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Abstract

Due to the difficulty in collecting large-scale and per-
fectly aligned paired training data for Under-Display Cam-
era (UDC) image restoration, previous methods resort to
monitor-based image systems or simulation-based methods,
sacrificing the realness of the data and introducing domain
gaps. In this work, we revisit the classic stereo setup for
training data collection – capturing two images of the same
scene with one UDC and one standard camera. The key
idea is to “copy” details from a high-quality reference im-
age and “paste” them on the UDC image. While being
able to generate real training pairs, this setting is suscep-
tible to spatial misalignment due to perspective and depth
of field changes. The problem is further compounded by
the large domain discrepancy between the UDC and normal
images, which is unique to UDC restoration. In this paper,
we mitigate the non-trivial domain discrepancy and spatial
misalignment through a novel Transformer-based frame-
work that generates well-aligned yet high-quality target
data for the corresponding UDC input. This is made possi-
ble through two carefully designed components, namely, the
Domain Alignment Module (DAM) and Geometric Align-
ment Module (GAM), which encourage robust and accurate
discovery of correspondence between the UDC and nor-
mal views. Extensive experiments show that high-quality
and well-aligned pseudo UDC training pairs are benefi-
cial for training a robust restoration network. Code and
the dataset are available at https://github.com/
jnjaby/AlignFormer.

1. Introduction
Under-Display Camera (UDC) is an imaging system

with cameras placed underneath a display. It emerges as
a promising solution for smartphone manufacturers to com-
pletely hide the selfie camera, providing a notch-free view-
ing experience on smartphones. However, the widespread

(a) UDC

(b) Ref

(d) AlignFormer (Ours)

(c) Anaglyph (UDC-Ref)

(e) Anaglyph (UDC-AlignFormer)

Figure 1. Domain and geometric misalignment in UDC. Stereo
pairs (a) and (b) are captured by Under-Display Camera and high-
end camera, respectively. The two images deviate significantly
due to the color shift and severe degradation the UDC image.
Anaglyph (c) illustrates the large spatial displacement between
UDC and reference images despite a careful hardware setup and
rough alignment. Our AlignFormer aligns the image pair and min-
imizes the parallax.

commercial production of UDC is prevented by poor imag-
ing quality caused by diffraction artifacts. Such artifacts are
unique to UDC, caused by the gaps between display pixels
that act as an aperture. As shown in Figure 1(a), typical
diffraction artifacts entail flare, saturated blobs, blur, haze,
and noise. The complex and diverse distortions make the
reconstruction problem extremely challenging.

Training a deep network end-to-end for UDC restora-
tion has been found challenging due to the need for a
large-scale dataset of real-world degraded images and their
high-quality counterparts. Existing methods [29, 52] build
datasets with a monitor-based imaging system. As dis-
cussed in Feng et al. [3], such a paradigm is inherently lim-
ited by the dynamic range and spatial resolution of the mon-
itor. To address the problem, Feng et al. [3] present a syn-
thetic dataset grounded on the imaging formation model [3].
Both datasets exhibit degradation that deviates from the ac-
tual physical imaging process, leading to poor generaliz-
ability to diverse real-world test cases.
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To circumvent the hurdle in collecting real paired data,
we opt for an alternative setup, i.e., to construct paired
dataset with a stereo setting. Specifically, we capture two
images of the same scene with one Under-Display Cam-
era and one normal camera, denoted as UDC and Reference
image, respectively. An example is shown in Figure 1(a-b)
The key challenge lies in two aspects. i) Domain discrep-
ancy. The different camera configurations inevitably give
rise to variations in illuminance and severe color inconsis-
tency, especially under the presence of color shift and severe
diffraction artifacts in the UDC image. ii) Geometric mis-
alignment. The contents in the UDC image and reference
image are misaligned due to different focal lengths and field
of views (FOV).

Due to the unique nature of UDC restoration, existing
solutions are not effective in addressing the two aforemen-
tioned challenges. In particular, the low-level vision com-
munity has made attempts on this stereo setup for super-
resolution [1], deblurring [32], and learnable ISP [9]. In
addition, Contextual loss [25] and CoBi loss [48] are de-
vised to alleviate mild spatial misalignment. As shown in
our experiments, those methods are less stable and robust
due to the difficulty of reliable matching when one image
is severely distorted. In particular, the over-exposed regions
caused by diffraction require strong pixel-wise supervision
to enforce constraints during the training.

