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Abstract

Masked Auto-Encoder (MAE) pretraining methods ran-
domly mask image patches and then train a vision Trans-
former to reconstruct the original pixels based on the un-
masked patches. While they demonstrates impressive per-
formance for downstream vision tasks, it generally requires
a large amount of training resource. In this paper, we intro-
duce a novel Generative Adversarial Networks alike frame-
work, referred to as GAN-MAE, where a generator is used
to generate the masked patches according to the remain-
ing visible patches, and a discriminator is employed to pre-
dict whether the patch is synthesized by the generator. We
believe this capacity of distinguishing whether the image
patch is predicted or original is benefit to representation
learning. Another key point lies in that the parameters
of the vision Transformer backbone in the generator and
discriminator are shared. Extensive experiments demon-
strate that adversarial training of GAN-MAE framework
is more efficient and accordingly outperforms the standard
MAE given the same model size, training data, and com-
putation resource. The gains are substantially robust for
different model sizes and datasets, in particular, a ViT-B
model trained with GAN-MAE for 200 epochs outperforms
the MAE with 1600 epochs on fine-tuning top-1 accuracy of
ImageNet-1k with much less FLOPs. Besides, our approach
also works well at transferring downstream tasks.

1. Introduction
In recent years, Transformer [62] has become the de

facto standard architecture in computer vision, and has
surpassed state-of-the-art Convolutional Neural Network
(CNN) [31, 58] feature extractors in vision tasks through
models such as the Vision Transformer [21]. Meanwhile,
self-supervised learning (SSL) algorithms [12, 14, 27, 29]
aims to learn transferable representation from unlabeled
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Figure 1. Performance comparison in different pre-training
epochs for ImageNet-1K Fine-tuning top-1 accuracy. Com-
pared to MAE trained for 1600 epochs, GAN-MAE achieves com-
parable accuracy with much less training time at 200 epochs.

data by performing instance-level pretext tasks, and has
been a long-standing target in the vision community. Par-
ticularly, masked image modeling (MIM) in SSL for vi-
sion transformers has shown remarkably impressive down-
stream performance in a wide variety of computer vision
tasks [3, 28], attracting increasing attention.

MIM is a simple pretext task that first randomly masks
some patches of an image, and then predicts the contents
of the masked patches according to the remaining, using
various reconstruction targets, e.g., visual tokens [3,19], se-
mantic features [1, 77] and raw pixels [28, 70]. Essentially,
it learns the transferable representation by modeling the im-
age structure itself as content prediction. While more ef-
fective than conventional pre-training, masked autoencoder
modeling approaches still exist some issues: (i) reconstruc-
tion optimization with MSE loss leads to blurrier output im-
ages than the raw input, it would be better to use a more
perceptual loss over pixels to guide the fine-grained seman-
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tic understanding and representation learning, leading to
more plausible synthesized patches; (ii) inner dependency
between masked patches is lacked [71], i.e., generation of
masked image patches may lack the surrounding informa-
tion. This situation becomes more serious when the image
patch masking ratio is large. We alleviate this problem by
introducing confident synthesized patches as complemen-
tary information during training; (iii) mask-reconstruction
methods incur a substantial computation cost because the
network only learns from part of the visible patches and
misses the information of masked patches.

In this paper, we propose a Generative Adversarial
Networks-based pre-training framework, referred to as
GAN-MAE, which contains two components: a generator
model learns to reconstruct the masked patches according
to visible patches in the encoder-decoder architecture and a
discriminator model learns to distinguish real image patches
from plausible but synthesized remains. Generally, given
an image from training dataset, our method first randomly
masks parts of patches and reconstructs them using the rest
visible patches with a generator, which serves as a standard
MAE model. Then we build the corrupt image as the com-
bination of visible and synthesis patches, which is then fed
into the discriminator to predict whether each patch is from
raw image or synthesized results. In this manner, the dis-
criminator provides a valid guiding for more delicate image
patch modeling. Then, with the development of generator
capacity, a key advantage of discriminative task is that it in-
tegrates the synthesized patches into corrupt images as com-
plementary information, which fills the missing inner rela-
tionship between patches during pre-training. Moreover, we
shared the parameters of vision transformer backbone in the
generator and discriminator to promote memory reduction,
training efficiency, as well as performance enhancement.

