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Abstract

Manipulated videos often contain subtle inconsistencies
between their visual and audio signals. We propose a video
forensics method, based on anomaly detection, that can
identify these inconsistencies, and that can be trained solely
using real, unlabeled data. We train an autoregressive model
to generate sequences of audio-visual features, using feature
sets that capture the temporal synchronization between video
frames and sound. At test time, we then flag videos that the
model assigns low probability. Despite being trained entirely
on real videos, our model obtains strong performance on the
task of detecting manipulated speech videos. Project site:
https://cfeng16.github.io/audio-visual-forensics.

1. Introduction

Supervised learning underlies today’s most successful
methods for image and video forensics. However, the diffi-
culty of collecting large, labeled datasets that fully capture
all of the possible manipulations that one might encounter
in the wild places significant limitations on this approach. A
longstanding goal of the forensics community has been to
design methods that, instead, learn to detect manipulations
using cues discovered by analyzing large amounts of real
data through self-supervision [27, 47].

We propose a method that identifies manipulated video
through anomaly detection. Our model learns how audio
and visual data temporally co-occur by training on large
amounts of real, unlabeled video. At test time, we can then
flag videos that our model assigns low probability, such as
those whose video and audio streams are inconsistent.

One might expect that this problem could be posed as
simply detecting out-of-sync examples, such as by finding
cases in which a speaker’s mouth does not open precisely at
the onset of a spoken word. Unfortunately, videos in the wild
are often “naturally” misaligned due to errors in encoding or
recording, such as by having a single, consistent shift by a
few frames [2, 23].

Instead, we pose the problem as detecting anomalies in
what we call synchronization features: audio-visual features
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Figure 1. Audio-visual anomaly detection. We identify fake
videos by finding anomalies in their audio-visual features, using
generative models trained entirely on real videos. In one variation
of our model (shown here), we use the time delay between the two
modalities as our feature set, i.e., temporal misalignment between
each video frame and the audio stream. We learn the distribution
of these sequences, then flag sequences with low probability.

that are designed to convey the temporal alignment between
vision and sound. We evaluate several feature sets, each
extracted from a model that has been trained to temporally
align audio and visual streams of a video [18, 23, 78]. In
Figure 1, we show one such feature set: the amount of
time that each video frame appears to be temporally offset
from its corresponding sound. To detect anomalies, we fit
an autoregressive generative model [84, 99] to sequences
of synchronization features extracted from real videos, and
identify low probability examples.

A key advantage of our formulation is that it does not
require any manipulated examples for training. It also does
not require the speakers in the test set to already be present
in the training set. This is in contrast to previous audio-
visual forensics approaches, which either require finetuning
on datasets of manipulated video [40], or which are based
on verifying that the speaker’s voice matches previously
observed examples [25].
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We evaluate our model on videos that have manipulated
a person’s speech and face, using datasets of lip-synced and
audio-driven face reenactment videos, some of which are
also manipulated by faceswap techniques. Our model obtains
strong performance on the FakeAVCeleb [52] and KoDF [61]
datasets, despite the fact that it is trained entirely on real
examples obtained from other video datasets. Our model
generalizes to other spoken languages without retraining and
obtains robustness to a variety of postprocessing operations,
such as compression and blurring. We show through our
experiments that:
• Video forensics can be posed as an audio-visual anomaly

detection problem.
• Synchronization features convey information about video

manipulations.
• Our model can successfully detect fake videos, while train-

ing solely on real videos.
• Our model generalizes to many types of image postpro-

cessing operations and to speech videos from spoken lan-
guages not observed during training.

