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Abstract

We launch EVA, a vision-centric foundation model to
Explore the limits of Visual representation at scAle using
only publicly accessible data. EVA is a vanilla ViT pre-
trained to reconstruct the masked out image-text aligned
vision features conditioned on visible image patches. Via
this pretext task, we can efficiently scale up EVA to one
billion parameters, and sets new records on a broad range
of representative vision downstream tasks, such as image
recognition, video action recognition, object detection, in-
stance segmentation and semantic segmentation without
heavy supervised training. Moreover, we observe quanti-
tative changes in scaling EVA result in qualitative changes
in transfer learning performance that are not present in other
models. For instance, EVA takes a great leap in the challeng-
ing large vocabulary instance segmentation task: our model
achieves almost the same state-of-the-art performance on
LVIS dataset with over a thousand categories and COCO
dataset with only eighty categories. Beyond a pure vision en-
coder, EVA can also serve as a vision-centric, multi-modal
pivot to connect images and text. We find initializing the
vision tower of a giant CLIP from EVA can greatly stabi-
lize the training and outperform the training from scratch
counterpart with much fewer samples and less compute, pro-
viding a new direction for scaling up and accelerating the
costly training of multi-modal foundation models.

1. Introduction
Scaling up pre-trained language models (PLMs) [9,64,76]

has revolutionized natural language processing (NLP) in the
past few years. The key to this success lies in the simple
and scalable self-supervised learning task of masked signal
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prediction [29, 74], with which Transformer models [99]
could be scaled up to billions of parameters using nearly
unlimited unlabelled data, and generalize well to a wide
range of downstream tasks with little tuning. With further
scaling on compute, data, and model sizes, PLMs have led
to not only continuous performance improvements [50, 75,
76], but also a surprising emergence of in-context learning
capability [9, 25, 104, 105].

Motivated by the success of model scaling in NLP, it is ap-
pealing that we can also translate this success from language
to vision, i.e., to scale up a vision-centric foundation model
that is beneficial for both vision & multi-modal downstream
tasks. Recently, masked image modeling (MIM) [5, 39, 113]
has boomed as a viable approach for vision model pre-
training and scaling. However, the most competitive billion-
sized vision pre-trained models [31, 65, 71, 119] still heavily
rely on supervised or weakly-supervised training with hun-
dreds of millions of (often publicly inaccessible) labeled
data. MIM is somewhat only adopted as an initialization
stage before the heavily supervised pre-training [65], or a
pure MIM pre-trained model could not achieve favorable
performance at billion-scale model sizes [114]. We regard
this gap stems from the fact that natural images are raw and
information-sparse. Meanwhile, an ideal vision pretext task
needs the abstraction of not only the low-level geometry &
structure information, but also high-level semantics, which
is hardly captured by pixel-level recovery tasks [112].

In this work, we seek a suitable MIM pretext task for
large scale vision representation learning and explore its
limits at the scale of one billion parameters with tens of
millions of unlabeled data. Recently, there are a few trials
leveraging the semantic information from image-image or
image-text contrastive learning [13, 22, 73] for MIM pre-
training [43, 106, 124], which perform fairly well in vision
downstream tasks. However, there remains a debate that (i)
tokenized semantic features could provide better supervision
signal for masked modeling in vision [5, 70, 101], and (ii)
good performances could be also achieved via a simple post-
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image & video classification (§) object detection (det) & instance segmentation (seg) semantic segmentation

model IN-1K ft IN-1K lin IN-1K zs avg. zs K400 K600 K700 COCO det (test/val) COCO seg (test/val) LVIS seg COCO-Stuff ADE20K

Florence —- —- —- —- 86.5 87.8 —- 62.4e/ 62.0 62.4e- 62.0 —- —- —-
SwinV2-G —- —- —- —- 86.8 —- —- 63.1e/ 62.5 54.4e/ 53.7 —- —- 59.9
prev. best 89.6a 82.3b 78.0c 73.1c 87.8d 88.3e 80.4e 64.5f/ 64.2g 55.4h/ 54.5i 49.2j 52.3k 62.8a

EVA 89.7(+0.1) 86.5(+4.2) 78.5(+0.5) 75.7(+2.6) 89.7(+1.9) 89.8(+1.5) 82.9(+2.5) 64.7e/ 64.5(+0.2/+0.3) 55.5e/ 55.0(+0.1/+0.5) 55.0(+5.8) 53.4(+1.1) 62.3(-0.5)

Table 1. Summary of EVA performance on various mainstream vision benchmarks. EVA is performant compared with previous best /
leading approaches. “§”: methods / results that only exploit publicly accessible data / academic resources. “ft”: end-to-end fine-tuning.
“lin”: linear probing. “zs”: zero-shot classification. “avg. zs”: averaged zero-shot classification performance on 8 image and 4 video datasets
with contrastive language-image pre-training. (timestamp: Nov 10, 2022)
methods / results reference. a: BEiT-3 [101], b: iBOT [124], c: Open CLIP-H [47], d: Text4Vis [109], e: MaskFeat [103], f: Group DETRv2 [19], g: FocalNet [116], h:

FD-SwinV2-G [107], i: Mask DINO [57], j: LVIS 2021 competition 1st [35], k: ViT-Adapter [23].

distillation process without masked prediction tasks [107].
Through a pilot empirical study, we find that simply us-
ing image-text aligned (i.e., CLIP [73]) vision features as
the prediction targets in MIM scales up well and achieves
satisfactory performances on a broad range of downstream
benchmarks. This pre-training task draws the benefits from
both the high-level semantic abstraction of image-text con-
trastive learning as well as the good capture of geometry &
structure in masked image modeling, which typically covers
the information needed for most visual perception tasks.

