a cosine embedding

BF (x;A, b) = cos(Ax+ b), (6)

where x ∈ R2 is the image coordinate, Aij ∼ N (0, ℓ2),
bi ∼ U[0,2π], i ∈ {1, . . . , C}, j ∈ {1, 2}. These types of
embeddings preserve multimodality [40]. We illustrate their
usefulness in Figure 4.

1With the common assumption that the mean function is 0.

Figure 4. Coordinate embeddings preserve multimodality. Real
scenes often contain repeating structures, which requires regres-
sion capable of handling multimodality. We achieve this through
cosine coordinate embeddings. We illustrate the multimodality by
correlating the GP posterior with embeddings on the image grid.

Embedding Decoder: While the embedded regression
yields a powerful probabilistic representation of the warp,
most dense methods require a unimodal warp estimate for
the subsequent refinement steps. There are multiple ways
of decoding coordinates from the posterior. We use a sim-
ple method of reshaping the predictive mean back into grid
form µA→B

grid ∈ RHcoarse×Wcoarse×C and let

Gθ(φ
A
coarse, φ

B
coarse) = Dθ(µ

A→B
grid ⊕ φA

coarse), (7)

where Dθ is a CNN embedding decoder. The decoder pre-
dicts coordinates in the canonical grid [−1, 1]× [−1, 1], and
additionally logits for the predicted validity of the matches,
for each pixel. The architecture of the embedding decoder
is inspired by the decoder proposed by Yu et al. [52]. We
use global matchers on both stride 32 and 16 features of
the backbone, and the stride 16 embedding decoder takes in
context feature maps from the stride 32 decoder.

3.3. Refining the Warp with Rθ

For an overview of our warp refiners, see Figure 5.
Warp Refinement: Once the embeddings have been de-
coded, we refine the warp using CNN refiners similarly to
previous work [39,47]. They take as input the feature maps
and the previous warp and certainty. The warp and certainty
are bilinearly upsampled to match the size of the feature
maps. The refiners predict a residual offset for the estimated
warp, and a logit offset for the certainty. This is repeated
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Figure 5. Illustration of the proposed Warp Refiners. The Warp Refiners Rθ take in fine features (φA
fine, φ

B
fine), and the upsampled coarse

warps and certainty estimates . They output a relative offset for the warp and certainty. We use grid sample on φB to create the stacked
feature maps, and local corr to construct a local correlation volume around the warp target in image B. Furthermore, we embed the
warp (represented as displacement) and certainty linearly. The concatenation constitutes our input representation and is fed into the refiner
blocks. For more details, see Section 3.3.

Robust 
uncertainty

Accurate 
warps

A B

Figure 6. DKM warps are accurate and robust. Dense methods
often struggle with large viewpoint changes. Our proposed global
matcher + refiner architecture is able to produce accurate warps
and certainty even for extreme perspective. Top row, image A and
B. Bottom row, forward and reverse warp weighted by certainty.

until reaching full resolution. The process is described re-
cursively by(

ŴA→B
l , p̂A→B

l

)
= Rθ,l(φ

A
l , φ

B
l , Ŵ

A→B
l+1 , p̂A→B

l+1 ). (8)

Input Representation: We make multiple improvements
to the input representations of the refiners. Previous
work [47–49] uses the warp, the feature maps of A, and
local correlation in A with warped feature maps from B, to-
gether with the warp. In contrast, we use all channels of the
warped feature maps of B by concatenation, as well as lo-
cal correlation in B instead of A. We investigate the effect
of this change of representation in Table 6 and find that it
yields improvements in warp accuracy.
Refiner Architecture: Finally, we improve the architec-
ture of the refiner blocks themselves. Previous work [47–
49] uses a DenseNet [19] architecture with 3x3 non-
separable kernels. We instead propose to use larger 5x5
depthwise separable kernels, followed by 1x1 convolution.
We found 8 refiner blocks per scale to give the best results.

As we show in Table 6, this improvement significantly in-
creases performance. We qualitatively show the high ro-
bustness and accuracy of DKM warps in Figure 6.

3.4. Certainty Estimation and Sampling for Geom-
etry Estimation

Certainty Estimation by Classifying Depth-consistent
Matches: We leverage the rich 3D models and densified
depth maps in the large scale MegaDepth [22] dataset. We
find consistent matches first by warping A → B using the
ground truth depth, and then applying a relative depth con-
sistency constraint in image B. This equates to

pA→B = |zA→B − zB| · |zB|−1 < α (9)

where z is the depth, zA→B depth projected using the
ground truth 3D model, and α = 0.05. This approach has
similarities to the approach in LoFTR [41], but they indi-
rectly apply the constraint by finding mutual nearest neigh-
bours. We demonstrate the importance of a good certainty
estimate in Table 7, and show a qualitative comparison of
our certainty estimate compared to the previous best per-
foming dense work PDC-Net+ [48] in Figure 7.
Sampling Balanced Matches: For estimation, match sam-
pling is required. A simple approach is to sample using the
estimated warp certainty as weight. This approach is writ-
ten as,

{xA
i , x

B
i }Ni=1 ∼ p̂A→B. (10)

Like previous semi-sparse [7, 41] and dense works [48]
we threshold the estimated certainty. We use a threshold of
0.05, and sample matches from the thresholded distribution.