The key idea of our solution is to generate high-quality
and well-aligned pseudo pairs from the non-aligned stereo
data (UDC and reference) to enable end-to-end training of a
deep network. The challenge lies in solving the domain and
spatial misalignment so that the process resembles ‘copy-
ing’ details from the reference image selectively and then
‘pasting’ on the degraded image. To this end, we devise a
simple yet effective Transformer-based framework, namely
AlignFormer, with a Domain Alignment Module (DAM)
and a Geometric Alignment Module (GAM). The DAM is
inspired by AdaIN [7], aiming to mitigate the domain dis-
crepancy between the UDC and reference images, allowing
more robust and accurate correspondence matching in the
subsequent stage. The GAM establishes accurate dense cor-
respondences through incorporating geometric cues in at-
tention. Specifically, GAM can flexibly work with any off-
the-shelf pre-trained optical flow estimators to build pixel-
wise correspondence between the UDC and reference im-
ages. The discovered correspondence then guides the sparse
attention in our Transformer to search for the matching pix-
els accurately and effectively within local regions.

Figure 1(d-e) show that AlignFormer produces well-
aligned image pairs. The results of AlignFormer can serve
as pseudo ground-truth data and one can easily train an im-
age restoration network end-to-end with common training
settings, i.e., using pixel losses such as L1 that assume
exact spatial alignment, the perceptual loss [14], and the

adversarial loss. Moreover, the constructed pseudo-paired
dataset allows us to enjoy the merits of any advanced ar-
chitectures of neural networks designed for image restora-
tion problems. The generated data do not suffer from the
limited dynamic range of spatial resolution as in previous
monitor-based imaging systems. The data also experience a
far lower domain gap than simulation-based approaches.

The main contributions are three-fold:
• We propose a data generation framework that is specif-

ically designed for UDC. It presents a promising direc-
tion beyond previous monitor-based and simulation-
based data collection approaches, leading to improved
generalizability of UDC image restoration.

• Our AlignFormer properly integrates optical flow
guidance into up-to-date Transformer architectures.

• Experimental results demonstrate significant progress
in practical UDC image restoration in real-world sce-
narios.

2. Related Work
UDC Image Restoration. Very few works in the litera-
ture have investigated image restoration for UDC. Zhou et
al. [52] and ECCV 2020 challenge [51] pioneered this line
of works and inspired the follow-up studies [3, 18, 21, 27].
Yang et al. [45] proposed to redesign the pixel layouts for
UDC display by optimizing the display patterns to improve
the quality of restored image, which is orthogonal to our
work. The dataset of the challenge [51, 52] is captured by a
monitor-based imaging system. Such a system only induces
incomplete diffraction artifacts due to the limited dynamic
range of monitor [3]. Qi et al. [29] further explored the
use of HDR monitor data. However, it is still inherently
limited by the spatial resolution and contrast of the mon-
itor. To remedy this issue, instead of capturing monitor-
based image pairs, Feng et al. [3, 4] and Gao et al. [5] ex-
plored simulation pipelines for building synthetic dataset
with real-captured point spread function (PSF) and imaging
formation model. Despite well calibration and correction
of PSF, models trained on synthetic dataset exhibit limited
generalization capability for real-world images, especially
for those with strong illuminations and flare regions. This
is partially due to the domain shift between the mathemati-
cal model and physical imaging process in the real world, as
there is no guarantee that the simulation pipeline can well
approximate the complicated degradation in practical sce-
narios. Unlike previous works, we propose to collect real-
world degraded-reference image pairs and produce high-
quality images that contain the same content as degraded
images as the pseudo target. The pseudo label allows us to
enjoy the merits of advanced network architectures that are
trained with pixel-wise losses.
Dealing with Misaligned Paired Data. Several studies
have been devoted to capturing real-world image pairs using
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different cameras or camera configurations for other low-
level tasks. Qu et al. [30] and Rim et al. [32] devised image
acquisition systems with a beam splitter to collect paired
data. Wang et al. [42] present dual-camera super resolu-
tion. Ignatov et al. [9] and Zhang et al. [49] collected image
pairs and roughly aligned them via SIFT keypoints [23] and
RANSAC algorithm [41]. The geometric alignment algo-
rithm they adopted assumes image pairs can be aligned with
a single homography, which is not the case where depth
discrepancy exists in the scenes. Cai et al. [1] developed
a pixel-wise image registration method to iteratively trans-
form and adjust luminance. Nonetheless, this algorithm
only works while the misalignment is mild. Contextual loss
(CX) [25] was proposed to relax the constraints of spatial
alignment and the loss works based on context and seman-
tics. Inspired by CX [25], Zhang et al. [48] presented a
contextual bilateral (CoBi) loss to prioritize local features
and improve the matching quality. None of them consider
image pairs exhibiting severe degradation and color incon-
sistency. Another line of studies focuses on transferring tex-
tures and details from the reference image, e.g., TTSR [46],
C2-matching [12, 13]. Our framework is inspired by these
prior studies. These algorithms only discover pixel corre-
spondence through semantic similarity without using any
geometric cues. Our approach differs in guiding the Trans-
former’s attention with geometric prior and considering the
additional domain alignment for addressing the significant
gaps between the UDC and reference images.