Via this MIM pretext task, we can efficiently scale up a
vanilla ViT encoder [31], dubbed EVA, to one billion param-
eters with strong visual representations that transfers well to
a wide range of downstream tasks. Using 29.6 million pub-
lic accessible unlabeled images for pre-training, EVA sets
new records on several representative vision benchmarks,
such as image classification on ImageNet-1K [28] (89.7%
top-1 accuracy), object detection and instance segmentation on
LVIS [38] (62.2 APbox & 55.0 APmask on val) and COCO [62] (64.5
APbox & 55.0 APmask on val, 64.7 APbox & 55.5 APmask on test-dev),

ImageNet-1K ADE20K
tokenize? [70] pt epochs top-1 acc. mIoUss

✗ - 85.0 52.6
✓ 300 85.0 52.7
✓ 1600 85.5 53.1
✗ 800 85.5 53.3

(a) (Additional) semantic feature tokenization is not required for
achieving good downstream performance.

ImageNet-1K ADE20K
distill.? [107] pt epochs top-1 acc. mIoUss

✗ - 85.0 52.6
✓ 300 85.1 52.5
✓ 800 85.1 52.7
✗ 800 85.5 53.3

(b) Feature distillation fails to achieve consistent performance gain
as the pre-training becomes longer.

Table 2. Pilot experiment. We evaluate different pre-training
approaches using ViT-B and report their performance on ImageNet-
1K image classification (top-1 accuracy) and ADE20K semantic
segmentation (single-scale mIoU). Numbers in grey refer to the
results of directly fine-tuning CLIP vision encoder on correspond-
ing downstream tasks. Default settings for EVA pre-training are
marked in purple , i.e., directly regressing the masked out CLIP
vision features conditioned on visible image patches.

semantic segmentation on COCO-stuff [11] (53.4 mIoUss) and
ADE20K [123] (62.3 mIoUms), and video action recognition
on Kinetics-400 [51] (89.7% top-1 accuracy), Kinetics-600 [14]
(89.8% top-1 accuracy), Kinetics-700 [15] (82.9% top-1 accuracy).
Notably, different from other state-of-the-art billion-scale
vision foundation models that demand tens of millions of
or even billions of labeled images, such as SwinV2-G us-
ing ImageNet-21K-ext-70M [65] and ViT-g/G using JFT-
3B [119], EVA does not need a costly supervised training
stage and only leverage images from open-sourced datasets
for academic reproducibility.

Moreover, we observe quantitative changes in scaling
EVA result in qualitative changes in transfer learning perfor-
mance that are not observed in other smaller-scale models,
e.g., EVA makes a significant breakthrough in the challeng-
ing large vocabulary object-level recognition task: our model
achieves almost the same performance on LVIS [38], an in-
stance segmentation benchmark with more than 1,200 cate-
gories, as COCO [62], which almost shares the same image
set as LVIS but with only 80 categories annotated. This
emergent ability well matches the expectation of model scal-
ing [105], that larger capability of model results in not only
predictable performance improvements on standard bench-
marks, but also unpredictable phenomenons and capabilities
for resolving more challenging tasks.

Going beyond a pure vision encoder, EVA can also serve
as a vision-centric, multi-modal pivot that builds a bridge
between vision and language. We show that initializing the
image encoder via pre-trained EVA in a 1.1 billion parame-
ters CLIP model can outperform the training from scratch
counterpart on a broad range of zero-shot image / video clas-
sification benchmarks with much fewer samples and less
compute. Moreover, EVA can greatly stabilize the giant
CLIP’s training & optimization process. Since large CLIP
models usually suffer from training instability and ineffi-
ciency issues [2, 47], we hope our solution opens up a new
direction for scaling up and accelerating the costly training
of multi-modal foundation models.

By scaling up vision-centric foundation models with MIM
pre-training to achieve strong performance on broad down-
stream tasks, we hope EVA would bridge the gap between
vision and language with masked signal modeling, and con-
tributes to the big convergence across different modalities.
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patch size #layers hidden dim mlp dim attn heads #param.

14×14 40 1408 6144 16 1011M

(a) EVA architecture configurations.

dataset total size

ImageNet-21K, CC12M, CC3M, Object365, COCO, ADE 29.6M images

(b) datasets for pre-training EVA.

image size batch size optimizer peak lr (β1, β2) pt epochs

2242 4096 AdamW 1e-3 (0.9, 0.98) 150

(c) some pre-training settings and hyper-parameters.

precision ZeRO #gpus samples / sec. max mem. pt days

fp16 stage-1 128 ∼3150 ∼26.5GB ∼14.5

(d) basic statistics of EVA pre-training.

Table 3. A brief summary of pre-training settings and configurations for EVA.

2. Fly EVA to the Moon
We first conduct a series of pilot experiments for choosing

an ideal vision pretext task in §2.1, then we scale up EVA
pre-training via the chosen pre-training objective in §2.2.
Finally, we evaluate the pre-trained representation on various
downstream tasks in §2.3. Detailed experimental settings
and configurations are in Appendix.