2. Related Work
Audio-visual forensics. In early work, Malik and
Farid [71] detected audio manipulations by finding incon-
sistencies in reverberation. Recent work has focused on de-
tecting manipulated speech videos using audio-visual incon-
sistencies. Several approaches have directly trained audio-
visual networks through supervised learning, using labels
indicating whether a video is manipulated [20,73]. A variety
of methods have recently used audio-visual self-supervision
for pretraining supervised models, which are finetuned with
“real or fake” labels. Zeng et al. [105] used local and global
contrastive learning methods to learn video features. Halias-
sos et al. [40] jointly solved a negative-less contrastive learn-
ing problem [38] and a forensics task. Other work [41]
pretrains using lip-reading data. Zhou and Lim [112] used
audio-visual synchronization signal implicitly, and proposed
a dataset for audio-visual deepfake detection1. In contrast
to these methods, our approach is trained entirely using real
data and does not require any labels or examples of fake
videos. Other work has used speaker verification [25] and
phoneme-viseme mismatches [7] to detect fake videos and
it also detects face swap manipulations, which preserve the
synchronization between modalities. In contrast, our ap-
proach detects misaligned images and sounds and does not
require that examples from the speaker be present in the
training set.

Audio-visual representation learning. A variety of meth-
ods have been proposed to learn audio-visual representa-
tion from videos via self-supervision. Researchers have
leveraged the natural semantic correspondence in the videos

1Their dataset is not publicly available.

between frames and audio tracks [10, 75, 105] to learn multi-
modal features and applied them to downstream tasks such
as sound localization [9, 45, 74]. Other work studies tem-
poral synchronization between audio and visual signals
to learn audio-visual features [23, 58, 78], which can be
used for active speaker detection [8, 57, 95], source sepa-
ration [36, 70, 110], lip reading [5, 69, 72] and so on. Our
method uses the off-the-shelf audio-visual synchronization
model to perform anomaly detection.

Visual face forensics. A major focus of the forensics field
has been on the problem of detecting manipulated videos of
human faces. In recent years, a variety of visual face manip-
ulation datasets are proposed, such as FaceForensics++ [87],
VideoForensicsHQ [34] and FFIW10K [111]. Meanwhile,
many methods are proposed to detect synthetic contents to
fight against their potential threats. Some work [12, 39, 63]
has proposed to use hand-crafted features to capture incon-
sistent visual or JPEG artifacts. Other work has proposed to
use deep learning to inspect specific artifacts, such as blend-
ing [62], frequency domain [31, 35, 83], or texture [67]. A
variety of methods have studied the generalization between
detection classifiers [16, 100].

Anomaly detection. A variety of methods have learned
a distribution, then flagged unusual examples. These ex-
amples are often considered anomalies [66, 91, 104, 113] or
outliers [81, 89], and are used as part of open-set recog-
nition [56, 106]. We formulate video forensics as the
task of detecting anomalies, using a feature set that con-
veys information that would be hard for a forger to cre-
ate. There have been a variety of methods proposed
for learning this distribution, such as GAN discrimina-
tors [37,56,66,81,89,91,104,113], flow-based models [106],
and autoregressive models [93]. Similarly, our model is
based on an autoregressive generative model [11, 84], since
they have achieved strong performance at modeling com-
plex distributions. Other work addresses goals similar to
anomaly detection by creating methods that model uncer-
tainty [64] or that leverage outlier exposure [30, 44, 88].
Some work [13, 26, 28, 47, 50, 53, 79] has used special-
purpose anomaly detection methods for image/video foren-
sics. Other work [33, 46, 101, 108] uses supervised learning
to find anomalous patterns. In contrast, our method builds
the likelihood function entirely on real videos and views
low-probability examples as fake.

3. Method
We formulate the problem of detecting manipulated

videos as an anomaly detection problem. We model the
distribution of audio-visual examples, then flag examples
that have low probability. If we were to fit a model on the
raw data, then this would be a very challenging learning
task. Instead, we learn the distribution over a feature set that
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(a) Synchronization feature extraction (b) Anomaly detection
Figure 2. Audio-visual anomaly detection model. (a) We extract a feature set from an audio-visual synchronization network: the number
of frames of delay between video frames and sound, the distribution over delays at each frame, and feature activations from the audio and
visual subnetworks. (b) We train an autoregressive Transformer model to assign probabilities to synchronization features. At test time, we
flag low probability examples.

conveys subtle properties that are unlikely to be accurately
captured in manipulated video.