While certainty weighted sampling produces good
matches, having diverse matches typically improves esti-
mation [6, 8, 12, 18]. To achieve this, we propose a simple
method for producing scene balanced matches. First, we
sample a large set of matches using the estimated certainty.
Secondly, we compute a kernel density estimate (KDE) in
the 4-dimensional match space. Finally, we weight each
match with the reciprocal of the KDE to produce a balanced
set of samples. This produces a balanced distribution in the
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Figure 7. DKM provides superior uncertainty estimates. Our
certainty estimate compared to PDC-Net+. Top row, image A, im-
age B. Middle row, results for PDC-Net+. Bottom row, results for
DKM. DKM places high certainty on repeatable matches, while
PDC-Net+ is often overconfident in untextured regions, even pre-
dicting high certainty for non-covisible pixel-pairs.

scene. We investigate the impact of the balanced sampling
in Table 7, and find that it improves performance.

3.5. Loss Formulation

Like previous work [36, 39, 49] we use separate losses
for each stride l ∈ {1, ..., L}, and use a combination of re-
gression and certainty [29,43,53] losses to train our model.
The combined loss is

L =

L∑
l=1

Lwarp(Ŵ
A→B
l ) + λLconf(p̂

A→B
l ), (11)

where λ = 0.01 is a balancing term, similarly to [29, 43].
Specifically, for the warp loss we use the ℓ2 distance be-

tween the predicted and ground truth warp, as in [41]. For
the certainty loss we use the unweighted binary cross en-
tropy between the predicted certainty and the ground truth
consistent depth mask. Our losses at a given stride l are

Lwarp(Ŵ
A→B
l ) =

∑
grid

pl ⊙
∥∥WA→B

l − ŴA→B
l

∥∥
2
, (12)

Lconf(p̂l) =
∑
grid

pl log p̂l + (1− pl) log (1− p̂l),

(13)

where the summation is done over the image grid in A. Like
Zhou et al. [53] we set p in the fine stride loss to 0 whenever
the estimated coarse stride warp is outside a threshold dis-
tance from the ground truth. We further found it beneficial
to detach the gradients between scales.

Table 1. SotA comparison. Homography estimation on HPatches,
measured in AUC (higher is better). The top and bottom portions
contains sparse methods and dense methods respectively.

Method ↓ AUC → @3px @5px @10px

SuperGlue [36] CVPR’19 53.9 68.3 81.7
LoFTR [41] CVPR’21 65.9 75.6 84.6
SE2-LoFTR [5] CVPRW’22 66.2 76.6 86.0
TopicFM [14] AAAI’23 67.3 77.0 85.7
3DG-STFM [28] ECCV’22 64.7 73.1 81.0
ASpanFormer [7] ECCV’22 67.4 76.9 85.6

PDC-Net+ [48] TPAMI’23 67.7 77.6 86.3
DKM 71.3 80.6 88.5

4. State-of-the-Art Comparison
Similarly to previous approaches [7, 36, 41, 44], we train

and evaluate our approach separately on outdoor and in-
door geometry estimation. For evaluation we present the
average of 5 benchmark runs. For DKM we sample a max-
imum of 5000 matches.

4.1. Training Details

We use a batch size of 32 with a learning rate of 4 · 10−4

for the decoder and refiners, and 2 · 10−5 for the backbone.
We use the AdamW [25] optimizer with a weight-decay
factor of 10−2. We train for 250 000 steps, decaying the
learning rate by a factor 0.2 at step 166 666 and 225 000.
Training takes roughly 5 days on 4 A100fat GPUs, which is
comparable to LoFTR that converges in 1 day on 64 1080ti
GPUs.
Outdoor Training: We train on the real world dataset
MegaDepth [22], using the same training and test split as
in previous work [7, 41]. We resize the images to a fixed
resolution of 540× 720.
Indoor Training: For indoor two-view pose estimation we
additionally train on the ScanNet [9] dataset in a similar
fashion as previous work [36, 41] and use a resolution of
480× 640.