Our experiments follow the same architecture, settings,
and pre-training recipe as MAE [28], and we find that the
simple incorporation of a discriminator consistently outper-
forms MAE in variant models, e.g., ViT-S, ViT-B, and ViT-
L, when fine-tuning for top-1 accuracy of ImageNet clas-
sification. We also conduct extensive ablation studies to
validate the effectiveness of our core designs in backbone
parameter sharing and advarisal training. As pre-training
with more epochs usually results in a better downstream
performance, we argue that an important consideration for
pre-training methods should be computation efficiency as
well as absolute downstream performance. From this view-
point, we also demonstrate that discrimination of pseudo-
image patches forces GAN-MAE to train more efficiently
than standard MAE. We further provide a comprehensive
comparison with MAE in various epochs and various mod-
els and show our framework achieves consistently better
performance. In particular, as presented in Figure 1, for the
ViT-B model structure, our GAN-MAE achieves compara-

ble classification performance with only 200 pre-training
epochs vs. standard MAE 1600 pre-training epochs. Fur-
thermore, the GAN-MAE achieves 0.7 points improvement
when pre-training 1600 epochs. Finally, we summarize our
contribution as follows:

• We propose a new and effective GAN-alike frame-
work for visual representation self-supervised learn-
ing, which to our best knowledge is the first trial of
integrating GAN idea into MAE framework. As a
generic approach, we suggest that this framework can
be easily applied on many other MIM-based tasks.

• We introduce two core designs: shared weight for the
main backbones of generator and discriminator, and an
adversarial training process, both of which cost fewer
amounts of computing resources while obtaining ap-
preciable performance improvements.

• Extensive experiments demonstrate that compared
with the original MAE, our method is more compute-
efficient and results in better transfer representation
learning on downstream tasks.

2. Related Works

Autoencoding. Autoencoder [6, 7, 35] is an unsupervised
learning technique for neural networks that learns efficient
representations by training the network to ignore signal
noise. It includes an encoder that maps the original data
to a low-dimensional latent embedding and a decoder that
recovers the data from the latent embedding, with the goal
of learning a compressed knowledge representation. The
denoising autoencoder [63, 64] learns to reconstruct clean
data points from a noisy version. Numerous efforts have
been devoted for image denoising, such as masking pix-
els [11, 55, 64], inpainting [69], removing color channels
[39,72], and shuffling image patches [22,54]. For a broader
overview of denoising autoencoder, we refer to [5, 61].

Masked Image Modeling. Masked language modeling
[37,49,57], which generalizes well on language understand-
ing and generation tasks, is the domain self-supervised ap-
proach in the field of NLP. Similarly, vision transformer
[21, 41, 50] based masked image modeling (MIM) ap-
proaches [1,3,28,70,77] for computer vision tasks have also
been developed. Generally, these MIM approaches first ap-
ply a mask to patches of an image, and then the masked
patches are predicted given the visible patches. Feature rep-
resentation learned through such within-image context pre-
diction demonstrate strong transfer performance in down-
stream tasks. Recently, lots of works exploring MIM have
been concurrently developed from different perspectives.
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Figure 2. Overview of GAN-MAE framework, where a generator is used to predict the masked patches and a discriminator is employed to
classify whether the patches are selected from the raw image or synthesized results. In particular, both of MAE encoder and discriminator
are based on the vision Transformer backbone and share parameters for memory reduction and training efficiency.

The works include framework design [13, 23, 28, 70], pre-
diction targets [2, 19, 66, 77], and integration with vision-
language representation learning [42, 43, 75]. Our work be-
longs to the first group and introduces a novel GAN frame-
work that discriminates the reconstructed image patches in
a standard MAE to learn deeper semantics.