3. Method

Given a UDC image ID ∈ RH×W×3 and a high-quality
reference image IR ∈ RH×W×3 of the same scene, we aim
to generate IP that possesses finer texture and details from
IR and preserves the content of ID,

IP = T (ID, IR; Θ), (1)

where T denotes the transformation. The whole process
can be regarded intuitively as “copying” texture from refer-
ence images and “pasting” to the target image according to
the semantic content of degraded images. The constructed
pseudo pair (ID, IP ) is well-aligned and could serve as a
training sample to provide better supervision for subsequent
UDC image restoration networks fθ, given by

IO = fθ(ID), (2)

where IO is the reconstructed clean image. The key chal-
lenge lies in aligning IR to ID in the presence of signifi-
cant domain inconsistency. To overcome this, we propose a
novel Transformer-based framework, AlignFormer, to miti-
gate both domain shift and spatial misalignment.

𝐼! 𝐼"

DAM

𝐼!"
Flow

Estimator

GAM

GAM

GAM

𝐼#

Image

Module

Flow

Figure 2. Overview of the proposed AlignFormer. We first mit-
igate domain discrepancy between UDC image ID and reference
image IR via Domain Alignmain Module (DAM) to obtain ÎD ,
which are then gathered with IR and fed into two U-shape CNNs
for feature extraction. Then the features at each scale are attended
by the Geometric Alignment Transformer (GAM) to obtain the
output features, which will be processed and fused in another U-
Net to produce the pseudo image IP .

3.1. AlignFormer

Inspired by Texformer [44], the overall architecture of
AlignFormer T is illustrated in Fig. 2. It mainly consists of
Domain Alignment Module (DAM), Geometric Alignment
Module (GAM), flow estimator, and feature extractors. The
DAM is carefully designed to modulate features towards
reduced domain inconsistency, and consequently improve
the accuracy of correspondence matching. On top of it, the
GAM establishes accurate dense correspondences by incor-
porating geometric cues derived from any off-the-shelf op-
tical flow estimators in attention. This enables sparse atten-
tion in our Transformer to search for the matching pixels
accurately and effectively within local regions.
Domain Alignment Module (DAM). From our experi-
ments, we found that the performance of attention is highly
susceptible to domain shift and severe degradations. In-
spired by the recent success of style-based architecture [15,
16], we propose DAM to mitigate domain inconsistency
between the UDC and reference images. The structure of
DAM is shown in Fig. 3, consisting of two sub-nets, a guid-
ance net and a matching net.

The guidance net generates a conditional vector as guid-
ance for the matching net by extracting and exploring fea-
ture statistics, i.e., domain information, from the refer-
ence image IR. To obtain the guidance vector, denoted as
s ∈ Rd, we compose a stack of convolution layers, followed
by a global average pooling layer. The guidance vector can
serve as the condition and deliver holistic information from
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Figure 3. The structure of domain alignment module. This
module comprises a guidance net and a matching net. The guid-
ance vector generated by the guidance net is used for style mod-
ulation via StyleConv in the matching net. Such designs help to
imitate the color and illuminance of reference image, while pre-
serving spatial information of UDC image.

the reference image to the matching net.
The matching net is designed to transfer domain infor-

mation, e.g., color, illuminance, contrast, to the degraded
UDC image. To leverage the style condition s ∈ Rd and
match the feature, we utilize StyleConv [15], consisting of
a Conv layer, affine transformation, and AdaIN [7]. Specif-
ically, let A ∈ R2d×d and b ∈ R2d be the layer-wise learn-
able affine transformation applied to s. For each AdaIN
layer, we can define the style input as y = [ys,yb] =
As + b. Given the output feature of Conv layer x as the
content input and style input y, AdaIN performs

AdaIN(x,y) = ys

x− µ(x)

σ(x)
+ yb. (3)

