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Abstract

In-depth understanding of a 3D scene not only involves
locating/recognizing individual objects, but also requires to
infer the relationships and interactions among them. How-
ever, since 3D scenes contain partially scanned objects
with physical connections, dense placement, changing sizes,
and a wide variety of challenging relationships, existing
methods perform quite poorly with limited training sam-
ples. In this work, we find that the inherently hierarchical
structures of physical space in 3D scenes aid in the au-
tomatic association of semantic and spatial arrangements,
specifying clear patterns and leading to less ambiguous
predictions. Thus, they well meet the challenges due to
the rich variations within scene categories. To achieve
this, we explicitly unify these structural cues of 3D phys-
ical spaces into deep neural networks to facilitate scene
graph prediction. Specifically, we exploit an external knowl-
edge base as a baseline to accumulate both contextual-
ized visual content and textual facts to form a 3D spa-
tial multimodal knowledge graph. Moreover, we propose
a knowledge-enabled scene graph prediction module bene-
fiting from the 3D spatial knowledge to effectively regular-
ize semantic space of relationships. Extensive experiments
demonstrate the superiority of the proposed method over
current state-of-the-art competitors. Our code is available
at https://github.com/HHrEt vP/SMKA.

1. Introduction

In recent years, much success has been achieved on
3D point cloud scene understanding such as semantic seg-
mentation [9, 11, 15, 16,21, 28,29, 49] and object detec-
tion [10,22,25,27,43]. However, the 3D world is not only
defined by objects but also by the relationships between ob-
jects. A 3D scene graph can abstract the environment as a
graph where nodes represent objects and edges character-
ize the relationships between object pairs, which has already
been recognized in recent seminal works [1,30,37,38,41,46].
However, relationship graphs predicted by current methods
are far from satisfactory due to the noisy, cluttered and par-
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tial nature of real 3D scans. Moreover, these data-driven
methods treat sophisticated relationships in 3D space in-
dependently for classification using the geometric features
proximity or fit, and are ignorant of commonsense or other
useful 3D spatial cues beyond visual information. 3D objects
in real scenes commonly have strongly structured regulari-
ties [33,39], whose semantic and spatial arrangements follow
clear patterns, but still exhibit rich structural variations even
within the scene category.

The key observation is that 3D scene structures are in-
herently hierarchical [20]. By definition, an instance can
have multiple supports, lamps are standing on a table, chairs
are supported by the floor and only the floor does not have
any support, and it is unlikely that a pillow is supporting a
couch. Although relationships themselves cast no light on
the human eyes, a growing body of works [14,31] suggest
that even very complex relationship information is reasoned
hierarchically and systemically according to the role of the
prefrontal cortex. Relationships, such as support, can be
extracted rapidly, are hard to ignore, and influence other
relationships in the perceptual process. For example, a TV
and a sofa are related since they together serve the function
of ‘watching TV’, but these two objects can be far apart in a
scene. Relationships of this kind are much more difficult, if
not possible, to infer based on geometric analysis alone. The
model can relate the fable easily which supports the TV and
use the rable as a bridge to predict the ‘front’ relationship
with sofa, where table and sofa are all supported by the floor
and relationships within them is intuitive.
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The underlying hierarchical structures in 3D scenes are
label free and reliable, and can hence play an essential role in
scene understanding at no additional cost. Existing 3D scene
graph prediction models [1,30,37,38,41,46] are oblivious
to the underlying structures in the point cloud scenes. The
question is how to take this prior knowledge into consid-
eration to make the 3D scene graph achieve higher accu-
racy? KISG [47] proposes a graph auto-encoder to learn a
closed set and ground truth prior knowledge from relation-
ship triplets in data for 3D scene graph prediction. Although
KISG [47] takes note of knowledge, it captures relevant
prior knowledge from text-only ground truth labels, which
merely contain facts expressed by label descriptions while
lacking complex but indispensable multimodal knowledge
for 3D scene graph prediction. In addition, noises contained
in the manually annotated labels are easily included in the
knowledge base and affects the prediction of relationships.