Generative Adversarial Networks. GANs [26] are ef-
fective at generating high-quality synthetic data. Usually,
the generator generates an image, and the discriminator de-
termines whether the input image is a real image or a gen-
erated image. Subsequently, many improvements based on
the original GAN focused on speeding up the training of the
network and improving the quality of the generated images
[8, 52, 74]. These improvements also help GAN achieving
a wider range of applications [45, 48, 67]. Methods based
on GAN are also widely used in image-to-image transla-
tion [36], super-resolution [4, 40], style transfer [15], text
generation [10,24,73], and representation learning [17,25],
to name a few. Particularly, [56] brings some designs of
CNN architecture to stabilize the training of GAN frame-
work, after that the discriminator can be directly used as fea-
ture extractor in downstream tasks. In contrast, our method
proposes to integrate the GAN as assistant for the MIM
task, which focuses on the study of better pattern for mask-
ing based self-supervised learning. Besides, our strategy
of shared parameters provides a unified backbone for better
vision representation.

3. Approach

In this section, we introduce the GAN-MAE frame-
work in details. At first, we briefly review the conven-
tional masked autoencoder model in Sec. 3.1, and then
describe the proposed generator-discriminator pre-training
framework in Sec. 3.2. The architecture of our framework
is presented in Figure 2. Finally, we suggest an adversarial

training processes under the proposed method and discuss
our framework in Sec. 3.3 and Sec. 3.4, respectively.

3.1. Preliminaries

Masked Autoencoder (MAE) [28] is a self-supervised
approach with a vision transformer encoder and a small
transformer decoder, which randomly masks a large portion
of input patches, and then reconstructs the masked patches
according to the visible patches. Specifically, provided
with an image X ∈ RC×H×W , where C, H and W are
the channel number, image height and image width respec-
tively, MAE partitions X into N = H×W

P 2 non-overlapping
patches with patch size P . In this way, the image is trans-
formed into a sequence of patches X = {x1, . . . , xN} with
each element xk ∈ RP 2×C . Then, we sample a random set
of patch index M in uniform distribution, and split the im-
age patches X into masked patch set Xm = {xk|k ∈ M}
and visible patch set Xv = {xk|k /∈ M}. During train-
ing, the MAE encoder inputs Xv to achieve the latent rep-
resentations Hv . Then, the MAE decoder attempts to re-
construct Xm with the input of interpolating [mask] token
embedding into the sequence of latent representations Hv

according to the index set M , and outputs the reconstructed
patches X̃m. Finally, MAE optimizes the mean-squared er-
ror reconstruction loss on the masked patches as:

Lmae(X,M, θmae) =
∑
k∈M

||x̃k − xk||22, (1)

where θmae represents the parameters of MAE model.

3.2. When MAE meet GAN

In this section, we describe the proposed GAN-MAE
framework, as presented in Figure 2. Generally, our frame-
work consists of two parts, a generator G to reconstruct the
masked image patches and a discriminator D to predict the
realness of image patches.
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Image Patch Generator. Identical to the standard MAE,
the generator follows the encoder-decoder paradigm and
is trained to perform masked-image reconstruction task.
Given the partitioned image patches X , the generator ran-
domly masks some image patches and encodes the remain-
ing visible patches Xv into a sequence of contextualized
vector representations Hv , based on which the masked
patches are reconstructed as X̃m. Please refer to Sec. 3.1
for more details. In general, the generation process can be
formulated as:

M ∼ Uniform(1, N), (2)
Hv = fe(Xv,M), (3)

X̃m = fd(Hv,M), (4)

where N is the number of image patches. fe(·) and fd(·)
denote the encoder and decoder in a conventional MAE.