The output of DAM, denoted as ÎD, will exhibit a closer
style to the IR, and will be used for the subsequent GAM.
Note that the style transfer is performed from IR to ID, and
not otherwise, as the latter will hamper the correspondence
discovery due to poorer quality of image pairs.
Geometric Alignment Module (GAM). The conventional
formulation in Transformers [2, 22, 40] is not well-suited
for our task. In particular, the vanilla Transformers [2, 40]
exhibit the superiority in exploiting semantic similarity and
capturing global contextual information. Nonetheless, their
global attention densely attends to all key components,
causing a diversion of attention to irrelevant and redundant
elements. Swin Transformer [22], on the other hand, as-
sumes attention within local regions, which is better suited
for our task. However, it is not readily designed to accept
geometric cues (e.g., optical flow, patch matching) as guid-
ance, which is crucial in our task considering local rigid-
ity assumption under the stereo setting. Hence, to discover
correspondences between the UDC input ID and reference
image IR, a specialized attention mechanism is required.

Attention

Local grid

Output

𝐹! 𝐹"
Δ𝑝

Query
Offset

Flow-guided
Sampler

Add & Norm

softmax

flow Δp

Feed Forward

Flow-guided
Sampler

𝐹!: 𝐻×𝑊×𝐶

𝑊#: 𝐶×𝑑 𝑊$: 𝐶×𝑑 𝑊%: 𝐶×𝑑

𝐹": 𝐻×𝑊×𝐶

𝑄:𝐻×𝑊×𝑑 𝐾:𝐻×𝑊×𝑑 𝑉:𝐻×𝑊×𝑑
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Figure 4. Top: The structure of geometric alignment module. Bot-
tom: the schematic of flow-guided sampler.

To this end, we develop GAM to exploit the pixel cor-
respondences by incorporating geometric cues in attention.
Specifically, we use an off-the-shelf flow estimator1 as the
guidance to sample features from the vicinity in the refer-
ence image. We introduce a flow estimator prior in the con-
ventional attention as it can exploit the geometric prior to
facilitate the subsequent attention mechanism. Otherwise,
it becomes knotty given the spatial misalignment between
ÎD and IR. As shown in Figure 3.1, we reformulate the ba-
sic attention unit. It consists of attention with a flow-guided
sampler, a layer normalization (LN), and a multi-layer per-
ceptron (MLP).

To take advantage of the geometric cues, the key sam-
pling is directed by the geometric information predicted by
the pre-trained optical flow estimator. The dense offset map
at each position p = (x, y) in ÎD is mapped to its estimated
correspondence in IR: p′ = (x+ u, y + v), where the flow
offset is recovered by a network ψflow

∆p = (u, v) = ψflow(ÎD, IR)(x, y). (4)

Then a flow sampler defines the local grid around p′

N (p′)r = {p′ + d | d ∈ Z2, ∥d∥1 ≤ r}. (5)

The offsets within a radius of r units are used to sample key
and value elements. The flow sampler samples sub-pixel
locations of real values from N (p′)r via interpolation.

We denote FD ∈ RH×W×C and FR ∈ RH×W×C the
feature extracted from ÎD, IR, where H and W indicate

1We use RAFT [39] but other methods are applicable.
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height and width of the feature map, and C is the feature
dimension. Given a linear projected query vector qx,y =

FDW
Q at coordinate p = (x, y) of FD, the flow-guided

attention can be written as:

fattn(qx,y, FR) =
∑

(i,j)∈N (p′)r

sim(qx,y,ki,j)vi,j , (6)

where ki,j = FRW
K and vi,j = FRW

V represent the pro-
jected vectors sampled from FR by the flow sampler. Here
WQ, WK , WV ∈ RC×d are the respective learnable linear
projection for query, key, and value elements, where d is
the dimension of the projected vector. The attention score
sim(qx,y,ki,j) is the scaled dot-product attention followed
by softmax function, formulated as

sim(qx,y,ki,j) = softmax(
qT
x,yki,j√
d

). (7)

Hence, the final output attended features are computed as

fx,y = fattn(qx,y),
zx,y = fMLP(fLN(fx,y)) + fx,y.

(8)

Here fLN is the LayerNorm layer.

3.2. Learning Objectives

The training of AlignFormer requires an objective func-
tion that does not forcefully match each spatial position as
the problem lacks exact spatially aligned supervision. The
Contextual Loss (CX) [25] is a viable choice as it treats fea-
tures of images as a set and measures the similarity between
images, ignoring the spatial positions of the features. This
property enables us to compare images that are spatially de-
formed.