To address the above problems, we show that the implicit
hierarchical structure correlations between object pairs and
their relationships can be explicitly represented by a knowl-
edge base. As shown in Fig. 1, we propose a 3D spatial mul-
timodal knowledge accumulation module to explicitly merge
the hierarchical structures of 3D scenes into the network to
strengthen the 3D scene graph prediction process. Firstly,
we filter the external commonsense knowledge base, classify
the hierarchical tokens for each node, and add new support
edges to form the hierarchical symbolic knowledge graph
for 3D scenes. Secondly, we retrieve the hierarchical token
from the reconstructed symbolic knowledge graph for object
instances in 3D scenes to build a visual graph, and extract
contextual features for nodes and edges using a region-aware
graph network. Finally, to bridge the heterogeneous gap
between the symbolic knowledge and visual information, we
propose a graph reasoning network to correlate 3D spatial vi-
sual contents of scenes with textual facts. Conditioned on the
learned vision-relevant 3D spatial multimodal knowledge,
we incorporate this network into the relationships prediction
stage as extra guidance, which can effectively regularize the
distribution of possible relationships of object pairs and thus
make the predictions less ambiguous.

Our main contributions are: 1) We are the first to explic-
itly unify the regular patterns of 3D physical spaces with the
deep architecture to facilitate 3D scene graph prediction. 2)
We propose a hierarchical symbolic knowledge construction
module that exploits extra knowledge as the baseline to admit
the hierarchical structure cues of 3D scene. 3) We introduce
a knowledge-guided visual context encoding module to con-
struct hierarchical visual graph and learn the contextualized
features by a region-aware graph network. 4) We propose a
3D spatial multimodal knowledge accumulation module to
regularize the semantic space of relationship prediction. Re-
sults show that the learned knowledge and proposed modules
consistently boost 3D scene graph prediction performance.

2. Related Work

2D Image-based Scene Graph Generation. Scene graph
was first proposed for image retrieval [ 7], and subsequently
received increasing attention in the vision community to
produce graphical abstractions of images. Mainstream ap-
proaches [5,36,42,44,45] follow a two-step pipeline that
first detects objects followed by classification of the rela-
tionship for each object pair. However, research on scene
graphs has focused primarily on 2D images, ignoring 3D
spatial characteristics such as position and geometry, and
with limited spatial coverage. Our proposed method extends
2D scene graphs to 3D spaces, where the scene representa-
tion, network architecture and training mechanism all have
to be altered in fundamental ways to meet the challenges
arising from learning 3D scene structures and relationships.
More detailed discussions can be found in the survey [4].
Knowledge Representation has been extensively studied
to incorporate prior knowledge, e.g. DBPedia [2], Concept-
Net [35], WordNet [24], VisualGenome [19] and hasPart [3],
to aid numerous vision tasks [23]. Gao et al. [12] incorpo-
rated commonsense knowledge to learn the internal-external
correlations among room and object entities for an agent to
take proper decisions at each viewpoint. Zhang et al. [48]
addressed the explainability of visual reasoning by introduc-
ing the explicit integration of external knowledge. Ding et
al. [8] extracted the multimodal knowledge triplet to boost
the performance of visual question answering. Chen et al. [0]
constructed the prior knowledge of statistical correlations
between object pairs and their relationships to address the
issue of the uneven distribution over different relationships.
Although previous studies have taken notice of knowledge
in different vision tasks, they only implicitly mine the ex-
tra knowledge base or count the frequency of relationship
pairs in datasets to strengthen the iterative message propa-
gation between relationships and objects while ignoring the
intrinsic properties of the data.

Scene Graph Prediction in Point Clouds. With the re-
cently proposed 3DSSG datasets containing 3D scene graph
annotations [37], the community started to explore semantic
relationship prediction in 3D real world data. SGPN [37, 38]
is the first work to build a 3D scene graph using both objects
and their interrelations as graph nodes. It then performs
message propagation using graph convolutional networks.
Kimera [30] proposed a 3D dynamic scene graph that cap-
tures metric and semantic aspects of a dynamic environment,
where nodes represent spatial concepts at different levels of
abstraction, and edges represent spatial-temporal relations
among the nodes. EdgeGCN [46] exploits multi-dimensional
edge features for explicit relationship modeling and explores
two associated twinning interaction mechanisms for the in-
dependent evolution of scene graph representations. Wu et
al. [41] proposed a method to incrementally build semantic
scene graphs from a 3D environment given a sequence of
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Figure 2. Method pipeline. (a) A hierarchical symbolic knowledge is firstly reconstructed to exploit external knowledge as the baseline and
admit the hierarchical structure cues of 3D scene. (b) We then build a hierarchical visual graph and learn the contextualized features by the
region-aware graph network. (c) Finally, a 3D spatial multimodal knowledge is accumulated to strengthen relationship predictions.