4.2. Outdoor Geometry Estimation

HPatches Homography: HPatches [1] depicts planar
scenes divided in sequences, with transformations restricted
to homographies. We follow the evaluation protocol pro-
posed LoFTR [41], resizing the shorter side of the images to
480. Table 1 clearly shows the superiority of DKM, show-
ing gains of +3.6 AUC@3px compared to the best previous
method.
MegaDepth-1500 Pose Estimation: We use the
MegaDepth-1500 test set [41] which consists of 1500 pairs
from scene 0015 (St. Peter’s Basilica) and 0022 (Branden-
burger Tor). We follow the protocol in [7, 41] and use a
RANSAC threshold of 0.5 with intrinsics equivalent to a
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Table 2. SotA comparison. Pose estimation results on the
Megadepth-1500 benchmark, measured in AUC (higher is better).
The top and bottom portions contains sparse methods and dense
methods respectively.

Method ↓ AUC → @5◦ @10◦ @20◦

SuperGlue [36] CVPR’19 42.2 61.2 76.0
LoFTR [41] CVPR’21 52.8 69.2 81.2
QuadTree [44] ICLR’22 54.6 70.5 82.2
SE2-LoFTR [5] CVPRW’22 52.6 69.2 81.4
MatchFormer [50] ACCV’22 52.9 69.7 82.0
3DG-STFM [28] ECCV’22 52.6 68.5 80.0
ASpanFormer [7] ECCV’22 55.3 71.5 83.1
TopicFM [14] AAAI’23 54.1 70.1 81.6

DenseGAP [21] ICPR’22 41.2 56.9 70.2
ECO-TR [43] ECCV’22 48.3 65.8 78.5
PDC-Net+ [48] TPAMI’23 51.5 67.2 78.5
DKM 60.4 74.9 85.1

longer side of 1200. Our results, presented in Table 2, show
that our method sets a new state-of-the-art. Notably, we out-
perform the current best sparse method ASpanFormer [50]
with an improvement of +4.9 AUC@5◦. Furthermore, we
significantly outperform the best previous dense method
PDC-Net+ [48] with an improvement of +8.9 AUC@5◦.
Additional Benchmarks: We create a novel bench-
mark based on 8 diverse MegaDepth scenes, where DKM
shows major improvements. We further do comparisons to
COTR/ECO-TR [20, 43] on the St. Paul’s Cathedral scene,
with DKM showing large improvements. Details of these
experiments can be found in the supplementary material.

Table 3. SotA comparison. Pose estimation results on the
ScanNet-1500 benchmark, measured in AUC (higher is better).
The top and bottom portions contains sparse methods and dense
methods respectively.

Method ↓ AUC → @5◦ @10◦ @20◦

SuperGlue [36] CVPR’19 16.2 33.8 51.8
LoFTR [41] CVPR’21 22.1 40.8 57.6
QuadTree [44] ICLR’22 24.9 44.7 61.8
MatchFormer [50] ACCV’22 24.3 43.9 61.4
3DG-STFM [28] ECCV’22 23.6 43.6 61.2
ASpanFormer [7] ECCV’22 25.6 46.0 63.3

PDC-Net [49] CVPR’21 18.7 37.0 54.0
DenseGAP [21] ICPR’22 16.9 34.9 53.2
PDC-Net+ [48] TPAMI’23 20.3 39.4 57.1
DKM 29.4 50.7 68.3

4.3. Indoor Geometry Estimation

ScanNet-1500 Pose Estimation: ScanNet [9] is a large
scale indoor dataset, composed of challenging sequences

Table 4. SotA comparison. Visual localization on the InLoc
benchmark using HLoc [35]. Measured in rate (%) of correctly
localized queries (higher is better).

Method ↓ DUC1 DUC2

(0.25m,10◦) / (0.5m,10◦) / (1.0m,10◦)

SuperGlue [36] 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
LoFTR [41] 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
ASpanFormer [7] 51.5 / 73.7 / 86.4 55.0 / 74.0 / 81.7

DKM 51.5 / 75.3 / 86.9 63.4 / 82.4 / 87.8

with low texture regions and large changes in perspective.
We follow the evaluation in SuperGlue [36]. Results are
presented in Table 3. Our model achieves a +4.0 AUC@5◦

gain compared to the previous best sparse method. Com-
pared to the previous best dense method our performance
gains are even larger, with gains of +9.3 AUC@5◦.
Visual Localization on InLoc [42]: We follow previous
work and use HLoc [35]. Results are presented in Table 4.
We find large improvements, particularly on DUC2 where
we show a gain of +8.4 % correctly localized queries.

5. Ablation Study
Next, we investigate design choices of our approach.

Global Matcher: Here we investigate the performance im-
pact of replacing a strong baseline correlation volume re-
gressor, similar to the one used in [49] with our proposed
kernelized regression and embedding decoder. The results
are shown in Table 5. Our proposed method yields an im-
provement of +1.1 AUC@5◦, highlighting the benefits of
our proposed global matcher. As expected, the cosine coor-
dinate embeddings outperform the linear embeddings.