Given two images x and y, CX loss aims to minimize the
summed distance of all matched feature pairs, formulated as

LCX(x, y) =
1

N

∑
j

min
i

D(ϕ(x)j , ϕ(y)i), (9)

where ϕ(x)j and ϕ(y)i are the j-th point of ϕ(x) and i-
th point of ϕ(y), respectively. ϕ(x) denotes feature maps
of x extracted from the VGG network ϕ, and D is some
distance measure. Based on context and semantics, the CX
loss transfers the style of an image to another by comparing
regions with similar semantic meaning in both images. The
insensitivity of CX loss for misaligned data is well-suitable
for moderating the domain gap between UDC images and
high-quality reference images used in our pipeline.
Learning Objective for DAM. We first train DAM to mit-
igate the domain shift. The loss term for DAM is given by

LDAM = LCX(ÎD, IR), (10)

where ÎD denotes the output of DAM, ID and IR the de-
graded and reference image, respectively. We use the pre-
trained VGG-19 [35] and select “conv4 4” as deep features.
Learning Objective for AlignFormer. After training
DAM, we integrate the DAM and the pre-trained RAFT [39]
into the AlignFormer. Note that both DAM and the optical
flow estimator are fixed during training AlignFormer. Sim-
ilarly, the AlignFormer is trained with a domain loss:

LAlign = LCX(IP , IR), (11)

where IP is the output of AlignFormer. The reference im-
age IR serves as the domain supervision.

3.3. Image Restoration Network

Although AlignFormer can achieve good results with a
UDC image and a reference image as input, a restoration
network is still indispensable. This is because the reference
image is not available during inference and some regions
in AlignFormer’s results have to be masked out due to the
effect of occlusion between the UDC image and the ref-
erence image. Therefore, after getting the aligned pseudo
image pairs (ID, IP ), we devise a baseline network target-
ing at restoring both global information (e.g., brightness and
color correction), and local information (e.g., flare removal,
texture enhancement, denoising) to evaluate the effective-
ness of our AlignFormer. While a tailored image restoration
backbone UNet [33] could inherently enhance local details
at different scales, it can hardly alter the image globally. To
address this, we adopt a standard U-Net architecture with
Pyramid Pooling Module (PPM) [50], namely PPM-UNet.
The role of PPM is to incorporate global prior into the net-
works to mitigate the color inconsistency between UDC and
generated images. Due to limited space, we leave the details
of the restoration network to the supplementary material.
Learning Objective for PPM-UNet. Following common
practice [43,49], we train PPM-UNet with a combination of
losses, including L1 loss, VGG-based perceptual loss [14]
LV GG, and GAN loss, which can be defined by

Lrec =λ1∥M ⊙ (IP − IO)∥1
+λV GG∥ϕ(M ⊙ IP )− ϕ(M ⊙ IO)∥1
+λGANLGAN ,

(12)

where ⊙ denotes element-wise multiplication, ∥ · ∥1 is ℓ1-
norm, ϕ is the pre-trained VGG [35] network, and M is the
valid mask indicating the non-occluded regions of optical
flow. To avoid deteriorating networks due to inaccurate de-
formations over occluded regions, we mask out those pix-
els invisible in the reference image. The occlusion detec-
tion is derived from forward-backward consistency assump-
tion [38]. To further improve the visual quality, we also
add adversarial loss based on conditional PatchGAN [10].
Please refer to the supplementary material for details.
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Table 1. Comparison between different datasets on the baseline network. We train the PPM-UNet using different training sets and
evaluate their performance on the test set. Note that for non-aligned data, we also use CX [25] loss and CoBi [48] loss to tackle with
misalignment. The best and runner up results are highlighted in bold and underlined, respectively.

Training sets Aligned Loss Aligned Ref Original Ref Non Ref
PSNR↑ SSIM↑ LPIPS↓ CD (L / a / b)↑ SIFID (×10−5 )↓ NIQE↓ MUSIQ↑ NRQM↑

Synthetic [3] ✓ Lrec 19.03 0.7808 0.3513 0.67 / 0.40 / 0.27 6.3341 6.4706 34.0738 4.8640

Real Lrec 19.04 0.8187 0.1979 0.93 / 0.46 / 0.47 2.2157 7.5641 53.1251 5.8763
Real LCX 20.85 0.8198 0.1524 0.93 / 0.25 / 0.40 1.1508 9.7242 48.8314 5.9143
Real LCoBi 21.57 0.8319 0.1252 0.93 / 0.30 / 0.41 1.0385 8.9563 50.8363 6.0025