RGB-D frames. KISG [47] uses the ground truth relation-
ship triplets in the dataset to extract the prior knowledge
and then fuses it in the scene graph prediction stage. One
limitation of KISG [47] is that its relevant prior knowledge
depends on the text-only dataset label while ignoring hierar-
chical and indispensable structures in the 3D scene for visual
understanding. Our method differentiates itself from these
related studies by exploring the 3D implicit structure pattern
and introducing 3D spatial multimodal knowledge, which
enables our model to predict relationships more accurately.

3. Methodology

Problem Formulation: The goal of 3D scene graph gener-
ation is to describe a given 3D point cloud scene Z with a
semantic scene graph G = {V, R}, where V and R repre-
sent instance object nodes and their inner relationship edges
respectively. G forms a structured representation of the se-
mantic content of the 3D scene. The nodes V consist of a set
of objects O = {01, 02, - , 0, } With object o; assigned to a
certain class label C, a corresponding set of bounding boxes
B = {b1,by, -+ ,b,} with b; € RS, and a set of relation-
ship edges R = {ry,r9, -+ ,r,} with each r; represents a
predicate between a pair of objects. Our proposed model can
be decomposed as:

P(g|I) = P(’CS‘I)P(ngCs, I)P(R, ’Cm|gv7 IC&I)
ey
In this equation, the component P(/Cs|Z) collects all the
symbolic entities from the datasets, filters the extra knowl-
edge bases, and combines the hierarchical structure patterns
of 3D scenes to construct the hierarchical symbolic knowl-
edge Ks. The component P(G,|Ks,Z) builds visual graphs
for scenes under the guidance of knowledge K, where con-
textual features for each node are extracted. Conditioned
on the knowledge K, and visual graph G,,, the component
P(R,Kn|Gu, Ks, T) accumulates the 3D spatial multimodal
knowledge by correlating the knowledge K, with visual
content and predicts relationships simultaneously. Fig. 2
illustrates the overall pipeline of the proposed model.

3.1. Hierarchical Symbolic Knowledge Initializa-
tion

Unlike KISG [47], we do not use a closed set or ground
truth relationship triplets from labels to learn prior knowl-
edge. Hence, we must make an additional choice of what
knowledge sources to use and how to clean them. Prior
knowledge of object classes can be reliable predictors of the
likelihoods of physical support relationships. For instance, it
is unlikely that a cup is supported by a wall while tables are
almost always supported by the floor. Therefore, given a set
of objects, we can classify each object based on whether it
is directly supported by the floor. The result is a three-layer
hierarchical structure about objects in the 3D scene. In par-
ticular, the first layer only contains the floor since it does not
have any support. The second layer contains objects directly
supported by the floor, e.g. bed, table, and sofa. The third
layer contains the remaining objects usually supported by
objects in the second layer, e.g. pillow, cup, and cushion.

To exploit the regular structure patterns in 3D spaces and
construct the scene graph hierarchically, we construct a hier-
archical symbolic knowledge graph to guide the 3D spatial
knowledge reasoning. Knowledge sources, such as Concept-
Net [35] and DBPedia [2], are a valuable tool containing
commonsense knowledge about the real world. In this work,
we use ConceptNet as our external knowledge base which
gives us more spatial relationships and common pairwise ob-
jects. While ConceptNet contains very useful information, it
also includes some knowledge that is irrelevant to our model.
To mitigate this issue, we limit the ConceptNet to commmon
object categories in 3D point cloud scenes. We collect object
categories from two widely-used 3D point cloud datasets,
SUNRGBD [34] and Scannet [7], and then include edges
that only include these objects. After filtering, we have a
total of about 5,000 edges and 760 nodes.

We denote the external knowledge graph as I, =
{Ve, E.} where V. and &, represent nodes and edges respec-
tively. To merge the hierarchical structures in 3D spaces into
the external knowledge graph and construct the hierarchical
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symbolic knowledge graph IC,, we first use a pre-trained
multi-layer perceptron (MLP) to classify the hierarchical
tokens for each node in the external knowledge graph to
distinguish the discrepancy among different layers of nodes.
The hierarchical token of each node denotes its correspond-
ing layer in the hierarchical structure. Each node is then
initialized as the concatenation of its trainable hierarchical
token and the word2vec (GloVe [26]) representation of the
object category. Since the hierarchical structure of 3D spaces
is built based on the physical support relationships between
objects, we add additional edges representing support rela-
tionships between nodes to the external knowledge graph /C..
Specifically, we define a new edge type: given two nodes s;
and s;, we connect s; to s; using a support edge to represent
the physical support relationship between s; and s;. By defi-
nition, each node in the hierarchical structure is supported by
the node in neighboring layers. Therefore, we add a support
edge between two correlated nodes in neighboring layers.
Each edge is initialized as the trainable GloVe representation
of its edge type. Finally, we formulate the updated external
knowledge graph as hierarchical symbolic knowledge graph
KCs. Additional details can be found in supplementary.