Image Patch Discriminator. For a patch index k and cor-
rupted image sequence X = {Xv, X̃m}, the discriminator
predicts whether the patch token xk is real or synthesized
as binary classification task. Specifically, we create the cor-
rupted image X by maintaining the visible patches Xv in
raw image X and replacing the masked patches with gener-
ator predicted result X̃m . Note that Xv and X̃m are abso-
lute complement of set to each other, i.e., Xv ∪ X̃m = X
and Xv ∩ X̃m = ∅. Formally, the task of discriminator
model can be formulated as:

D(X, k) = pdisc(y
k|X, k), for k ∈ [1, N ]. (5)

Let the ground-truth classification label sequence Y =
{y1, . . . , yN} with each element yk ∈ {0, 1}, where 0 and 1
denote the corresponding image patch is reconstructed from
generator or comes from the original image, respectively.
The training objective of the discriminator can be formu-
lated as:

Ldisc(X, θdisc) =
N∑

k=1

−yklog D(X, k)

− (1− yk)log (1−D(X, k)).

(6)

Particularly, though the corrupted image is partially unreal,
we suggest that this discriminative task can still be benefit
to the learning of feature representation with the plausible
corrupted image from a well-trained generator, as presented
in experiments. Hitherto, due to the GAN-alike strategy for
MAE task, we name our framework as GAN-MAE.

3.3. Training Scheme

We explore the training strategy of our proposed GAN-
MAE in this section. Particularly, to improve synthesis re-
sult, we augment the L-2 reconstruction loss with a percep-

Algorithm 1: Adversarial training for GAN-MAE

Data: Training data Dtrain, total epoch number Ne,
GAN-MAE model with generator parameters
θmae and discriminator parameters θdisc;

1 share weights between generator and discriminator
backbones;

2 while ne < Ne do
3 for xi ∈ Dtrain do
4 ▷ generator training;
5 sample masking set M i and mask image xi;
6 predict masked image patches x̃i

m;
7 compute loss Lgen;
8 loss backward for updating θmae;
9 ▷ dicriminator training;

10 construct xi based on xi and x̃i
m;

11 comput loss Ldisc;
12 loss backward for updating θdisc;
13 end
14 ne+ = 1;
15 end

tual loss that aims to differentiate the real patches and re-
constructed patches as:

Ladv(X, θmae) = log D(Xv) + log(1−D(X̃m)). (7)

Please note that X̃m is the reconstructed patches by MAE.
Therefore, the final objective for the generator comes to
minimize the combined loss as:

Lgen(X, θmae) = Lmae(X, θmae) + γLadv(X, θmae), (8)

where we compute the adaptive weight γ according to:

γ =
∇[Lmae]

∇[Ladv] + δ
, (9)

∇[·] denotes the gradients of different loss function w.r.t.
the parameters of last layer in network, and δ = 1e − 6 is
used for numerical stability. Intuitively, the integration of γ
adaptively balances the contributions of two loss functions
to the gradients of parameters.

Based on the aforementioned strategy, the final training
algorithm can be formulated in Algorithm 1. Specifically,
at each epoch, we conduct the iteration in two steps: (i)
train only the generator with Lgen; (ii) Train the discrimi-
nator with Ldisc. During training, we observe that shared
weights of generator and discriminator backbones can usu-
ally stabilize the training procedure and bring extra-gain in
down-stream tasks.

3.4. Discussion

Theoretically, the integration of discriminator can be
considered as a high-level perceptual loss, which forces the
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generator to learn better feature representation for the plau-
sible synthesis of masked patches. As the quality of syn-
thesized patches improved, we claim that the introduction
of corrupted images, serving as complementary informa-
tion, provides plausible inner dependency between full im-
age patches for representation learning. Furthermore, with
the shared parameters of backbones in generator and dis-
criminator, the GAN-alike framework can be considered as
a type of multi-task learning, leading to even better result
as presented in experiments.