2.1. The Feature Instrumentality Project

In this section, we seek a MIM vision pretext task with
compelling transfer performance. Based on previous liter-
ature on vision pre-training, we study two promising can-
didates: (i) recovering the masked out tokenized semantic
vision features [5, 70, 101], and (ii) feature distillation from
strong pre-trained representation as in [107]. Both of them
exploit pre-trained image-text aligned vision features (i.e.,
CLIP [73] vision features). Via a series of pilot experiments
shown in Table 2, we find that: (i) the (additional) CLIP
feature tokenization process is unnecessary for achieving
good downstream performance (ii) feature distillation fails
to provide consistent performance gain as the pre-training
becomes longer. Instead, we find that simply reconstructing
the masked out CLIP vision features conditioned on visible
image patches is highly performant, which is chosen for
scaling up EVA.

We clarify that this MIM pretext task is not originally pro-
posed by us. Regressing the masked out image-text aligned
vision features for MIM pre-training has been studied in
MVP [106] and recently has been revisited by MILAN [43].
In this work, we show that this pretext task can scale up to
billion-scale parameters and tens of millions of unlabeled
images for vision-centric representation learning without (i)
semantic feature quantization / tokenization [5, 70], and (ii)
explicitly using image-text paired pre-training data and large
corpora as in BEiT-3 [101].

2.2. Pre-training

Architecture. The architecture configurations of EVA are
in Table 3a. EVA is a vanilla ViT [31] with 1.0B parameters.
The shape of her follows ViT giant [119] and the vision
encoder of BEiT-3 [101]. We do not use relative positional
embeddings [89] and layer-scale [97] during pre-training.

Pre-training objective. EVA is pre-trained to reconstruct
the masked out image-text aligned vision features condi-
tioned on visible image patches. We corrupt the input patches
with [MASK] tokens, and we use block-wise masking with

a masking ratio of 40% following [5, 70, 101]. The target
for MIM pre-training is from the publicly available Ope-
nAI CLIP-L/14 vision tower trained on 224×224 pixel im-
ages [73]. The output feature of EVA is first normalized [3]
and then projected to the same dimension as the CLIP fea-
ture via a linear layer. We use negative cosine similarity as
the loss function.

Pre-training data. The data we used for pre-training
EVA are summarized in Table 3b. For CC12M [16] and
CC3M [88] datasets, we only use the image data without
captions. For COCO [62] and ADE20K [123] datasets, we
only use the train set data. ImageNet-21K [28] and Ob-
ject365 [87] image data are also used. All these data are
publicly accessible. The merged dataset for pre-training has
29.6 million images in total.

Pre-training settings & hyper-parameters. As shown in
Table 3c, EVA is optimized via Adam [52] with decoupled
weight decay [67] of 0.05. The peak learning rate is 1e-3
and decays according to a cosine learning rate schedule. We
employed stochastic depth [45] with a rate of 0.1 for regular-
ization and RandResizeCrop (0.2, 1) for data augmentation.
Color jitter is not used.

Pre-training infrastructure and statistics. Some basic
pre-training statistics are available in Table 3d. The GPU
we use is NVIDIA A100-SXM4-40GB. Pre-training code is
based on BEiT [5] written in PyTorch [69]. We also adopt
DeepSpeed optimization library [80] with ZeRO stage-1 op-
timizer [77] to save memory. We find using fp16 format
with dynamic loss scaling is stable enough during the whole
course of pre-training while using bfloat16 format is un-
necessary. Since we use fp16 precision, EVA can also be
pre-trained using 16× NVIDIA 24GB (32GB) GPUs with
(without) gradient checkpointing [20].

2.3. Evaluation on Downstream Tasks

In this section, we extensively evaluate pre-trained EVA
on several representative benchmarks, such as image clas-
sification (§2.3.1), video action recognition (§2.3.2), object
detection & instance segmentation (§2.3.3), semantic seg-
mentation (§2.3.4), and contrastive image-text pre-training
with zero-shot evaluation (§2.3.5). EVA achieves state-of-
the-art performance on a broad range of downstream tasks.
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model #param. extra labeled data image size top-1 acc.
using private labeled data

SwinV2-G [65] 3.0B IN-21K-ext-70M 6402 90.2
ViT-G [119] 1.8B JFT-3B 5182 90.5
ViT-g (CoCa) [117] 1.0B JFT-3B+ALIGN 5762 91.0

using public labeled data

CoAtNet-4 [27] 275M IN-21K (14M) 5122 88.6
MaxViT-XL [98] 475M IN-21K (14M) 5122 88.7
MViTv2-H [61] 667M IN-21K (14M) 5122 88.8
FD-CLIP-L [107] 304M IN-21K (14M) 3362 89.0
BEiT-3 [101] 2.0B 35M img-txt pairs 3362 89.6
EVA 1.0B IN-21K (14M) 3362 89.6
EVA 1.0B IN-21K (14M) 5602 89.7

Table 4. Comparisons of image classification performance on
ImageNet-1K validation set. With only publicly available data,
EVA creates a new state-of-the-art ImageNet-1K image classifica-
tion result with a canonical linear classifier.

2.3.1 Image Classification

Datasets. For image classification task, we evaluate EVA on
ImageNet-1K (IN-1K) [28] validation set. We also evaluate
the robustness & generalization capability of EVA along with
our training settings & hyper-parameters using ImageNet-V2
matched frequency (IN-V2) [81], ImageNet-ReaL (IN-ReaL) [7],
ImageNet-Adversarial (IN-Adv.) [42], ImageNet-Rendition
(IN-Ren.) [41], ImageNet-Sketch (IN-Ske.) [100].