3.2. Knowledge-guided Visual Context Encoding

As shown in Fig. 2, taking a scene point cloud with ob-
ject instance annotations as input, we build a hierarchical
visual graph G, = {V,,, &, } where V,, and &, denotes object
instances and edges of object pairs respectively, under the
guidance of the hierarchical symbolic knowledge graph K.
Then, a region-aware graph network is employed to propa-
gate node messages through the visual graph G, to learn the
contextualized feature representation.

Visual graph construction. We use Point Cloud Trans-
former [13] to extract spatial-aware visual features f,, for
each object instance. To encode the spatial features f; of
each bounding box, we use an MLP to lift the parameters
of each bounding box (i.e., center and size) to feature space.
We assign the semantic features f,, for each object using an
embedding table initialized by GloVe [26]. Each node in the
visual graph is initialized as the concatenation of features
fv, fr andf,,. To capture the implicit structure of the point
cloud scene, we route each node in the visual graph G, into
its corresponding layer according to the hierarchical tokens
in hierarchical symbolic knowledge graph KC;. Then, we
complete the edge set £, of visual graph G,, by extracting po-
tential physical relationships between nodes in the adjacent
layers. Specifically, we add an edge representing physical
support relationship between node pair in the visual graph
G, if a support edge also exists between the correspond-
ing nodes in the hierarchical symbolic knowledge graph K.
Similar to [46], we model the spatial interactions between
node pairs and encode the initial edge embedding for node
pairs using an MLP.

Contextualized features encoding. Objects sharing the

same physical support are correlated since they have simi-
lar functional role in the environment and are generally in
close proximity to each other. For instance, both pillow and
clothes are usually supported by a bed. Therefore, we pro-
pose a region-aware graph network to jointly highlight the
interrelated regions of each node in the visual graph G, and
encode the hierarchical contexts of the input scene.

Given the initial representations of nodes and edges in the
visual graph G,, the region-aware graph network iteratively
updates the hidden state h{*’ of each node v; and hZﬂt of each
edge (v;, v;) at each time step ¢ via message passing. Since
the contextual regions around each node in the visual graph
G, can be defined as other nodes sharing the same physical
support with it, each node first gathers information from
nodes within the same contextual region to enrich its current
hidden state before propagating messages along the edges in
the visual graph G,,. Specifically, the enriched hidden state
h{"" of each node is:

h{' =h?'+ > ¥(h") )
JEN(4)
N,.(%) contains nodes that share the same level support with
node v; and % is a feed forward network for non-linear
transformation. For edge (v;, 'Uj), its enriched hidden state
ijt is computed by:

hy'=hi'+ > wm)+ Y et ©3)
kEN, (i) SEN,(5)

After the feature representation enhancements, the message
passing of nodes and edges can be formulated as:

o't = GRU(MY', m") 4)
h{"*! = GRU(h{}', m{;") (5)

where mio’t and mf]’»t are the incoming messages for updat-
ing each node and edge. The calculation of the message for
each node is:

m?' = Y (en(h?") + pe (b)) (6)
JEN (1)

where N, (i) denotes the neighbor nodes of v; in the visual
graph G, ¢, and ¢, are two non-linear transformation for
associated nodes and edges. For each edge, we transform the
hidden state of subject and object node by two MLPs before
fusing them to obtain the message:

m{ = o, (") + g, (h7") (7)
We take the final hidden states of nodes and edges as the
contextual feature ¢; for each node v; € V, and cf; for each
edge (v;,v5) € &y.
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3.3. Spatial Multimodal Knowledge Accumulation

Though our hierarchical symbolic knowledge graph K
can provide high-quality knowledge about the hierarchical
structures of point cloud scene, this information is largely
limited to symbolic knowledge that can only be explicitly
expressed by text-relevant labels for relationship triplets.
Therefore, we propose a novel schema to accumulate 3D
spatial multimodal knowledge KC,,, progressively from the
visual context via a graph reasoning network. We then in-
corporate the learned multimodal knowledge X,,, and the
contextual features to predict the possible relationships.
Reasoning on knowledge graph. Since the contextual
features encode the implicit hierarchical structure patterns
in 3D spaces, we design a graph reasoning network which
utilizes the visual contextual features and textual facts from
the hierarchical symbolic knowledge graph Kg to accumu-
late 3D spatial multimodal knowledge KC,,, by aligning the
entities in the symbolic knowledge graph with related visual
contextual features.