4. Experiments
4.1. Datasets and Settings

In the experiments, we pre-train our GAN-MAE model
on the ImageNet-1k [16] and evaluate the performance in
end-to-end fine-tuning (FT) pattern for the task of classifica-
tion, semantic segmentation, object detection and instance
segmentation. The evaluation metric of classification is the
top-1 validation accuracy on 224×224 cropped input im-
ages. The input image is partitioned into 14×14 patches and
each patch is of size 16×16. Following the setting of MAE,
we only use the standard random cropping and horizontal
flipping for data augmentation. To validate the effectiveness
of GAN-MAE framework, the used ViT architecture and
most hyper-parameters are exactly the same to [28,60], i.e.,
ViT-S (12 transformer blocks with dimension 384), ViT-B
(12 transformer blocks with dimension 768), and ViT-L (24
transformer blocks with dimension 1024). All version of
ViT models are trained with 4096 batch size on 8 V-100
32GB GPUs. We adopt dynamic token masking with the
masked positions decided on-the-fly. We use AdamW [38]
optimizer and cosine schedule [51] with warm up for model
training. The learning rate is annealed according to the co-
sine schedule. Unless stated otherwise, results are evaluated
on the dev set. Please refer to appendix A for more train-
ing implementation and hyperparameter values for different
backbone in details.

4.2. Analysis of GAN-MAE

We analyze our GAN-MAE framework by proposing
and evaluating several extensions to the model. Unless
stated otherwise, all these experiments use the same model
size as ViT-B and training dataset ImageNet-1K.

Parameter Sharing of Backbone. In this work, we pro-
pose to improve the efficiency of the pre-training by sharing
the parameters of the backbone vision transformer between
the generator encoder and discriminator. One cause is that
the generator and discriminator utilize the same network ar-
chitecture, and all of the transformer weights can be tied.
However, we can release the weight sharing and train the
generator and discriminator independently. In between, we

Table 1. Effect of parameter sharing in GAN-MAE framework.
Results demonstrate that shared parameters for backbone benefits
both memory cost and performance improvements.

Models Epoch Mask ratio FT
Generator 800 75% 83.9
Discriminator 800 75% 84.2
Shared 800 75% 84.3
Generator 1600 75% 84.4
Discriminator 1600 75% 84.4
Shared 1600 75% 84.6

can adopt both the parameters of generator and discrimina-
tor for downstream learning. The experimental results are
shown in Table 1, where we employ the adversarial training
with the same training epochs. We can see that, generally,
the fine-tuning top-1 accuracy of shared weight outperforms
the independent generator and discriminator conspicuously,
in particular 0.4 point improvements for the generator when
pre-training 800 epochs. We hypothesize that GAN-MAE
framework benefits from both mask-then-reconstruct and
pseudo-patch classification tasks, which can incorporate the
visual semantic and consistency understanding.

It is also surprising that under the GAN process with-
out weight sharing, the discriminator with learning of patch
classification can lead to better performance than genera-
tor. We suspect that the fine-grained patch classification is
more delicate while harder than image-level classification.
Thus, we further tried to add an image-level contrastive ob-
jective. For this task, we input 50% of the input image un-
changed rather than noising them with the generator. We
then added a prediction head to the model that predicted if
the entire input image was corrupted or not. However, the
result didn’t improve the final accuracy. In conclusion, we
believe that the design of discriminative task, e.g., getting
closer to downstream and be more difficult, is an impor-
tant exploration direction in the future. Another interesting
finding is that with the pre-training epochs increase, the in-
dependent generator performance boosts, we believe that it
is caused by the adversarial training, where the discrimina-
tor becomes an effective guiding for generation.

Training Schemes. We analyze the effect of proposed ad-
versarial training scheme on GAN-MAE with shared back-
bones. Two training variants are considered as following:

• Two-stage Training. It is natural to consider to remove
the discriminator guiding signal during generator train-
ing, which leads to the disentangled optimizing pro-
cess. Specifically, at each epoch, we do the following
steps: train the generator only with Lmae and train the
discriminator only with Ldisc. The difference with ad-
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Table 2. Effect of different training schemes.

Models Epoch Mask ratio FT GPU Time
Two-stage 300 75% 82.0 94.3h
Combined 300 75% 82.2 90.9h
Adversarial 300 75% 82.2 118.8h

Two-stage 800 75% 84.0 252.2h
Combined 800 75% 84.1 240.5h
Adversarial 800 75% 84.3 317.5h

Table 3. Effect of different masking ratio in GAN-MAE frame-
work with different pre-training epochs.