3.1. Estimating audio-visual synchronization

We obtain our feautres from a network that performs
audio-visual synchronization [18, 23, 24, 78]. We use the
model of Chen et al. [18]. We learn a function ϕ(Vi, Aj)
that indicates how likely video clip Vi temporally co-occurs
with audio clip Aj . We estimate the synchronization score
S(i, j) of all audio-visual pairs in a temporal window:

S(i, j) =
exp (ϕ(Vi, Aj))∑i+τ

k=i−τ exp (ϕ(Vi, Ak))
, (1)

where τ is maximum time difference between two streams,
and ϕ(Vi, Aj) = h (gv(Vi), ga(Aj)) is calculated using late
fusion by a visual encoder gv, audio encoder ga and the
fusion module h. We also interpret S(i, j) as synchroniza-
tion probability. We maximize the synchronization of true
audio-visual pairs (Vi, Ai) using the InfoNCE loss [77]:

Lsync = − 1

T

T∑
i=1

logS(i, i), (2)

for a video of length T . We provide details about the archi-
tecture and training procedure in the supplement.

After training, we can use the learned model to obtain a
feature set for anomaly detection. For example, we can use
the rows of S, which provide a probability distribution over
possible alignments between video clips and audio clips.

3.2. Audio-visual anomaly detection

We use our learned model to obtain a feature set for
anomaly detection. We learn the distribution of these features

on a training set of real videos. Then at test time, videos
with low probability will be flagged as potential fakes. We
now explore two key design decisions that go into such a
system: what feature set to use, and how the distribution is
learned.

Given features for each frame, we learn a distribution
pθ(x1,x2, . . . ,xN ). We generally use autoregressive mod-
els to learn this distribution, given their success in modeling
complex distributions [14,103]. These models take the form:

pθ(x1,x2, · · · ,xN ) =

N−1∏
i=0

pθ(xi+1|x1, · · · ,xi). (3)

We train a model x̂i+1 = fθ(x1,x2, . . . ,xi) that estimates
the features of the next frame, given all of the features from
the previous frames. Maximizing the log probability can be
posed as minimizing a per-frame loss, L:

L =

N∑
i=1

L(x̂i,xi). (4)

We now describe different formulations of the loss func-
tion L, the feature representation xi. In each case, we imple-
ment fθ as a Transformer [99].

Discrete time delays. We first consider a simple model
that uses discrete time delay as our features, following the
success of autoregressive models for fitting discrete data [32,
86, 97]. Inspired by work on time delay estimation [19, 55],
for every video frame, we estimate how far ahead (or behind)
it appears to be from the audio signal. For each frame, we
set xi to be the time delay with the highest probability, i.e.,
xi = argmaxj(S(i, j)). We then set L to be the cross
entropy loss between the ground truth and predicted time
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delay. This amounts to solving a categorization problem
with 2τ + 1 possible labels for each frame.

Distributions over delays. While discrete time delays are
straightforward to represent in the model, they discard im-
portant information, such as when there is ambiguity in the
delay. We, therefore, propose a model that directly predicts
the entries of the time delay distribution. We set the features
xi to be the rows of S, i.e. the probability of each possible
delay, and use cross entropy loss:

L(x̂i,xi) = −
2τ+1∑

j

xi,j log(x̂i,j). (5)

We constrain the predictions made by our model fθ to
sum to 1 by applying a softmax.

Audio-visual network activations. The feature activations
within the audio-visual synchronization network convey in-
formation about the time delay. We, therefore, ask whether
these activations can be directly used as features for anomaly
detection. We concatenate the representations of the visual
and audio subnetworks, gv and ga. To provide a straight-
forward comparison with the time delay distribution model,
we reduce the dimensionality of the features by projecting
them onto the top 2τ + 1 principal components, following
other work in autoregressive models of features [85]. We
use squared distance as our loss: L (x̂i,xi) = ∥xi − x̂i∥2.

4. Results
We evaluate the different variations of our model on a

variety of video forensics tasks.

4.1. Implementation details

Synchronization model. Following Chen et al. [18], we
use ResNet-18 2D+3D [42, 43] as the visual encoder, using
5 frames (25 fps) as input. The audio encoder uses VGG-
M [17] and extracts features from 0.2s audio clips (16kHz).
We fuse audio and visual data using a Transformer that has 3
standard Transformer encoder blocks [99], 4 attention heads,
and 512 channels. We train using the cropped faces provided
by each dataset. Please see the supplement for details.