The graph reasoning network generates context for 3D
spatial multimodal knowledge /C,,,, which is in the form of
embeddings that capture the regular structure patterns in 3D
scenes for each node and edge in the hierarchical symbolic
knowledge graph IC;. Given the contextual features of nodes
and edges in visual graph G, each node and edge in the
graph reasoning network receives three inputs: (1) the train-
able node or edge embedding in the hierarchical symbolic
knowledge graph K, (2) a 0/1 indicator of whether this
node or edge appears in the visual graph G,,, (3) the contex-
tual feature cf and cf; in the visual graph G, corresponding
to this node or edge, missing nodes and edges are padded
with zero vectors. The graph reasoning network uses mes-
sage passing to perform reasoning on hierarchical symbolic
knowledge graph KC,. Specifically, at each time step t, to
calculate the hidden states d for all nodes s; € V, and d}'
for all edges (s;, sj) € &, each node and edge first gather
messages from their neighbors through the graph structure
then update their hidden states:

do" = GRU(A?", m?"), (8)
dij"" = GRU(A]}, m}), ©)

t ot . .
where mj”" and mj;" are the incoming messages for nodes
and edges. The incoming message for each node is

my = > (pa(d]) + e (d)), (10)
JEN(i)

where Ny (i) denotes the neighbor nodes of node s; in the
knowledge graph K. Similar to Eq. (7), the incoming mes-
sage for each edge is

mg’ = o (d)") + @o(d"). (11)

ij

We take the sum of the stacked hidden states as the 3D spatial
multimodal knowledge embedding b{ for all nodes and bj;
for all edges in the symbolic knowledge graph ;.
Knowledge-enabled Scene Graph Prediction. To incor-
porate the 3D spatial multimodal knowledge /C,,, into scene
graph inference, we propose fusing the multimodal knowl-
edge embedding with the contextual features in the visual
graph to facilitate 3D scene graph prediction. Towards this
goal, we utilize an MLP as object detection head to predict
confident initial class guesses given the contextual node fea-
tures. We then select the three most confident multimodal
knowledge embeddings for each node. For edges in the
visual graph, we select the three most confident object cat-
egories for the subject and object node based on the initial
guesses. We then retrieve the multimodal knowledge embed-
ding using the predicted subject and object categories. Since
the multimodal knowledge embedding and the contextual
features are in different feature spaces, we transform them
by two MLPs ¢}, and ¢, respectively before fusing them.
For each node in the visual graph, we fuse the retrieved mul-
timodal knowledge embedding {bk}k:1 5 5 and the con-
textual node feature c{ to obtain the kné“’fledge-enabled
contextual feature f?:

£7 = p(pe(c)) + eu( Y _bY)). (12)

M«

k=1

For each edge in the visual graph, the multimodal knowledge
embedding is fused with its contextual feature in the same
way as the node.

Equipped with the 3D spatial multimodal knowledge-
enabled contextual features f7” for nodes and f; for edges in
the visual graph, we generate the scene graph by decoding
the contextual features using a standard graph convolution
network (GCN) [18]. We assume that each object pair can
have a relationship (including none) and fully connect them
as a graph where relationships are represented as edges. Each
node is initialized by its contextual node feature f, and each
edge is initialized either by the contextual edge feature ff;
or the contextual features of its subject and object nodes if
the edge is not presented in the visual graph. The last part
of the GCN consists of two detection heads for object and
relationship classification. The object detection head takes
the decoded node features as input to predict the object clas-
sification possibilities. The relationship prediction head first
fuses the decoded subject and object node features with the
decoded edge features, then predicts a discrete distribution
over all possible relationship classes.

Loss Function. We adopt the standard cross entropy loss
for object and relationship classification in our model. Since
the contextual node feature c{ is used to predict the initial
class guesses, we use a cross entropy loss £, ., for the initial
detection. For the final prediction, we use two cross entropy
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PredCls SGCls SGDet
Methods R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100
3D+IMP [42] 48.15/48.72  21.56/21.85 | 17.41/17.89 9.06/9.23 24.54 /2457 21.71/21.72
3D+MOTIFS [45] 52.43/53.37 24.35/24.52 | 18.34/18.57 9.74/9.86 26.58/26.59 24.12/24.17
3D+VCTree [36] 53.12/54.38 24.75/24.91 19.93/20.24 10.34/10.55 | 27.58/27.62 24.92/24.94
3D+KERN [6] 54.74/56.53 25.21/25.83 | 21.41/21.78 11.02/11.36 | 27.75/27.78 24.03/24.05
3D+Schemata [32] | 58.13/59.11 42.11/42.83 | 28.72/2897 26.72/27.05 | 28.12/28.13  25.29/25.30
3D+HetH [40] 58.24/58.75 42.53/42.74 | 28.83/29.05 26.68/26.85 | 28.17/28.18 25.31/25.32
Ours \ 68.32/69.49  66.54/66.92 \ 31.50/31.64 30.29/30.56 \ 29.41/29.44 25.35/25.36

Table 1. Comparison with state-of-the-art 2D scene graph prediction methods re-implemented to work on 3DSSG dataset.