Models Epoch Mask ratio FT
MAE 800 75% 83.4
GAN-MAE 800 70% 84.3
GAN-MAE 800 75% 84.3
GAN-MAE 800 80% 84.0
MAE 1600 75% 83.6
GAN-MAE 1600 70% 84.5
GAN-MAE 1600 75% 84.6
GAN-MAE 1600 80% 84.4

versarial training lies in that the training loss of the
generator in the first step is changed.

• Combined Training. Instead of iterative in total
dataset, we can jointly trains the generator and dis-
criminator at each step. That is, for each image X in
the training dataset Dtrain, we can directly minimize
the combined loss as:

Lgen(θmae) + λLdisc(θdisc). (10)

We set λ, the weight for the discriminator objective in
the loss to 2.0, as we searched for λ out of [1,2,5,10]
in early experiments.

Note that regardless of the form, the nature of sequential
training, i.e., the corrupt image built from generator will be
fed into discriminator, is not changed.

The evaluation results for classification are listed in Ta-
ble 2. GPU time means pre-training time (hours) on 8 V100
32GB GPUs environment. As we can see, the combined
training shows a superior training time while adversarial
training slows down as the training procedures of genera-
tor and discriminator are isolated. On the other hand, the
performance of adversarial training is not better than com-
bined training in the early stages; when pre-training epochs
come to 800, the benefits of adversarial training appear.

Table 4. Comparison of computation resource usage during self-
supervied pre-training.

Backbone Models FLOPs Params

ViT-B MAE 9.4e9 111.654M
ViT-B GAN-MAE 2.6e10 111.656M
ViT-L MAE 2.0e10 329.238M
ViT-L GAN-MAE 8.0e10 329.240M

Masking Ratio. Table 3 shows the influence of mask-
ing ratio in MAE-GAN under different pre-training epochs.
The optimal ratio for MAE-GAN is identical to 75%, show-
ing a obviously better classification performance compared
with same masking ratio in previous work [28]. Meanwhile,
we present several reconstructed images from MAE and
GAN-MAE. Although the MIM model can infer missing
patches as different yet plausible outputs when mask ratio
comes to large, the generator of GAN-MAE can predict the
images with more realistic and fine-grained details, e.g., the
outline of a mountain peak in first case, which we believe is
relative to the learning of useful representation.

Computation Resource. In terms of pre-training cost, we
conduct a computing resource comparison with the base-
line MAE on different vision transformer backbones. The
results are shown in Table 4. We first point out that GAN-
MAE slows down the training process as the discriminator
integration, e.g. 317.5h vs. 127.7h for ViT-B model in 800
epochs. Moreover, we also choose to measure computation
usage in terms of floating point operations (FLOPs) as it is
a metric agnostic to the particular hardware, low-level opti-
mizations, etc. Note that an “operation” is a mathematical
operation, not a machine instruction and thop package is
used to compute FLOPs in practice. As expected, GAN-
MAE employs ∼ 3 extra theoretical computation cost. Be-
sides, benefits from the weight sharing of backbone, the
GAN-MAE incorporates less than 1% addition parameter,
which helps to reduce the running memory usage, and pro-
vides a convenience to set large batch size. Last but not
least, we want to state that although our GAN-MAE method
incorporates additional computation resources during train-
ing at each epoch, considering the superiority of reduction
of epoch number and classification performance improve-
ments, it is fully acceptable and exploration valuable.

4.3. ImageNet Classification Comparison

We compare our GAN-MAE methods with previous
state-of-the-art works on the ImageNet-1K classification
task. Table 5 reports the top-1 validation accuracy for fine-
tuning results. We can find that compared to the super-
vised models, trained from scratch, all of the self-supervised
pre-training methods achieve significant improvement, sug-
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Figure 3. Qualitative analysis for patch reconstruction. Example results are from ImageNet validation set. For each tuple, we show
the raw image, masked image, MAE reconstructed image, and our proposed GAN-MAE reconstructed image from left to right. We can
see that the reconstructed images from GAN-MAE are significantly clearer than MAE, which we believe benefits the fine-grained visual
semantic understanding.