Training Settings. Following the conventional setting [5,70,
101], we first perform intermediate fine-tuning on ImageNet-
21K [28] for 60 epochs with an image resolution of 2242,
then EVA is further fine-tuned on ImageNet-1K training set
for 10 epochs. Different from [117, 119] that use multi-head
attention pooling and BEiT-3 that exploits an additional pre-
trained giant language tower as the image classification task
layer, we simply adopt a linear layer as the classifier [31].
Notice that the supervised intermediate fine-tuning consumes
only ∼1/5 of the time & compute of the MIM pre-training
stage. While for other billion-scale vision models such as
SwinV2-G-3B, the supervised training phase costs ∼1.5×
resources than the MIM pre-training.

Results. Table 4 compares EVA with some state-of-the-art
models on ImageNet-1K validation set. EVA achieves 89.6%
top-1 accuracy with 3362 inputs, comparable to BEiT-3. Us-
ing a larger image resolution of 5602 can further boost the
top-1 accuracy to 89.7%. Notice that BEiT-3 treats image
classification as an image-to-text retrieval task. Therefore
they leverage an additional one billion parameters pre-trained
language encoder along with 35 million image-text data
(21M pairs from CC12M, CC3M, SBU, COCO, VG and 14M pairs from
ImageNet-21K) as well as 160GB text data in total. Mean-
while, we simply use a linear classifier on top of EVA with
only ImageNet-21K image-tag data used for additional fine-
tuning. With only publicly available data, EVA creates a new
state-of-the-art image classification result on ImageNet-1K
with a much neater architecture.

Robustness & generalization ability evaluation. We eval-

model IN-1K IN-V2 IN-ReaL IN-Adv. IN-Ren. IN-Ske. avg. ∆↓
ConvNeXt 87.5 77.7 90.5 70.8 67.0 53.7 74.5 13.0
SwinV2 87.5 77.3 90.2 73.9 67.7 52.3 74.8 12.7
MAE 87.8 79.2 90.3 76.7 66.5 50.9 75.2 12.6
DeiT3 87.7 79.1 90.2 79.2 70.6 54.9 77.0 10.7
Eff-L2-NS 88.4 80.5 90.6 84.8 74.7 47.6 77.8 10.6
BEiTv2 88.4 80.1 90.3 76.2 76.4 58.3 78.3 10.1
BEiT 88.6 79.9 90.7 81.7 73.2 56.8 78.5 10.1
EVA 89.6 81.6 90.8 86.2 88.3 67.7 84.0 5.6

Table 5. Robustness & generalization capability evaluation on
ImageNet-1K variants. We test each model on different ImageNet-
1K validation sets, without any specialized fine-tuning. “avg.”: the
averaged top-1 accuracy on 6 different ImageNet-1K validation set
variants. “∆↓”: The gap between the averaged top-1 accuracy on
6 variants (i.e., IN-{1K, V2, ReaL, Adv., Ren., Ske.}) and the original
ImageNet-1K validation set top-1 accuracy (the lower the better).

uate the robustness and generalization capability of EVA
trained with an image size of 3362 on 6 different ImageNet-
1K validation set variants. In Table 5, we compare EVA
with some top open-sourced models collected by the timm
library [108]. Following the evaluation procedure in [39], all
these models are first fine-tuned on the original ImageNet-
1K training set and then evaluated on different validation
sets using the same fine-tuned model without further hyper-
parameter selection and specialized fine-tuning.

As shown in Table 5, EVA is the most competitive one in
terms of absolute top-1 accuracies. However, these model
various in pre-train data (from ImageNet-1K, ImageNet-21K to JFT-
300M), input resolutions (from 2242 to 8002), model sizes (from
hundreds of millions to one billion parameters) as well as architec-
tures (ConvNets, vanilla & hierarchical ViTs), etc. Therefore their
absolute accuracies are not directly comparable. Instead,
we are more interested in the gap between the averaged
top-1 accuracy on 6 validation set variants and the original
ImageNet-1K validation set top-1 accuracy (the lower the
better), i.e., we care about whether a model along with its
training settings biases towards the original validation set
and generalize well on other variants. From this perspective,
EVA not only achieves the highest averaged accuracy, but
also has the smallest performance gap, which reflects the
excellent robustness and generalization ability of EVA.

2.3.2 Video Action Recognition

Datasets. For video action recognition, we evaluate EVA on
Kinetics-400 (K-400) [51], Kinetics-600 (K-600) [14] and
Kinetics-700 (K-700) [15] benchmarks. We first conduct
intermediate fine-tuning on a merged dataset coined Kinetics-
722 (K-722) that integrates videos from K-400, K-600 and
K-700. We remove leaked as well as repeated videos in both
training and validation sets. After this data de-duplicating

Source: link (timestamp: Nov 10, 2022). The detailed model config-
urations are (arch-model size-img resolution-data): ConvNeXt-XL-384px-
21K [66], SwinV2-L-384px-21K [65], MAE-H-448px-1K [39], DeiT3-L-
384px-21K [96], EfficientNet-L2&NS-800px-JFT300M [110], BEiTv2-L-
224px-21K [70], BEiT-L-512px-21K [5], EVA-g-336px-merged30M&21K.
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top-1 accuracy
model Kinetics-400 Kinetics-600 Kinetics-700

MAE [34] 86.8 - -
SwinV2-G [65] 86.8 - -
Florence [118] 86.8 88.0 -
MaskFeat [103] 87.0 88.3 80.4
VideoMAE [95] 87.4 - -
X-CLIP [68] 87.7 88.3 -
CoVeR [120] 87.2 87.9 78.5
CoCa [117] (frozen) 88.0 88.5 81.1
CoCa [117] (finetuned) 88.9 89.4 82.7
EVA 89.7 89.8 82.9

Table 6. Video action recognition. With only publicly available
K-400, K-600 and K-700 as video pre-training data, EVA is also
quite performant in video action recognition tasks.

process, K-722 has 0.63M training videos in total with 722
action classes. A similar approach is also used in [58].