PredCls SGCls SGDet
Methods R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100
SGPN [37] 57.71/58.05 38.12/38.67 | 28.39/28.74 22.23/22.57 -/- -/-
EdgeGCN [46] | 58.42/59.11 38.84/39.35 | 28.58/28.93 22.67/23.33 -/ - -/ -
KISG [47] 64.47/64.93  63.19/63.52 | 29.46/29.65 28.20/28.64 -/- -/-
Ours \ 68.32/69.49  66.54/ 66.92 \ 31.50/31.64 30.29/30.56 \ 29.41/29.44 25.35/25.36

Table 2. Comparison with 3D scene graph prediction methods on the 3DSSG dataset.

losses £%,,,,, and L7, for the object and relationship clas-
sification:

‘cfinal = wol:(])“inal + wT"c?inal (13)

where w, and w, are the weights for object and relation loss.
In our experiment, we set w, to 0.75 and w,. to 1. Our final
loss function can be formulated as:

L= ‘afnit =+ Efinal (14)
4. Experiments

4.1. Experimental Configuration

We evaluate our model on 3DSSG dataset [37]. Follow-
ing [47], we select 160 object categories and 27 relationship
classes for detection. We compare our model with others in
three standard tasks proposed in [42]. (1) Predicate Classifi-
cation (PredCls): Given the ground truth 3D bounding boxes
and their corresponding semantic labels, our model classifies
the relationship between each object pair. (2) Scene Graph
Classification (SGCls): Given the ground truth 3D bounding
boxes, our model predicts the relationships as well as the ob-
ject categories jointly. (3) Scene Graph Generation (SGDet):
Given the raw point cloud, our model detects 3D objects,
their semantic information, as well as their relationships in
an end-to-end manner. Following existing 2D and 3D scene
graph generation works, we adopt the constrained evaluation
metric recall @K (R@K) and mean recall @K (mR @K).

Our model is implemented in PyTorch, and trained using
one NVIDIA GTX TITAN X GPU for 40 epochs with the
ADAM optimizer. We use an initial learning rate of 0.0001,
weight decay of 0.5, and mini-batch of 4. After 15, 25,
and 40 epochs, we multiply the learning rate by 0.1. We
adopt VoteNet [27] as the 3D object detection backbone to
generate an initial set of 256 object candidates in the SGDet
task. The Point Cloud Transformer is pre-trained on the
3DSSG dataset using the same settings in [ 13].

4.2. Comparison to State-of-the-Art

We first compare our model with the following state-of-
art 2D image scene graph generation models, modified to
fit the 3DSSG dataset: IMP [42], MOTIFS [45] and VC-
Tree [36] which creatively devise various message passing
methods for improving graph representations. KERN [6],
Schemata [32], and HetH [40] incorporate statistical priors
and learning-based commonsense knowledge into the scene
graph prediction. Therefore, we include these models to
illustrate the superiority of the 3D spatial multimodal knowl-
edge about the implicit hierarchical structure correlations
between object pairs in the 3D scene.

Our results in Tab. | lead to a few key observations:
(1) Our model consistently outperforms all the existing ap-
proaches on all metrics and achieve 3.57% boost on mR @50
in SGCls task and 10.08% boost on R@50 in PredCls task.
This indicates that leveraging regular patterns of 3D physi-
cal spaces is beneficial for scene graph prediction. (2) Our
model outperforms traditional message passing model IMP
and MOTIFS. Furthermore, our method achieves consider-
able improvement when compared to VCTree. (3) Compared
to Schemata, our model achieves an improvement of 2.78%
and 10.19% on R@50 in SGCls and PredCls, suggesting
that our multimodal knowledge embedding is a better ap-
proach compared to the class-level prototypical represen-
tations learned from perceptual outputs in Schemata. (4)
Compared with KERN and HetH, our proposed hierarchical
structure of 3D spaces is superior to the graph structure they
adopted to represent the input as our model outperforms
them with a significant margin. (5) The performance has
been saturated in the SGDet task. This is mainly because
object detection performance on this dataset is a bottleneck
that limits the performance.