Real AlignFormer Lrec 22.95 0.8581 0.1236 0.94 / 0.48 / 0.47 0.9735 6.2816 56.3314 6.4839

UDC Synthetic + ℒ!"# Real + ℒ!"# Real + ℒ$% Real + ℒ$&'( Ours* Ref
Figure 5. Visual comparison between different datasets on the baseline network. * indicates results of “AlignFormer + PPM-UNet”

4. Experiments

Data Collection and Pre-Processing. To build the
degraded-reference image pairs, we construct a stereo
smartphone array - ZTE Axon 20 with selfie under-display
camera, and iPhone 13 Pro rear camera, which are physi-
cally aligned as much as possible (see supplementary ma-
terial for details). To eliminate the effects of built-in ISPs,
both UDC and Ref images are extracted from raw dump of
data with minimal processing (demosaic and gamma correc-
tion) and converted into sRGB domain. In total, we collect
330 image pairs covering both indoor and outdoor scenes.

Given a pair of images, we first roughly align them us-
ing a homography transformation estimated via RANSAC
algorithm [41] as it is robust to photometric misalignment.
Even after alignment with homography, there still exists
mild misalignment between the image pair. This is because
the geometric transformation is applied globally with the
assumption that all points are located at the same plane in
the world, which does not hold true where contents are at
different depths in the scene. The remaining displacement
in the pair will be further resolved by our AlignFormer.
Implementation. We split 330 image pairs into 274 pairs
for training and 56 for testing. For each pair of full-
resolution images, we crop them into 512 × 512 patches
for training. More example training patches can be found
in the supplement. We initialize all networks with Kaiming
Normal [6] and train them using Adam optimizer [19] with
β1 = 0.9, β2 = 0.999 and θ = 10−8, and the mini-batch
size is set to 8 for all the experiments. λ1, λV GG, and λGAN

are set to 10−2, 1, 5× 10−3, respectively. The learning rate

is decayed by half at 250k and 300k iterations with a multi-
step schedule. We implement our models with PyTorch [28]
and train them using two NVIDIA V100 GPU cards.

4.1. Comparisons

Evaluation Protocol. In the absence of ground truths
with spot-on alignment, it is challenging to evaluate the
quality of generated images. To quantify the performance,
we compute three common metrics (e.g., PSNR, SSIM, and
LPIPS [47]) on the Pseudo GT IP , namely Aligned Ref. We
additionally adopt two sets of evaluations for a comprehen-
sive and accurate comparison. To quantify the realism of
the generated images and how well they capture the domain
information (e.g., color, illuminance, contrast) of the ref-
erence images (Original Ref ), we use two measures: CD -
Color Distribution [10], and SIFID [34] - Single Image FID.
Specifically, color distribution is to calculate the histogram
intersection of marginal color distributions between our re-
sults and reference images in Lab color space. SIFID is to
measure the internal statistics of patch distributions of sin-
gle image. In addition, we adopt two non-reference (Non
Ref ) metrics MUSIQ [17], NIQE [26], and NRQM [24] to
supplement the quantitative comparision.
Dataset Comparison. Before benchmarking existing ap-
proaches, we first conduct experiments to compare the per-
formance of our datasets with other synthetic datasets [3].
Specifically, we train the image restoration network, PPM-
UNet, of the same architecture, using several possible com-
binations of different training sets and learning objectives.
Then, we evaluate their performance on the real test sets
and summarize in Table 1. The column “Aligned” indicates
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Table 2. Benchmark of state-of-the-art UDC image restoration methods on real dataset. “*” indicates checkpoint models released by
the original paper. Others are retrained with our dataset. The best and runner up results are highlighted in bold and underlined, respectively.

Method Aligned Ref Original Ref Non Ref
PSNR↑ SSIM↑ LPIPS↓ CD (L / a / b)↑ SIFID (×10−5 )↓ NIQE↓ MUSIQ↑ NRQM↑