Training & evaluation settings. EVA processes video data
simply via spatial-temporal attention as [34, 95] with no
specific architectural adaptation for video related tasks. We
first train EVA using K-722 training set for 40 epochs with 8
frames and 2242 resolution, then we fine-tune EVA on each
dataset for only 1 or 2 epochs. We set frame×crop×clip to
16×3×4 for fine-tuning and evaluation for all datasets. The
frame resolution is 2242.

Results. As shown in Table 6, EVA achieves better perfor-
mance compared with some recent video-specific or large
foundation models in video recognition. For reference, di-
rectly adapting image-only pre-trained EVA to K-400 with-
out K-722 intermediate fine-tuning can also achieve a very
competitive top-1 accuracy of 88.4%.

2.3.3 Object Detection & Instance Segmentation

Datasets. We evaluate the object detection and instance
segmentation performance of EVA on both COCO [62] and
LVIS [38]. COCO is a widely used object-level recognition
benchmark with 80 common object categories. LVIS is an
emerging large-vocabulary object-level recognition bench-
mark, which has more than 1,200 object categories as well
as more than 2 million high quality instance segmentation
masks (nearly 2× of COCO). Notably, COCO and LVIS almost
use the same set of images, and both train and val split of
LVIS have a huge overlap with COCO train and val split.
Meanwhile, COCO has much fewer object categories than
LVIS (i.e., 80 v.s.1,200+). Therefore it is meaningful to evaluate
models’ performance on both COCO and LVIS.

Training & evaluation settings. EVA uses Cascade Mask
R-CNN [12] as the detector and adopts the training settings
(e.g., LSJ data augmentation [36]) & architecture config-
urations (e.g., interleaved window & global attention) of
ViTDet [60]. Following the common practice [65, 101, 121],
we first conduct intermediate fine-tuning for the whole detec-

tor using Objects365 [87] dataset with a resolution of 10242,
then we fine-tune the detector on COCO and LVIS train

split respectively with 12802 inputs.
We report single-scale evaluation and multi-scale evalua-

tion / test-time augmentation (tta) results of EVA for compar-
ison. For COCO, Soft-NMS [8] is also applied. For instance
segmentation task, the classification score is calibrated [46]
via maskness [102].

The model architecture as well as the hyper-parameters
for COCO and LVIS are almost the same (i.e., the hyper-
parameters are nearly “zero-shot” transferred from COCO to LVIS), ex-
pect we use federated loss [125] and repeat factor sam-
pling [38] following ViTDet on LVIS.

Results. Perhaps COCO is the most fierce vision benchmark.
Table 7 compares EVA with some leading approaches on
COCO. Our model creates new state-of-the-art results on
both object detection and instance segmentation tasks.

Compared with ViTDet-H [60] that uses Cascade Mask
R-CNN [12] as well, EVA shows that with a larger model
and better encoder & detector pre-training, the performance
can be greatly improved with the same detector.

Compared with FocalNet [116] and Group DETRv2 [19]
that choose better-established and highly-optimized DINO
detector [121], EVA demonstrates that with sufficient model
size, data and pre-training, better performance can be also
achieved via the classic R-CNN framework [37]. On the
other hand, FocalNet and Group DETRv2 are incapable of
instance segmentation due to using DINO.

Compared with SwinV2-Giant [65] and FD-SwinV2-
Giant [107] that also adopt a (stronger HTC++ [17]) detector
from the R-CNN family but with ∼3× model size of EVA,
our approach streamlines the pre-training processes and pulls
off a “Giant-killing” act via better representations.

Compared with BEiT-3, EVA shows that is possible to
build a state-of-the-art object-level recognition system with-
out exploiting (i) semantic feature quantization / tokeniza-
tion [5, 70], and (ii) image-text paired pre-training data and
large corpora during pre-training.

Analyzing the performance gap between LVIS and
COCO. Evaluating models on both COCO and LVIS bench-
marks is essential, as they share nearly the same image set but
differ in the number of annotated object categories. COCO
has only 80 annotated categories, while LVIS annotates over
1,200 object categories, resulting in a long-tail distribution
that more closely resembles challenging real-world scenar-
ios [38]. In general, LVIS is considered a much more difficult
benchmark than COCO for object-level recognition, with
conventional methods typically experiencing a significant
performance drop on LVIS.