We also compare the performance of our model with the
state-of-the-art 3D point cloud-based scene graph predic-
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Methods R@50/100 mR@50/100
Knowledge /Cg

w/o Hierarchical Tokens | 30.47/30.67 28.94/29.19

w/o Support Edge 30.55/30.74  29.17/29.47

w/o Both 28.41/2847 27.13/27.52

Visual Context Encoding

Gy replaced w/ Gy 28.17/28.32  26.28/26.29

w/o RaGN 26.43/26.57 24.23/24.36

RaGN replaced w/ GCN | 31.03/31.21  29.67/29.88
Knowledge K.,

w/o b¢ and bfj 26.27/26.35 22.93/23.18

w/o c? and cfj as input 28.14/28.31  25.05/25.31

Ours ‘ 31.50/31.64 30.29/30.56

Table 3. Quantitative results of different module configurations on
the SGCls task.

tion models to demonstrate the effectiveness of 3D spatial
multimodal knowledge. We include several existing works
such as SGPN [37], EdgeGCN [46] and KISG [47] since
they all report competitive results. SGPN and EdgeGCN
exploit multi-dimensional edge features for explicit rela-
tionship modeling whereas KISG learns a group of class-
dependent prototypical representations for each semantic
class. As shown in Tab. 2, our model dominantly surpasses
all methods. Benefiting from the hierarchical structure of
3D spaces, our model is able to reason complex relation-
ship hierarchically and systematically. Compared to SGPN
and EdgeGCN, our model improves the R@50 by 2.92%
and 9.90% in SGCls and PredCls tasks. We can also see
that our method outperforms KISG by 2.04% on R@50
in SGCls. KISG captures class-related priors in the scene
from text-only ground truth labels. Such knowledge cannot
efficiently represent diverse relationships and complex 3D
environments. In contrast, our model extracts indispensable
3D spatial multimodal knowledge which benefits the scene
graph prediction.

4.3. Ablation Study

We only report the performance results in the Recall and
mean Recall metrics on the SGCls task for ablation studies.
The results are shown in Tab. 3.

Hierarchical symbolic knowledge. We first look at the
hierarchical symbolic knowledge graph K to investigate
its effectiveness. Specifically, we find that using Concept-
Net without classifying the hierarchical tokens or adding
support edges leads to sub-optimal performance. Further-
more, using ConceptNet without any augmentation drops
the performance significantly, indicating that both the hierar-
chical tokens and support edges are crucial elements of the
hierarchical structures in 3D scene.

Knowledge-guided visual context encoding. Next, we
analyse the knowledge-guided visual context encoding mod-

‘ PredCIS SGCIS

Variants R@50 mR@50 ‘ R@50 mR@50
Gr 62.74 58.25 28.17 27.28
G 68.41 66.59 31.59 30.35
Gy (original) ‘ 68.32 66.54 ‘ 31.50 30.29

Table 4. Comparison of different variants of the visual graph.

Methods ‘ Head  Body Tail
SGPN [37] 3942 2364 13.03
EdgeGCN [46] | 39.51 23.85 13.15
KISG [37] 4036 2456  13.61
Ours \ 4423 2627 14.73

Table 5. The R@50 metric of biased relationship prediction on the
SGCls task.

ule. We can see that replacing the hierarchical visual graph
G, with a fully-connected graph G¢. decreases the perfor-
mance by a margin of 3.33% on R@50, indicating that the
hierarchical structure is superior to a plain fully-connected
graph in terms of modeling context. Furthermore, remov-
ing the subsequent region-aware graph network (RaGN) and
directly fusing the multimodal knowledge embedding with
the initial representation of each node and edge in the visual
graph negatively impacts the performance on all metrics.
Replacing the region-aware graph network with a standard
graph convolution network also hurts the performance.

3D spatial multimodal knowledge accumulation. Lastly,
we examine the accumulated multimodal knowledge /C,,
to learn about how /C,,, and rest of the model interact. We
first see how much of the improvement comes from the 3D
spatial multimodal knowledge KC,,,. As shown in Tab. 3, the
multimodal knowledge embedding significantly improves
the R@50 and mR @50 by 5.23% and 7.36% respectively. In
addition, dropping the contextual feature input c{ for nodes
and c; for edges in the graph reasoning network decreases
the performance by a margin of 3.36% and 5.24% on R@50
and mR@50 in SGCls. This drop in performance indicates
that the contextual feature plays a pivotal role in bridging
the heterogeneous gap between the symbolic knowledge and
visual information.