Anomaly detection model. We use a decoder-only autore-
gressive Transformer [32, 65, 84] to learn the distribution
over synchronization features. We use 2 decoder blocks [99],
each with 16 attention heads and 256 channels. For models
that use time delay or continuous distribution, we set the
maximum delay to be τ = 15 frames, resulting in the distri-
bution Si ∈ R31 for each video frame. We use sequences of
length N = 50 from 2.0s video.

Hyperparameters. We resample videos to 25 fps and au-
dios to 16kHz. We represent audio segments as mel spectro-
grams of size 21×80 by short-time Fourier transform (STFT)

with 80 mel filter banks, a hop length of 160, and a window
size of 320. Please see more details in the supp.

4.2. Dataset

We train our model on real, unlabeled speech video, and
evaluate it on forensics datasets.

Training datasets. We train our models on Lip Reading
Sentences 2 (LRS2, 97k videos) [3] and Lip Reading Sen-
tences 3 (LRS3, 120k videos) [4]. The videos in each contain
tightly cropped face tracks. We divide each dataset into 3
splits and train the audio-visual synchronization model and
the autoregressive model on different splits.

Evaluation datasets. We evaluate on two video foren-
sics datasets, spanning several different types of manipula-
tions that change the speech and face of a human speaker.
FakeAVCeleb [52], which is derived from VoxCeleb2 [21].
This dataset contains 500 real videos and 19,500 fake
videos manipulated by Faceswap [59], FSGAN [76], and
Wav2Lip [82], and fake sounds that are generated by
SV2TTS [48]. The examples in the dataset contain different
combinations of these manipulations. We use the dataset’s
provided face crops. We sample 2400 videos (400 real videos
and 2000 fake videos) as train/val splits and 600 videos (100
real videos and 500 fake videos) as test split. We note that
our method does not use any videos from train/val splits,
since it is trained from another dataset (LRS2 or LRS3).
Second, we evaluate on KoDF [61], a large-scale Korean-
language deepfake detection dataset. It contains 62,166
real videos and 175,776 fake videos, where fake videos are
generated by 6 synthesized methods: FaceSwap [1], FS-
GAN [76], DeepFaceLab [80], FOMM [92], ATFHP [102]
and Wav2Lip [82]. We extract faces by using face detec-
tion [107] and alignment [15].

4.3. Evaluation methods

Following common practice [16, 40, 41, 52, 61, 62, 83, 87,
100, 109], we evaluate using average precision (AP) and
AUC. These evaluation metrics are widely used for cross-
dataset generalization and unsupervised models since they
avoid the need to threshold the predictions. We compare our
approach to both supervised and self-supervised methods at
the video level. Unless otherwise stated, we use time delay
distributions as our feature set (Sec. 3.2).

Supervised methods. For supervised methods, we re-
train several state-of-the-art detectors on FakeAVCeleb [52]:
1) Xception [87]: a popular baseline for forensics detec-
tion; 2) LipForensics [41]: a detector is built on high-level
semantic embeddings of mouth and targets irregularities in
mouth movements; 3) AD DFD [112]: a multimodal detector
with audio and video branches, utilizes audio-visual synchro-
nization signal implicitly for detection; 4) FTCN [109]: a
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Pretrained
dataset

Category

Method Modality RVFA FVRA-WL FVFA-FS FVFA-GAN FVFA-WL AVG-FV

AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC

Su
pe

rv
is

ed

Xception [87] V ImageNet [29] – – 88.2 88.3 92.3 93.5 67.6 68.5 91.0 91.0 84.8 85.3
LipForensics [41] V LRW [22] – – 97.8 97.7 99.9 99.9 61.5 68.1 98.6 98.7 89.4 91.1
AD DFD [112] AV Kinetics [51] 74.9 73.3 97.0 97.4 99.6 99.7 58.4 55.4 100. 100. 88.8 88.1
FTCN [109] V – – – 96.2 97.4 100. 100. 77.4 78.3 95.6 96.5 92.3 93.1
RealForensics [40] V LRW [22] – – 88.8 93.0 99.3 99.1 99.8 99.8 93.4 96.7 95.3 97.1