DISCNet* [3] 19.25 0.7574 0.3836 0.72 / 0.43 / 0.27 5.6081 6.0847 28.0298 5.9767
BNUDC* [20] 19.42 0.7502 0.3574 0.73 / 0.40 / 0.28 4.9629 6.9921 30.3077 6.5138
MUNIT [8] 20.61 0.8101 0.3258 0.93 / 0.44 / 0.41 3.1513 7.1354 36.2816 5.5094
TSIT [11] 19.09 0.7755 0.2167 0.69 / 0.41 / 0.42 2.1232 4.6044 48.8685 6.6491
AlignFormer + DISCNet [3] 21.66 0.8582 0.1452 0.90 / 0.47 / 0.46 1.1623 6.7404 56.3539 6.0486
AlignFormer + BNUDC [20] 20.43 0.8430 0.1589 0.87 / 0.45 / 0.45 2.4669 6.5180 55.1308 5.9677
AlignFormer + PPM-UNet (Ours) 22.95 0.8581 0.1236 0.94 / 0.48 / 0.47 0.9735 6.2816 56.3314 6.4839

UDC

MUNIT TSIT AlignFormer (Ours)

AlignFormer+DISCNet AlignFormer+BNUDC

AlignFormer+PPM-Unet (Ours) Ref

DISCNet* BNUDC*

Figure 6. Visual comparison of benchmarks and our method. “AlignFormer+” indicates methods trained on pseudo image pairs
generated by AlignFormer. Methods marked with * are pre-trained on synthetic dataset.

whether the image pairs are aligned. The table shows that
models trained on the real dataset (even without any align-
ment) achieve higher performance on our test sets compared
to the synthetic dataset in general, which proves that the
synthetic dataset is not realistic enough to cover real-world
flare images. Due to the considerable domain gap between
synthetic and real data, the model trained on the synthetic
dataset (1st row) significantly deteriorates performance on
the real data, which validates the necessity of capturing
real-world data. Besides, our baseline network trained on
pseudo pairs (last row) demonstrates superior performance
against all other methods. It also achieves the highest PNSR
and SSIM scores when compared with the models trained
using the misaligned UDC-Reference image pairs regard-
less of the use of reconstruction loss, CX loss, and CoBi
loss. The quantitative comparisons suggest that the well-
aligned and high-quality image pairs are indispensable for
the training of UDC image restoration network, which can
be achieved by our AlignFormer. We also show the visual
comparisons in Figure 5. We can see that the model trained
using the synthetic image pairs still cannot produce a satis-
factory result, especially the overall perceptual quality and
regions around the saturation. Moreover, pixel-wise super-
vision on misaligned image pairs (3rd column) incentivizes
blurry results and severe artifacts. Although CX loss and
CoBi loss are devised to alleviate inaccurate alignment, they
fail to produce flare-free images and exhibit a different style
(e.g., brightness) compared to reference images. This stems
from the absence of strong spatial constraints on flare re-
gions and they are usually performed in feature space. In

contrast, our AlignFormer effectively copies the fine details
and textures of the reference image and pastes them back
while maintaining alignment with the UDC image. Such
high-quality and well-aligned image pairs, in turn, leading
to the visually pleasing result when the model is trained us-
ing them, as the “Ours” shown in Figure 5.
Bechmarking State-of-the-art Methods. There exist sev-
eral categories of approaches that could handle this prob-
lem. The direct rival to our method is training models on
synthetic datasets and testing on real data, including DIS-
CNet [3] and BNUDC [20]. Besides the officially released
pre-trained models, we also include these networks trained
with our dataset and training strategy. Image-to-image
translations offer another avenue to solve this task. It re-
mains challenging to build mappings between complex do-
mains using existing style transfer algorithms, and they are
usually dominated by global image distribution and over-
look the detailed local structures (e.g., flare, blur, noise).
We include two representative image translation methods,
MUNIT [8] and TSIT [11] for comparison.

Table 2 summarizes the benchmark. Pre-trained models
(i.e., DISCNet and BNUDC) achieve relatively low PSNR,
SSIM and LPIPS values compared to Aligned Ref, and it
shows poorer performance on CD and SIFID, indicating
domain discrepancy against the reference images. In con-
trast, the same models retrained on our dataset (5th and 6th
row) demonstrate noticeable improvement over these two
sets of metrics. Image translation approaches only capture
statistics over the distribution of the whole dataset, and thus
neglect local details, leading to a performance drop on the
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Table 3. Ablation experiments on AlignFormer. We report PCK (%)↑ with α = 0.01, 0.03, 0.10. Our settings are marked in gray .
(a) Ablation study on alignment method.

Alignment Ref Cai et al. [1] RAFT [39] AlignFormer

α = 0.01 21.77 26.15 56.14 58.75
α = 0.03 62.02 67.02 94.79 95.08
α = 0.10 85.38 79.61 98.74 99.93

(b) Ablation study on optical flow estimator.