4.4. Further Analysis

Analysis on the hierarchical structure of 3D spaces. To
validate the potential of the hierarchical visual graph G, in
capturing the inherent hierarchical structure of a 3D scene,
we design two visual graph variants and compare them to
the hierarchical visual G,: (1) Instead of using the hierar-
chical symbolic knowledge graph K, we build a ground
truth graph G; based on the ground truth labels for support
relations. In particular, each edge in G; represents the ground
truth support relationship of the input scene. (2) We also
design a randomly connected graph G,., where we keep all
of the nodes the same but randomize the edges that connect
them. As shown in Tab. 4, both G, and G; outperform G,
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Figure 3. Comparison of our model and KISG on the SGCls task
when trained with noisy labels.

with a significant margin on all metrics. More importantly,
we observe that G; and G, perform mostly similar while G,
slightly outperforms G,. The results confirm that the hierar-
chical visual graph G, is one of the more optimal ways of
extracting the hierarchical structure patterns of 3D spaces.
Robustness of 3D spatial multimodal knowledge. Ad-
ditionally, we investigate the robustness of the 3D spatial
multimodal knowledge /C,,, by training our model with noisy
labels. Specifically, we add different proportions of noises
into the 3DSSG training set by replacing part of ground
truth relationships with the randomly selected wrong rela-
tionships for input scenes. The performance of our model
and KISG [47] on the SGClIs task is reported in Fig. 3. We
can see that, the performance of KISG decreases drastically
while ours decreases slowly with increasing noise rate. Un-
der the 30% noise rate condition, our model improves the
R @50 metric by about 6.89% over KISG, which indicates
that our model achieves improved robustness over KISG.
The main reason is that KISG captures relevant prior knowl-
edge from text-only ground truth labels and noises contained
in the labels are easily included in their knowledge base and
affects the prediction of relationships. Different with KISG,
our model leverages the inherently hierarchical structures of
3D scenes and accumulates multimodal knowledge which is
both label free and reliable.

Long-tail analysis. We also investigate how our model per-
forms on the long-tail part of the dataset. To do this, we
order all the relationships based on the frequency of each
relationship category occurring in triplets. We select the
5 most common relationship categories as the head, the 5
least common relationship categories as the tail, and the
rest of the categories as the body. Tab. 5 reports the R@50
metric on each long-tail category groups of our model. More-
over, our model achieves best performance when evaluating
the R@50 metric on the tail relationship categories, which
shows that our model has the ability to mitigate the effect of
sample imbalance. The main reason is that the hierarchical
structures can be extracted accurately which influence other
relationships in the prediction process.

4.5. Qualitative Results

We visualize intermediate results in Fig. 4(a-c). We can
see that both the hierarchical visual graph G, and 3D scene

(a) Input scene "
. Plant3 <" Plants

e
Box

Plant2 T#‘T& (GT:Plants) />

None
—  (GT:Heater)

Plant3 None Cushion2
- (GT:Heater]~ — —
Box  Window2. —

(GT:Plants) ,/‘ g

" Windowl

(b) Hierarclrlicalrvisual graph (©) Sﬂ gcéne gi’aph
Figure 4. Visualizations of our predicted scene graph on 3DSSG

dataset. Red indicates the misclassified objects or relationships.

graph G are well constructed. However, our model incor-
rectly classifies the relationship between Window1 and Floor.
This is mainly because our model fails to extract discrimi-
native features for Window1 as there are few points within
its bounding box. The token of Windowl is classified incor-
rectly in the second layer while it should be in the third layer.
We provide more visualization samples in the supplementary.

5. Conclusion

We proposed a method for 3D scene graph prediction
from raw point clouds. Our method explores the regular pat-
terns of 3D physical spaces into the deep network to facilitate
3D scene graph prediction. Hierarchical symbolic knowl-
edge is first reconstructed via exploiting external knowledge
as the baseline to admit the hierarchical structure cues of
a 3D scene. A knowledge-guided visual context encoding
module then builds a hierarchical visual graph and learns
the contextualized features by a region-aware graph network.
Finally, a 3D spatial multimodal knowledge accumulation
module is proposed to regularize the semantic space of rela-
tionship prediction. Extensive experiments on the 3DSSG
dataset show that our method outperforms existing state-of-
the-art and can mitigate the effect of data imbalance and
label noises. In the future, we plan to exploit the attributes of
3D objects to build richer knowledge graphs to improve the
prediction performances of attribute-focused relationships,
such as same symmetric as and same texture as.
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