U
ns

up
er

vi
se

d AVBYOL [38, 40] AV LRW [22] 50.0 50.0 73.4 61.3 88.7 80.8 60.2 33.8 73.2 61.0 73.9 59.2
VQ-GAN [32] V LRS2 [3] – – 50.3 49.3 57.5 53.0 49.6 48.0 62.4 56.9 55.0 51.8

Ours AV LRS2 [3] 62.4 71.6 93.6 93.7 95.3 95.8 94.1 94.3 93.8 94.1 94.2 94.5
Ours AV LRS3 [4] 70.7 80.5 91.1 93.0 91.0 92.3 91.6 92.7 91.4 93.1 91.3 92.8

Table 1. Manipulation detection on FakeAVCeleb. We report AP scores (%) and AUC scores (%), following the evaluation protocol of
Haliassos et al. [41], in which supervised methods are evaluated on unseen manipulation types (unsupervised methods are not trained with
labels and fake examples). We report results with combinations of real/fake video/audio, using different manipulation algorithms. We report
the average performance over four fake video (FV) categories in AVG-FV. We retrained all supervised models on FakeAVCeleb [52].

video forensics detector leverages temporal incoherence to
boost generalization capability; 5) RealForensics [40]: it
first pretrains the network by audio-visual BYOL [38] frame-
work and then finetunes the pretrained model on forensics
datasets by multi-task learning to obtain robust and general
face forgery detection.

Self-supervised methods. Since we are not aware of any
existing methods that consider self-supervised speech video
forensics, we adapt two existing methods to the task. First,
we consider an audio-visual contrastive learning model,
which we call AVBYOL, that learns to determine whether
the visual and audio streams of a video do (or do not) match,
an approach that has been used as a part of other audio-visual
forensics models [25, 40]. We adapt the model of Haliassos
et al. [40], which uses BYOL [38] to learn a joint audio-
visual embedding for pretraining. Instead of pretraining,
we directly use the model’s audio-visual similarity score
to flag fake examples. Second, we use a generative model
VQGAN [32], trained on LRS2 [3], for anomaly detection.
VQGAN converts an image into a sequence of discrete codes,
then uses an autoregressive Transformer to learn the distri-
bution of codes. We use the code’s log likelihood, averaged
over each video frame, for anomaly detection.

4.4. Evaluation

In real-world scenarios, the deployed detectors are ex-
pected to recognize fake videos manipulated by unseen
techniques. Thus, following the standard procedure used
in [40, 41, 109, 112], we conduct the experiment to eval-
uate the cross-manipulation generalization ability of our
model on the FakeAVCeleb dataset [52] which videos are
manipulated in various ways. Since our approach and other
self-supervised baselines learn from real, unmanipulated
videos and perform zero-shot fake video detection, all the
fake videos during evaluation are considered as manipulated
by unseen methods.

We split FakeAVCeleb dataset [52] into five categories
based on the manipulation methods and manipulated modal-
ities: 1) RVFA: real video with fake audio by SV2TTS [48];
2) FVRA-WL: real audio with fake video by Wav2Lip [82];
3) FVFA-WL: fake video by Wav2Lip [82], and fake audio
by SV2TTS [48]; 4) FVFA-FS: fake video by Faceswap [59]
and Wav2Lip [82], and fake audio by SV2TTS [48];
5) FVFA-GAN: fake video by FaceswapGAN [76] and
Wav2Lip [82], and fake audio by SV2TTS [48]. For su-
pervised methods, we hold out the evaluated category and
train the models on the remaining categories. Note that some
approaches are only able to detect the manipulation on a
certain modality, we do not report their performance on the
categories with the manipulation only on the other modalities
(since they can not differentiate real and fake videos).