In Table 8a, we analyze the performance gap between
the LVIS and COCO benchmarks for EVA and other state-
of-the-art approaches. For previous leading methods, such
as ViTDet, the performance gap for APbox is around 8, and
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pre-training data COCO val COCO test-dev

model / method detector #param.- encoder detector tta? APbox APmask APbox APmask

Soft-Teacher [115] HTC++ [17] 284M IN-21K (14M) COCO(unlabeled)+O365 ✓ 60.7 52.5 61.3 53.0
GLIP [59] DyHead [26] ≥ 284M IN-21K (14M) 4ODs+GoldG+Cap12M ✓ 60.8 - 61.5 -
GLIPv2 [122] DyHead [26] ≥ 637M FLD-900M merged dataa ✓ - - 62.4 -
ViTDet-H [60] CMask R-CNN [12] 692M IN-1K (1M) - ✓ 61.3 53.1 - -
Florence [118] DyHead [26] ≥ 637M FLD-900M merged dataa ✓ 62.0 - 62.4 -
SwinV2-G [65] HTC++ [17] ≥ 3000M IN-21K-ext-70M O365 ✓ 62.5 53.7 63.1 54.4
DINO [121] - 218M IN-21K (14M) O365 ✓ 63.2 - 63.3 -
Mask DINO [57] - 223M IN-21K (14M) O365 ✓ - 54.5 - 54.7
BEiT-3 [101] CMask R-CNN [12] 1074M merged datab O365 ✓ - - 63.7 54.8
FD-SwinV2-G [107] HTC++ [17] ≥ 3000M IN-21K-ext-70M O365 ✓ - - 64.2 55.4
FocalNet [116] DINO [121] 746M IN-21K (14M) O365 ✓ 64.2 - 64.4 -
Group DETRv2 [19] DINO [121] 629M IN-1K (1M) O365 ✓ - - 64.5 -
EVA CMask R-CNN [12] 1074M merged-30M O365 ✗ 64.2 55.0 64.4 55.5
EVA CMask R-CNN [12] 1074M merged-30M O365 ✓ 64.5 - 64.7 -

Table 7. Object detection & instance segmentation on results COCO dataset. EVA establishes new state-of-the-art results in object
detection and instance segmentation tasks on both COCO val and test-dev splits with the canonical R-CNN [37] object detection &
segmentation framework. “tta” refers to test-time augmentation. (timestamp: Nov 10, 2022)
+ “merged dataa”: FourODs + INBoxes + GoldG + CC15M + SBU, + “merged datab”: IN-21K (14M) + Image-Text (35M) + Text (160GB).

APbox APmask

model COCO LVIS ∆↓ COCO LVIS ∆↓
(a) evaluation using COCO & LVIS official annotations respectively

Copy-Paste [36] 57.0a 41.6a 15.4 48.9a 38.1a 10.8
ViTDet-H [60] 61.3a 53.4a 7.9 53.1a 48.1a 5.0
prev. best 63.2a 53.4b 9.8 54.5c 49.2d 5.3
EVA (single-scale test) 64.1a 62.2a 1.9 55.0a 55.0a 0.0

(b) evaluation using LVIS val-5K annotations

EVA (single-scale test) 69.6a 68.3a 1.3 59.6a 59.8a -0.2

Table 8. LVIS & COCO performance gap on val set. “prev.
best” refers to the best individual model / result in each benchmark
(a: DINO [121], b: ViTDet-H [60], c: Mask DINO [57], d: 2021
competition 1st [35]) “∆↓”: the performance gap between LVIS
and COCO (the lower the better).

for APmask, it is around 5. However, when using the same
detector (Cascade Mask R-CNN) and nearly identical settings as
those in ViTDet pre-trained via MAE-Huge (ViTDet-H), EVA
not only achieves state-of-the-art results on both LVIS and
COCO benchmarks simultaneously but also significantly
reduces the performance gap between them, particularly
for the instance segmentation task. EVA attains the same
performance on LVIS and COCO using single-scale evalu-
ation. In comparison with ViTDet-H, we demonstrate that
a slightly larger model with stronger representations can
greatly improve performance on the challenging large vo-
cabulary instance segmentation benchmark, with one caveat
described below.

Note that the Merged-30M unlabeled images include 15K
out of 20K LVIS val set images (the Merged-30M images con-
tain all the COCO training images, and the LVIS validation split also
includes 15k images from the COCO training set). Although a recent
study [33] shows that including unlabeled images from the
development / test set for MIM pre-training has minimal im-
pact on the final performance, we conduct a more rigorous
analysis of the LVIS and COCO performance gap to elimi-
nate potential data contamination issues: We evaluate both

ADE20K COCO-Stuff

model crop size mIoUss mIoUms mIoUss

HorNet [79] 6402 57.5 57.9 -
SeMask [48] 6402 57.0 58.3 -
SwinV2-G [65] 8962 59.3 59.9 -
Mask DINO [57] 8962 59.5 60.8 -
FD-SwinV2-G [107] 8962 - 61.4 -
ViT-Adapter [23] 8962 61.2 61.5 52.3
BEiT-3 [101] 8962 62.0 62.8 -
EVA 8962 61.5 62.3 53.4

Table 9. Semantic segmentation performance on ADE20K and
COCO-Stuff-164K dataset. “mIoUss”: mIoU of single-scale
evaluation, “mIoUms”: mIoU using multi-scale evaluation.

COCO and LVIS models using the 5K images present in both
the COCO and LVIS val sets, denoted as LVIS val-5K. The
COCO results are measured using the 80-category COCO
subset of LVIS with the higher-quality LVIS annotations (a
similar approach also employed in [53], but for a different purpose). The
results are shown in Table 8b, and we find that the conclusion
remains unchanged.

2.3.4 Semantic Segmentation

Dataset. We evaluate EVA on ADE20K [123] and COCO-
Stuff-164K [11] datasets for semantic segmentation task.
ADE20K includes 150 semantic categories, and has 20k
images for training & 2k images for validation. COCO-
Stuff-164K augments 164K complex images from COCO
with pixel-level annotations that span over 172 categories
including 80 things, 91 stuff, and 1 unlabeled class. Com-
pared with ADE20K, COCO-Stuff is a more challenging but
under-explored semantic segmentation benchmark.