Table 5. Ablation study. Impact of our proposed global matcher
(GM), using either linear or cosine coordinate embeddings, com-
pared to a strong baseline. Measured in AUC (higher is better).

GM ↓ AUC → @5◦ @10◦ @20◦

Correlation Volume 57.0 72.1 82.9
GM Linear 57.9 72.9 83.7
GM Cosine 58.1 73.2 83.8

Warp Refiners: Here we ablate both the architecture, and
the effect of the input representation used. For the archi-
tecture we exchange the depthwise convolution blocks for
refiners used in previous dense matching work [49]. The
results of this ablation are shown in Table 6. Our depthwise
refiners significantly outperform the baseline, with a gain
of +3.2 AUC@5◦. Furthermore, we find that our input rep-
resentation yields an improvement of +1.6 AUC@5◦, high-
lighting the importance of well chosen representations.
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Table 6. Ablation study. Impact of removing our proposed depth-
wise (DW) warp refiners, or stacked feature maps (FM) from
DKM. Measured in AUC (higher is better).

Warp Refiner ↓ AUC → @5◦ @10◦ @20◦

No DW 54.9 70.0 81.6
No Stacked FM 56.5 71.8 82.7
DW, Stacked FM 58.1 73.2 83.8

Table 7. Ablation study. Impact of balanced match sampling for
two-view pose estimation, measured in AUC (higher is better).

Sampling ↓ AUC → @5◦ @10◦ @20◦

No Certainty Sampling 42.9 58.1 70.4
Certainty Sampling 56.1 71.7 83.0
Balanced Sampling 58.1 73.2 83.8

Table 8. Ablation study. Impact of changing training resolution
for two-view pose estimation, measured in AUC (higher is better).

Resolution ↓ AUC → @5◦ @10◦ @20◦

384×512 58.1 73.2 83.8
480×640 58.9 73.9 84.4
540×720 59.4 74.0 84.5

Table 9. Ablation study. Impact of bidirectional DKM for two-
view pose estimation, measured in AUC (higher is better).

Warp ↓ AUC → @5◦ @10◦ @20◦

Unidirectional 59.4 74.0 84.5
Bidirectional 60.4 74.9 85.1

Match Sampling: We compare a baseline not using the
certainty estimate, with either using certainty sampling or
our proposed balanced sampling using the reciprocal of the
KDE estimate. We present results in Table 7, which shows
the need for trustworthy certainty. We find that proposed
balanced sampling improves the estimation stage, increas-
ing performance with a gain of +2.0 AUC@5◦.
Resolution: Tinchev et al. [45] notes the importance of
increasing input resolution for estimation performance. To
gauge the effect of resolution on estimation performance in
the dense paradigm we trained DKM on a set of different
resolutions. We present the results of our study in Table 8.
We find that high resolution is important for accurate esti-
mation. In particular, comparing 384 × 512 to 540 × 720
we find an increase in performance of +1.3 AUC@5◦.
Bidirectionality: Previous dense work [43, 48] has inves-
tigated incorporating mutual nearest neighbours in dense
matching. Here we propose to instead simply concatenate
the reverse warp matches. Results are presented in Table 9.
We find an improvement of +1.0 AUC@5◦.

Overly uncertain warp

Inaccurate warp 
near depth discontinuities

A B

Figure 8. Representative failure case for DKM. Our unimodal
warp refinement can struggle near depth-discontinuities, and the
proposed certainty estimate is occationally overly uncertain.

6. Conclusion

We have presented DKM, a novel dense feature match-
ing approach that achieves state-of-the-art two-view geom-
etry estimation results. Three distinct contributions were
proposed. We proposed a strong global matcher with a ker-
nelized regressor and embedding decoder. Furthermore, we
proposed warp refinement through large depth-wise kernels
on stacked feature maps. Finally, we proposed a simple
way of learning dense confidence maps by directly classi-
fying consistent depth, and a balanced sampling approach
for dense warps. Our extensive experiments clearly showed
the superiority of our method, with gains of +8.9 AUC@5◦

on the MegaDepth-1500 benchmark.
Limitations: While our global matcher can gracefully han-
dle multimodality, the proposed dense warp refinement is
unimodal. This poses challenges where the warp is dis-
continuous, e.g., at depth boundaries. We also found DKM
to be overly uncertain for small objects bordering the sky.
This could be a limitation of learning to classify consistent
depth, instead of predicting model uncertainty as in, e.g.,
PDC-Net. We illustrate these weaknesses in Figure 8.
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