We show our results in Tab. 1. Our method substantially
outperforms both self-supervised methods AVBYOL [38,40]
and VQGAN [32] on each category by a large margin. More
importantly, our method works on par with or outperforms
some supervised methods on certain categories, especially
FVFA-GAN, even though our method does not use any la-
beled supervision or fake examples. Moreover, our method
has quite consistent performances and it can achieve AP over
90% in the most of categories. While Xception [87], Lip-
Forensics [41], AD DFD [112] and FTCN [109] work well
on 75% of the settings, there are settings where performance
collapses to near-chance (e.g., AD DFD [112] on FVFA-
GAN). Interestingly, two self-supervised baselines struggle
to detect fake videos, perhaps because both models do not
necessarily capture the subtle information that would be
needed to detect manipulations. In addition, VQGAN [32]
compresses the visual signal using a codebook, which might
drop the artifact clues and harm the detection performance.
Moreover, our model trained on LRS2 [3] works on par with
the one trained on LRS3 [4], indicating that our method’s
performance is not tied to a single training set.
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Method Modality KoDF [61]

AP AUC

Supervised
(transfer)

Xception [87] V 76.9 77.7
LipForensics [41] V 89.5 86.6
AD DFD [112] AV 79.6 82.1
FTCN [109] V 66.8 68.1
RealForensics [40] V 95.7 93.6

Unsupervised
AVBYOL [38, 40] AV 74.9 78.9
VQ-GAN [32] V 46.8 45.5

Ours AV 87.6 86.9

Table 2. Generalization to Korean speech. AP scores (%) and
AUC scores (%) are reported on KoDF dataset [61]. Supervised
methods are trained on FakeAVCeleb dataset [52]. Ours is trained
on LRS2 [3]. Best results are in bold.

Cross-dataset generalization. We also evaluate the gen-
eralization capability of our model by evaluating it on the
KoDF dataset [61], following [40, 41, 109, 112]. We focus
on the audio-driven synthesis examples in the dataset, where
videos are manipulated by ATFHP [102] or Wav2Lip [82],
and randomly selected 100 real and 100 fake videos. We
train the supervised models on FakeAVCeleb [52] to evaluate
their generalization ability. Many of these training videos
share the same technique used in KoDF for synthesis [82].
As the results are shown in Tab. 2, our approach obtains a
comparable performance to many supervised methods. Al-
though our system is trained on the English speech datasets,
it still generalizes to KoDF [61] dataset of Korean speech,
perhaps because it learns low-level lip motion cues that are
broadly useful. We provide more results in the supplement.

Qualitative results. We visualize the ground truth and
predicted time delay distributions generated by our autore-
gressive continuous time delay model (Sec. 3.2) in Fig. 3. We
use the four main categories from FakeAVCeleb dataset [52].
For each one, we display a heat map indicating the predicted
time delay distribution, using a model that obtains the ground
truth distributions of the previous frames as input. We also
plot the cumulative prediction loss (Eq. 4) over time. From
Fig. 3, we can see that our autoregressive model accurately
predicts the ground truth for real video, which results in a
lower score. For fake videos, we can find clear differences
between ground truth and predicted time delay distribution,
leading to higher prediction loss.

4.5. Robustness to unseen perturbations

When the fake video is redistributed, it may undergo many
types of postprocessing that result in corruption, making de-
tection more difficult. Thus, it is important for forensics
models to be robust to the types of postprocessing operations
they may encounter in the wild. Following [40, 41, 109], we
use the set of visual perturbations proposed in [49]: 1) Color
saturation change; 2) Block-wise distortion; 3) Color con-

Figure 3. Time delay distribution predictions for real vs. fake
examples. We visualize the time delay distributions from the syn-
chronization model and predicted results generated by the autore-
gressive model for four random samples from different categories.
Synchronization probabilities are in a range from 0 1. We
show the predictions of the autoregressive model when feeding it
ground truth observations of the previous timesteps. We show cu-
mulative prediction error (indicating the probability of being fake)
for each sample over time steps in the last row.

trast change; 4) Gaussian blur; 5) Gaussian noise; 6) JPEG
compression; 7) Video compression rate change. We set the
intensity levels from 0 to 5 for each perturbation.