Table 5. End-to-end fine-tuning on ImageNet-1K. We report the fine-tuning top-1 accuracy for classification in different vision trans-
former architectures and results show that GAN-MAE outperforms previous self-supervised methods.

Model Pre-train data Pre-train epochs ViT-S ViT-B ViT-L
Supervised [59] IN1K w/ labels 300 79.7 81.8 82.6
DINO [9] IN1K 800 81.5 82.8 -
MoCo v3 [14] IN1K 300 81.4 83.2 84.1
BEiT [3] IN1K+DALLE 800 81.7 83.2 85.2
MSN [1] IN1K 600 - 83.4 -
iBOT [77] IN1K 800 82.3 84.0 84.8
BootMAE [20] IN1K 800 - 84.2 85.9
MAE [28] IN1K 800 - 83.4 85.4
MAE [28] IN1K 1600 - 83.6 85.9
GAN-MAE IN1K 300 82.2 84.0 85.6
GAN-MAE IN1K 800 82.4 84.3 86.1

gesting the effectiveness of pre-training. We further com-
pare our GAN-MAE framework with prior popular self-
supervised pre-training models. We can see that the pro-
posed GAN-MAE achieves the best fine-tuning perfor-
mance either based on the ViT-B or based on the ViT-
L architectures. For example, compared with the recent
work MAE [28], our GAN-MAE in ViT-L network achieves
86.1% with 0.7 point improvement when pre-trained on
800 epochs. More encouragingly, for all ViT backbone
sizes, GAN-MAE mostly outperforms the previous self-
supervised methods. These results suggest that the incor-
poration of a discriminator scheme could have consistently
benefits for various scale ViT models.

In addition, we present a comprehensive comparison

with MAE under different pre-training epochs for the ViT-
B model. We plot the results in Figure 1. We can see that
our GAN-MAE approach consistently performs better than
MAE. It is worth mentioning that the proposed GAN-MAE
at 300 epochs achieves 84.0% accuracy, which is already
better than MAE pre-trained at 1600 epochs. This demon-
strates that our approach is more efficient to achieve com-
parable performance. What’s more, no additional speed and
parameter cost during inference. Besides, we can confirm
that, similar to other MIM-based self-supervised training,
the accuracy of GAN-MAE also improves steadily as the
pre-training steps increase. Particularly, our GAN-MAE
on ViT-B achieves 84.6% top-1 accuracy at 1600 epochs,
which is almost 1% higher than that of MAE.
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Table 6. Robustness Evaluation on the four ImageNet-variants: ImageNet-C, ImageNet-A, ImageNet-R, and ImageNet-Sketch. Except
for ImageNet-C which is measured in terms of mean Corruption Error (mCE), top-1 accuracy is used as the remaining evaluation metric.
For simplicity, we denoted IN-C, IN-A, IN-R, In-Skectch correspondingly.

Model IN-C (mCE ↓) IN-A (top-1 ↑) IN-R (top-1 ↑) IN-Sketch (top-1 ↑)
Supervised [53] 42.5 35.8 48.7 36.0
MAE [28] 51.7 35.9 48.3 34.5
GAN-MAE 49.5 36.8 49.6 35.9

Table 7. Semantic segmentation comparison on the ADE20K
dataset for mIoU (%) metric with the ViT-B backbone.

Models Pre-train data Epochs mIoU
Supervised [28] IN1K w/ labels 300 47.4
MoCo v3 [14] IN1K 300 47.3
BEiT [3] IN1K+DALLE 800 47.1
MAE [28] IN1K 800 47.6
MAE [28] IN1K 1600 48.1
BootMAE [20] IN1K 800 49.1
GAN-MAE IN1K 800 49.5

Table 8. COCO object detection and segmentation using Mask
R-CNN framework with ViT-B backbone.