Estimator Zero SPyNet [31] PWC-Net [36] RAFT [39]

α = 0.01 9.61 31.31 33.66 58.75
α = 0.03 26.86 57.45 93.22 95.08
α = 0.10 36.30 67.60 98.49 99.93

(c) Ablation study on radius.

Radius 0 1 2

α = 0.01 56.18 58.23 58.75
α = 0.03 94.97 95.07 95.08
α = 0.10 98.71 98.72 99.93

UDC Cai et al. RAFT TTSR AlignFormer

Figure 7. Ablation study on alignment method.

test set. The PPM-UNet trained with image pairs generated
from AlignFormer achieves comparable or the best perfor-
mance on all sets of measurements. These results show the
effectiveness of our AlignFormer and PPM-UNet.

Figure 6 qualitatively compares the benchmarks in
Table 2. All pre-models fail to suppress flare and
blur, and they cannot restore plausible color and con-
trast. On the other hand, the models trained with our
datasets show better-restored results. The results of
“AlignFormer+DISCNet” and “AlignFormer+BNUDC” ac-
curately remove flare. However, the result of “Align-
Former+BNUDC” suffers from regional inconsistency (See
yellow arrow). Image translation approaches cannot accu-
rately recover the light source regions, and produce consid-
erable noise and artifacts. Among these benchmarks, our
results have sharper details with a similar domain style.

4.2. Ablation Study
Effectiveness of Alignment Method. As there is no
ground-truth correspondence, it is non-trivial to quantify
how well the pseudo GT is aligned to the UDC image, espe-
cially when severe domain inconsistency exists. Thus, we
indirectly measure the displacement error with LoFTR [37]
serving as a keypoint matcher. Given a set of matched key-
points for both images, PCK measures the percentage of
correct keypoints transferred to another image, which lie
within a certain radius of the same coordinates (ideally 0
if two images are well-aligned). Please refer to the supple-
mentary material for details. Suppose d is the displacement
of a pair of matched keypoint, the keypoint pair is correctly
aligned when d < α×max(H,W ), where α is the thresh-
old and H , W represent the height and width of the image.
Table 3a shows the accuracy of alignment among warping-
based methods (RAFT [39], Cai et al. [1]). As presented,
our AlignFormer more accurately align to the correspond-
ing UDC images than the compared methods.

Besides visualizing the results of warping-based meth-
ods, we also include the result of TTSR [46] as reference in
Figure 7. Flow-based alignment yields distorted structures,
while Cai et al. [1] introduces illuminance change and blur.

Table 4. Ablation experiments on DAM and PPM.
(a) Ablation study on DAM.

PCK (%)↑ w/o DAM w/ DAM

α = 0.01 56.15 58.75
α = 0.03 94.70 95.08
α = 0.10 98.66 99.93

(b) Ablation study on PPM.

w/o PPM w/ PPM

PSNR↑ 22.68 22.95
SSIM↑ 0.8670 0.8581
LPIPS↓ 0.1328 0.1236

TTSR cannot recover high-quality details around the light
region. Our method can alleviate spatial misalignment well.
Optical Flow Guidance. We incorporate three pre-trained
optical flow estimators: SPyNet [31], PWC-Net [36], and
RAFT [39] into our AlignFormer. The results in Table 3b
show that the performance can be improved with better
optical flow estimation. The model with higher accuracy
(RAFT) exhibits less displacement on the resulting image.
Removing flow guidance, denoted as Zero, remarkably de-
teriorates the performance.
Radius of Local Grid. As shown in Table 3c, we change
the radius r, which specifies the size of the local grid used
to search neighboring samples in the flow-guided sampler.
When the radius is 0, the feature is retrieved at one single
point given by the flow offset, which can be regarded as a
warping strategy in the feature space. It can be observed
that even with a radius 0, we can still get rough information
from the optical flow.
Effectiveness of DAM. Table 4a shows that the domain
alignment module drives more accurate alignment for sub-
sequent GAM and facilitates more robust attention com-
pared to that without DAM.
Effectiveness of PPM. The PPM layers propagate global
prior into the network and stabilize training and suppress
artifacts in UDC image restoration. In Table 4b, we remove
Pyramid Pooling Module (w/o PPM) and the performance
drops noticeably.

5. Conclusions

We have presented AlignFormer for generating high-
quality and well-aligned pseudo UDC pairs. The key in-
sight of our pipeline is to exploit the pixel correspondence
by both semantic and geometric cues embedded into a
Transformer-based structure. Apart from the novel designs,
we also contribute a new dataset to support UDC image
restoration networks training, a step towards solving UDC
image restoration in the real world.
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