We compare our model with four supervised methods
XceptionNet [87] FTCN [112], AD DFD [112] and Real-
Forensics [40]. As shown in Fig. 4, our self-supervised
model is overall more robust to unseen visual perturbations
on average compared with these supervised methods, with
the exception of RealForensics [40]. This is also true when
we consider “worst case” performance, by taking the mini-
mum performance over all types of augmentation of a given
intensity level. Interestingly, we obtain this performance
even though our model is trained in a very different way
from other works, suggesting that the feature set continues
to convey useful information to the anomaly detection model,
even in the presence of significant corruption.

4.6. Feature set analysis

We evaluate the effectiveness of different feature sets used
by our anomaly detection model. As described in Sec. 3.2,
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Figure 4. Robustness to unseen perturbations. AUC scores (%) of different detectors as a function of perturbation intensities. There are 6
intensity levels in total from [49]. “Average” represents the average over 7 perturbations under each intensity. “Rival” means we pick the
worst performance across 7 perturbations under each intensity.

we start with discrete time delays as our feature represen-
tation and optimize the model with the cross entropy loss.
Then, we use continuous time delay distributions as repre-
sentations instead, where we optimize models with different
objective functions: 1) Soft CE: we use the time delay distri-
bution as the target (akin to a “soft” label) and use the cross
entropy loss (Sec. 3.2); 2) CE: we map each distribution into
one-hot encoding as the target by using argmax and employ
the cross entropy loss; 3) BCE: we use the distribution as
the target while treating each synchronization score S(i, j)
(Sec. 3.1) within the same time step independently. We use
the sigmoid function and binary cross entropy loss to train
the model. We also use our network’s feature activations
as in Sec. 3.2: 1) audio-visual feature activations (activation-
AV); 2) visual-only feature activations (activation-V). Be-
sides, we consider using a combination of different feature
sets where we concatenate continuous time delay distribu-
tions and audio-visual feature activations (Act.-AV+dist.)
as a new feature. Similar to audio-visual feature activations
as in Sec. 3.2, we use squared distance as the loss for the
concatenation of these two types of feature sets.

We also compare with a simple model based on Naive
Bayes and discrete time delays. This model assumes that
each frame’s time delay is independent, and obtains a proba-
bility for the entire sequence by multiplying the probability
of each frame’s time delay. This amounts to simply detecting
large misalignments since in practice the Naive Bayes model
will assign probability solely based on the magnitude of each
delay.

Finally, we consider a version of the model that autore-
gressively predicts the entire distribution of time delays,
inspired by autoregressive models, such as PixelCNN [96]
that generate images in a raster scan order. We autoregres-
sively predict each element of the 2D matrix Ŝ(i, j), where

Model Feature set L AVG-ALL AVG-FV

AP AUC AP AUC

Bayes - - 73.1 85.1 72.4 86.0

Ours

discrete delay CE 80.8 86.5 80.0 86.6
distribution CE 84.8 87.9 90.3 92.2
distribution BCE 78.6 83.4 80.5 84.8
distribution Soft CE 87.8 90.0 94.2 94.5
activation-AV MSE 86.5 87.1 91.5 91.9
Act.-AV+dist. MSE 85.5 87.0 90.0 91.3
activation-V MSE – – 77.6 85.9
discrete prob. – 83.4 86.9 88.6 91.1

Table 3. Feature set analysis. AP (%) and AUC (%) are reported
on FakeAVCeleb [52] when using different feature sets. Best results
are in bold. AVG-ALL means the average over all categories. AVG-
FV represents the average over four fake video categories.

Ŝ(i, j) is created by vector quantizing the entries of the syn-
chronization probability S(i, j) using k-means (see supp.
for details).