Training & evaluation settings. We follow the task transfer
pipelines of ViT-Adapter [23]+mask2former [24] but with a
weakened model adaptation processes due to GPU memory
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total image text
model precision #param. #param. #param. clip training data samples seen image size patch size batch size gpus for training

OpenAI CLIP-L float16 430M 304M 124M CLIP-400M [73] 12B 2242 14×14 32k 256×V100 (32GB)

ALIGN bfloat16 834M 480M 354M ALIGN-1.8B [73] 22B 2892 - 16k 1024×TPUv3
Open CLIP-H bfloat16 1.0B 632M 354M LAION-2B [85] 32B 2242 14×14 79k 824×A100 (40GB)

Open CLIP-g bfloat16 1.3B 1.0B 354M LAION-2B [85] 12B 2242 14×14 64k 800×A100 (40GB)

EVA CLIP-g float16 1.1B 1.0B 124M LAION-400M [86] 11B 2242 14×14 41k 256×A100 (40GB)

(a) CLIP model configurations. EVA CLIP-g can be stably trained via fp16 precision with fewer image-text pairs (7B v.s. 12B / 32B) sampled from a smaller
data pool (LAION-400M v.s. LAION-2B) on ∼1/3×GPUs compared with other open-sourced billion-scale competitors.
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model image classification ∆↓ video classification avg. all
OpenAI CLIP-L 75.5 69.9 70.8 87.8 59.6 69.0 95.6 75.9 3.4 76.4 64.5 64.2 57.7 72.2

ALIGN 76.4 70.1 75.8 92.2 64.8 72.2 - - - - - - - -

Open CLIP-H 78.0 70.9 59.3 89.3 66.6 69.7 97.5 84.7 5.7 78.2 63.1 63.6 56.1 73.1

Open CLIP-g 76.6 69.6 57.2 88.7 65.2 67.5 97.1 83.9 5.8 77.7 61.7 62.2 55.0 71.9

EVA CLIP-g 78.5(+1.9) 71.5(+1.9) 73.6(+16.4) 92.5(+3.8) 67.3(+2.1) 72.3(+4.8) 98.3(+1.2) 88.7(+4.8) 2.5 76.1(-1.6) 65.2(+3.5) 64.4(+2.2) 58.4(+3.4) 75.7(+3.8)

(b) Summary of zero-shot image / video classification performance. “∆↓”: The gap between the averaged performance of ImageNet-{1K, V2, Adv., Ren.,
Ske.} & ObjectNet that with natural distribution shifts and the original ImageNet-1K validation accuracy. Our model suffers from the smallest performance
drop (only 2.5% top-1 accuracy gap) while maintaining the highest zero-shot classification accuracy averaged on all 12 benchmarks (72.7% top-1 accuracy).

Table 10. EVA as a vision-centric, multi-modal pivot. We evaluate a billion-scale contrastive language-image pre-trained (CLIP) model
with the vision tower initialized from pre-trained EVA, which largely accelerates the contrastive training efficiency and shows promising
zero-shot classification performance across a wide range of image / video benchmarks. The statistics & performance of EVA’s MIM teacher
(OpenAI CLIP-L) are also presented for reference.

limitation (40GB of VRAM): (i) relative position biases [90]
are not applied. (ii) We use 8× decoders in mask2former
segmentation head instead of 9×. (iii) The feature dimension
in mask2former head is ∼0.6× of EVA encoder.

Results. We compare EVA with other leading semantic
segmentation methods in Table 9. EVA achieves strong
results in both ADE20K and COCO-Stuff-164K datasets.
On the other hand, the segmentation performance of EVA
is slightly lower compared with BEiT-3 on ADE20K, we
suspect this is partially due to our weakened architectural
configurations.

2.3.5 Contrastive Language-Image Pre-training
with Zero-shot Classification Evaluation

CLIP (Contrastive Language-Image Pre-training) [47, 49, 72,
73] is a type of multi-modal foundation model that connects
vision and language via contrastive image-text pre-training.
CLIP can be applied to any image classification benchmark
by simply providing the names of the visual categories to be
recognized [1]. Thus the introduction of CLIP essentially
reshapes the landscape of visual recognition. Meanwhile,
CLIP features also play a central role in representation lean-
ing [70, 101], AI generated content [78, 83, 84] and large
dataset filtering [10, 85, 86], etc.

In this section and Table 10, we show that EVA is not
only a strong encoder for a wide range of vision downstream

tasks, but also a multi-modal pivot that builds a bridge be-
tween vision and language. To demonstrate that, we train
& evaluate EVA as a billion-scale CLIP’s vision tower in
various zero-shot image / video classification benchmarks.

Baselines and major challenges in CLIP model scaling.
We compare our CLIP (dubbed EVA CLIP) with other open-
sourced strong CLIP competitors that exploit publicly acces-
sible data / academic resources only. Model configurations
and statistics are detailed in Table 10a.

There are two well-known major challenges of CLIP
model training and scaling: (i) Large-scale Open CLIP mod-
els (e.g., Open CLIP-H & Open CLIP-g [2, 47]) usually
suffer from severe training instability issues [2] and have
to use bfloat16 format for optimization. (ii) The training
efficiency is low, which may hinder model scaling and down-
stream performance. For instance, Open CLIP-g is heavily
under-trained due to its large compute requirement, and its
performance is even worse than the sufficiently-trained Open
CLIP-H with a smaller model size.