Models Pre-train data AP-box AP-mask
Supervised [28] IN1K w/ labels 44.1 39.8
MoCo v3 [14] IN1K 44.9 40.4
BEiT [3] IN1K+DALLE 46.3 41.1
MSN [1] IN1K 46.6 41.5
iBOT [77] IN1K 47.3 42.2
MAE [28] IN1K 47.2 42.0
BootMAE [20] IN1K 48.5 43.4
GAN-MAE IN1K 49.0 43.8

4.4. Downstream Tasks

Semantic Segmentation. We compare our GAN-MAE
with supervised as well as state-of-the-art self-supervised
models on the widely used dataset ADE20K [76] for seman-
tic segmentation. Specifically, we use the UperNet frame-
work [68] in the experiments. We train Upernet for 160K
iterations with batch size set as 64 and report the results
in Table 7. The evaluation metric is mean Intersection of
Union (mIoU) averaged over all semantic categories and the
single-scale test results are reported. Importantly, we can
see that the proposed GAN-MAE gets superior performance
than all the other baselines in the same configuration, fur-
ther validating the effectiveness of adversarial training with
a reconstructed patch discriminator.

Object Detection and Segmentation. We also perform
object detection and instance segmentation, compared with
other popular self-supervised methods and the supervised
model, on the COCO dataset [47]. In practice, we choose
the Mask R-CNN [30] framework and adopt FPNs [46]
to scale the feature map into different sizes as introduced
in [44]. The performance is tested on the COCO valida-
tion set, following the previous work [18]. The results are
listed in Table 8 in terms of box AP metric for object detec-
tion and mask AP metric for instance segmentation. Impor-
tantly, we can observe that our GAN-MAE model achieves
49.0% for object detection and 43.8% for segmentation, sur-
passing the previous state-of-the-art BootMAE by 0.5% and
0.4% point, respectively.

Classification Robutness. Similar to [28], we further
evaluate the robustness of classification performance on the
four ImageNet variants, i.e., ImageNet-C [33], ImageNet-
A [34], ImageNet-R [32], and ImageNet-Sketch [65], which
are common benchmarks to evaluate robustness for per-
turbations. Table 6 demonstrates the robustness compari-
son with GAN-MAE and MAE using the ViT-B backbone,
as well as previous supervised SoTA models. The results
illustrate that GAN-MAE outperforms the MAE baseline
consistently on all robustness datasets, indicating that the
promising of adversarial training in representation learning.

5. Conclusion

In this paper, we have proposed a new self-supervised
GAN-alike framework for visual representation learning,
where a generator is used to predict masked image patches
according to the visible patches and a discriminator is em-
ployed to predict whether the patch is from raw image or
generated by generator. The key idea is adversarial training
a shared vision Transformer to distinguish the input patches
from high-quality negative samples, which we believe is
beneficial for the understanding of visual conception. It
works well while incorporating no much addition parame-
ter. More encouragingly, compared to standard masked im-
age modeling, our GAN-MAE is more compute-efficient,
as fewer pre-training epochs result in a better performance
on downstream tasks.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proc. IEEE CVPR, pages 9650–9660, 2021. 7

[10] Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang,
Zhe Gan, Dinghan Shen, Yizhe Zhang, Guoyin Wang, Ruiyi
Zhang, and Lawrence Carin. Adversarial text generation via
feature-mover’s distance. Proc. NIPS, 31, 2018. 3

[11] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In Proc. ICML, pages 1691–1703.
PMLR, 2020. 2

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In Proc. ICML, pages 1597–1607.
PMLR, 2020. 1

[13] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin,
Shentong Mo, Yunhao Wang, Shumin Han, Ping Luo,
Gang Zeng, and Jingdong Wang. Context autoencoder
for self-supervised representation learning. arXiv preprint
arXiv:2202.03026, 2022. 3

[14] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proc. IEEE ICCV, pages 9640–9649, 2021. 1, 7, 8

[15] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proc. IEEE CVPR, pages 8789–8797, 2018. 3

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proc. IEEE CVPR, pages 248–255, 2009. 5
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