Analysis. We evaluate each variant on FakeAVCeleb [52]
and report results in Tab. 3. These results suggest that
all formulations achieve performance significantly better
than chance, indicating that these feature sets are useful
for anomaly detection. As in Tab. 3, the time delay distri-
bution model outperforms the discrete time delay model,
suggesting that there is important information conveyed in
the probability of unlikely delays. The autoregressive model
that uses distribution as input and soft labels (soft CE) per-
forms best since it forces the output prediction to match
the distribution from the synchronization model. Interest-
ingly, the model that uses audio-visual feature activations
obtains performance close to that of the soft CE model, indi-
cating that the networks’ audio-visual features convey useful
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Synchronization
dataset

Auto-regression
dataset

AVG

AP AUC

LRS2 [3]
LRS2 [3] 87.8 90.0
LRS3 [4] 85.0 89.6
LRS2 [3]+LRS3 [4] 85.1 89.9

LRS3 [4]
LRS2 [3] 86.6 89.0
LRS3 [4] 87.2 90.3
LRS2 [3]+LRS3 [4] 87.2 90.6

Table 4. Dataset ablation. AP scores (%) and AUC scores (%) are
reported on FakeAVCeleb [52] dataset by using different datasets to
train synchronization model or atuoregressive model. Best results
are in bold.

information. Finally, the multimodal activation-AV model
significantly outperforms the visual-only activation-V model,
suggesting that having access to both modalities is useful for
our anomaly detection model.

4.7. Ablation study

Different training dataset. We ask how the choice of
dataset affects the quality of the model. To test this, we train
our synchronization and autoregressive models on different
datasets to analyze the generalization abilities of each compo-
nent, i.e., training the synchronization model on LRS2/LRS3
and training the autoregressive model on LRS3/LRS2 or
LRS2+LRS3 with the same hyperparameters. As shown
in Tab. 4, there is no significant performance change when
we train these two components on different combinations of
datasets, including when they are trained on the same dataset.
This suggests that the distribution of time delay predictions
may be stable between these speech video datasets.

Influence of sequence length. To explore the influence of
input sequence length for the autoregressive model, we sam-
ple the same amount of training videos for sequence lengths
N of 10, 20, 30, 40, 50, and 60, and keep other hyperpa-
rameters the same. We test these models on FakeAVCeleb
dataset [52]. Fig. 5 shows that as the sequence length in-
creases, the performance increases with it.

Effect of time delay distribution maximum offset. We
also study how the length of time delay distribution would
affect the performance of the autoregressive model with dis-
tribution over delays. We experiment with maximum offset
τ ∈ {5, 10, 15, 20, 25} resulting in the delay distribution
length of {11, 21, 31, 41, 51}. We test these models on the
FakeAVCeleb dataset [52]. Fig. 5 shows that as distribution
length increases, the performance first increases, after which
point results plateau or slightly decrease. This may be due
to the fact that when considering larger ranges of offsets, the
distribution spreads over a large number of unlikely possi-
bilities, making important information less apparent after
normalization.

10 20 30 40 50 60
Sequence length

74
77
80
83
86
89
92

Av
er

ag
e

AP
AUC

11 21 31 41 51
Distribution length

80
82
84
86
88
90
92

Figure 5. Hyperparameter ablation. We evaluate with different in-
put sequence lengths for our autoregressive model on FakeAVCeleb
(left), and study the effect of the time delay distribution’s maximum
temporal offset (right).

5. Conclusion

We have proposed a method for detecting video manip-
ulation by self-supervised anomaly detection. To do this,
we create novel feature sets that convey audio-visual syn-
chronization. We then show that fake videos can be detected
by flagging examples with unlikely sequences of these fea-
tures, according to a learned distribution. Our model obtains
strong performance on the FakeAVCeleb and KoDF datasets,
despite the fact that it was trained only on real video. It also
obtains robustness to visual postprocessing operations and to
videos containing other spoken languages. We see our work
as opening in two directions. The first is in posing forensics
as an anomaly detection problem with a self-supervised fea-
ture set. While we have proposed one such model, based
on autoregressive sequence models, the field of anomaly de-
tection offers many possible future approaches. The second
direction is in developing new feature sets that are well-
suited to forensics problems, beyond the synchronization
features used in this work.

Limitations and Broader Impacts. Our work provides
methods that can potentially be applied to detecting mali-
cious video manipulations and disinformation. While we
have shown that our model is capable of detecting several
types of fake video, there may be other techniques that our
model fails to detect. In particular, due to the design of
our use of synchronization-based features, our model is not
well suited to detecting manipulations that leave the synchro-
nization between motion and sound relatively consistent,
such as those that change a speaker’s appearance without
significantly changing the motion of their mouth.
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