Compared with our CLIP model, Open CLIP-H & -g are
trained from scratch with much more image-text pairs (∼2.9×
and ∼1.1× of ours) sampled from a much larger dataset (∼5× of
ours) on ∼3× of GPUs. While by leveraging EVA, billion-
scale CLIP model training can be accelerated with improved
zero-shot classification performance, described next.

Training settings. For our CLIP model, we initialize the vi-
sion encoder via pre-trained EVA and the language encoder
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model (SSL) zero-shot linear probing fine-tuning
prev. best 78.0a 82.3b 89.1c

EVA 78.5a 86.5b 89.4c

Table 11. Zero-shot, linear probing and fine-tuning performance
of EVA-CLIP on ImageNet-1K. Notice that the linear probing
and fine-tuning results are from the vision encoder of EVA-CLIP.
Our approach establishes the new state-of-the-art results among all
existing self-supervised learning (SSL) methods. (timestamp: Nov
10, 2022) results reference. a: Open CLIP-H [47], b: iBOT [124], c: dBOT [63].

from OpenAI CLIP-L. The pre-training implementation is
based on Open CLIP [47]. We also adopt DeepSpeed opti-
mization library [80] with ZeRO stage-1 optimizer [77] to
save memory. We find using fp16 format with dynamic loss
scaling is stable enough during the whole course of training
while using bfloat16 format is unnecessary. These modi-
fications allow us to train a 1.1B CLIP with a batch size of
41k on 256× NVIDIA A100 40GB GPUs.

Evaluation settings. We evaluate zero-shot image / video
classification performance of each CLIP model on 12 bench-
marks and report top-1 accuracy for comparisons.

For zero-shot image classification task, we choose 8
benchmarks, i.e., ImageNet-1K [28], ImageNet-V2 [81],
ImageNet-Adversarial (ImageNet-Adv.) [42], ImageNet-
Rendition (ImageNet-Adv.) [41], ImageNet-Sketch (ImageNet-
Ske.) [100], ObjectNet [6], CIFAR-10 and CIFAR-100 [54].
We are also interested in the robustness of CLIP models,
evaluated via the performance gap between the averaged
performance of ImageNet-{1K, V2, Adv., Ren., Ske.}
& ObjectNet that with natural distribution shifts and the
original ImageNet-1K validation accuracy.

For zero-shot video classification task, we choose 4 bench-
marks, namely UCF-101 [92], Kinetics-400 [51], Kinetics-
600 [14], and Kinetics-700 [15].

Results. Table 10b shows the comparison. Our EVA CLIP
achieves the highest averaged accuracy, and performs the
best in 10 out of 12 zero-shot classification benchmarks. No-
tably, the ImageNet-1K validation zero-shot top-1 accuracy
is 78.2% without using any of its training set labels, match-
ing the original ResNet-101 [40]. Moreover, our model is
quite robust and suffers from the smallest performance drop
when facing natural distribution shifts in ImageNet.

At last, in Table 11 we provide zero-shot, linear probing
& end-to-end fine-tuning top-1 accuracy of EVA-CLIP on
ImageNet-1K validation set for reference. Our approach
creates the new state-of-the-art results among all existing
self-supervised learning methods.

Notice that EVA CLIP’s vision branch learns from Ope-
nAI CLIP-L, while language branch initialized from the
same CLIP-L model. Therefore, starting from a CLIP-L
with only 430M parameters, we progressively scale up a
1.1B EVA CLIP-g with large performance improvements.
This implies that interleaved MIM & image-text contrastive

pre-training could be an efficient and scalable CLIP training
approach. To our knowledge, EVA CLIP-g is the largest per-
formant CLIP model trained via publicly accessible data and
resources. We hope our practice on scaling and improving
CLIP can also inspire and transfer to the study of other large
scale multi-modal foundation models.

3. Related Work

Masked image modeling (MIM) learns rich visual represen-
tations via predicting masked visual contents conditioned on
visible context. ViT [31] and iGPT [18] report the first mean-
ingful MIM pre-training results. The BEiT family [5,70,101]
greatly improves MIM’s performance via masked visual to-
ken prediction. Recent work [4, 21, 30, 32, 39, 103, 113, 124]
(re-)explore pixel / feature regression in MIM, but only in a
relatively small model and data scales. In this work, we ex-
plore the limits of large scale MIM pre-training via masked
image-text aligned feature prediction [43, 106].

Vision foundation models. ConvNets [56] have long been
the de-facto standard visual architecture ab initio. Since
AlexNet [55], ConvNets have rapidly evolved and become
deeper, wider and larger [40,44,66,91,93,94,111]. However,
at sufficient model and data scales, ConvNets lag behind
ViTs [31] due to a lack of scalable pre-training tasks and
the built-in inductive biases. Entering the 2020s, large pre-
trained ViTs [31,119] such as SwinV2-G [65] with hierarchi-
cal architectures as well as BEiT-3 [101] with multi-modal
representations started to demonstrate various vision bench-
marks. In this work, we show by leveraging unlabeled im-
ages, vanilla ViT can be efficiently scaled up to billion-scale
parameters, and stands out in various downstream tasks.

4. Conclusion
In this work, we launch EVA, a one billion parameters

vanilla ViT encoder to explore the limits of masked visual
representation learning. We show simple masked feature
modeling as a visual learning pretext task scales well on an
architecture with minimal vision priors, and attains excellent
results in a representative & diverse set of downstream tasks.
We hope EVA would bridge the gap between vision and
language study via masked modeling, and contributes to the
Neon Genesis of vision research.
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