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Abstract

Current differentiable renderers provide light transport
gradients with respect to arbitrary scene parameters. How-
ever, the mere existence of these gradients does not guaran-
tee useful update steps in an optimization. Instead, inverse
rendering might not converge due to inherent plateaus, i.e.,
regions of zero gradient, in the objective function. We pro-
pose to alleviate this by convolving the high-dimensional
rendering function, that maps scene parameters to im-
ages, with an additional kernel that blurs the parameter
space. We describe two Monte Carlo estimators to compute
plateau-reduced gradients efficiently, i.e., with low vari-
ance, and show that these translate into net-gains in op-
timization error and runtime performance. Our approach
is a straightforward extension to both black-box and dif-
ferentiable renderers and enables optimization of problems
with intricate light transport, such as caustics or global
illumination, that existing differentiable renderers do not
converge on. Our code is at github.com/mfischer-
ucl/prdpt.

1. Introduction
Regressing scene parameters like object position, mate-

rials or lighting from 2D observations is a task of significant
importance in graphics and vision, but also a hard, ill-posed
problem. When all rendering steps are differentiable, we
can derive gradients of the final image w.r.t. the scene pa-
rameters. However, differentiating through the discontinu-
ous rendering operator is not straightforward due to, e.g.,
occlusion. The two main approaches to (differentiable) ren-
dering are path tracing and rasterization.

Physically-based path-tracing solves the rendering equa-
tion by computing a Monte Carlo (MC) estimate for each
pixel. Unfortunately, MC is only compatible with modern
Automatic Differentiation (AD) frameworks for the case of
continuous integrands, e.g., color, but not for spatial deriva-
tives, i.e., gradients w.r.t. an object’s position. To alleviate
this, Li et al. [18] present re-sampling of silhouette edges
and Loubet et al. [23] propose re-parametrizing the inte-
grand, enabling the optimization of primitive- or light posi-

Initial Our MethodReference Path Tracer
Figure 1. Optimization results with a differentiable path tracer (we
use Mitsuba 3 [28]) and our proposed method. The task is to rotate
the coffee cup around its z-axis, so that the handle moves to the
right side. Due to a plateau in the objective function (when the
handle is occluded by the cup), regular methods do not converge.

tions. For rasterization, differentiability is achieved by re-
placing discontinuous edge- and z-tests with hand-crafted
derivatives [17, 21, 22, 34]. The problem here is that raster-
ization, by design, does not capture complex light transport
effects, e.g., global illumination, scattering or caustics.

Importantly, the mere existence of gradients is no guar-
antee that descending along them will make an optimization
converge [25]. There are surprisingly many cases where
they do not lead to a successful optimization, due to a
plateau in the objective function. An example is finding
the orientation of the mug in Fig. 1: As soon as the handle
disappears behind the cup, no infinitesimally small rotation
change will result in a reduced loss. We have hence reached
a plateau in the objective function, i.e., a region of zero gra-
dients. We propose a method to remove these plateaus while
still having complete, complex light transport.

We take inspiration from differentiable rasterization lit-
erature [17, 21, 32, 34], where smoothing techniques are
used to model the influence of faraway triangles to the pixel
at hand. For rasterization, this simple change has two ef-
fects: First, it makes the edge- and z-tests continuous and
hence differentiable, and second, in passing (and, to our
knowledge, much less studied), it also removes plateaus.
In this work, we hence aim to find a way to apply the same
concept to complex light transport. Therefore, instead of
making the somewhat arbitrary choice of a fixed smoothing
function for edge- and depth-tests in differentiable raster-
izers, we path-trace an alternative, smooth version of the
entire Rendering Equation (RE), which we achieve by con-
volving the original RE with a smoothing kernel. This leads
to our proposed method, a lightweight extension to (differ-
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entiable) path tracers that extends the infinitely-dimensional
path integral to the product space of paths and scene param-
eters. The resulting double integral can still be MC-solved
efficiently, in particular with variance reduction techniques
we derive (importance sampling and antithetic sampling).

2. Background
2.1. Rendering equation

According to the RE [14], the pixel P is defined as

P (θ) =

∫
Ω

f(x, θ)dx , (1)

an integral of the scene function f(x, θ), that depends on
scene parameters θ ∈ Θ, over all light paths x ∈ Ω. In
inverse rendering, we want to find the parameters θ∗ that
best explain the pixels Pi in the reference image with

θ∗ = argmin
θ

∑
i

L (Pi(θ)− Pi(θref)) , (2)

where L is the objective function and Pi(θref) are the target
pixels created by the (unknown) parameters θref. Consider
the example setting displayed in Fig. 2, where we are asked
to optimize the 2D position of a circle so that its rendering
matches the reference.

Reference a) b) c)
Figure 2. An example of a plateau in L: starting the optimization
of the circle’s position at a) will converge, whereas b) and c) will
not. In a)-c), we show the reference dotted for convenience.

Let θ0 be the initial circle’s position. In this simple exam-
ple, the optimization will converge if, and only if the circle
overlaps the reference, i.e., setting a) in Fig. 2. The reason
for this is that the gradient then is non-zero (a small change
in θ is directly related to a change in L) and points towards
the reference. However, if there is no overlap between the
initial circle and the reference, as in Fig. 2 b), a gradient-
based optimizer will not be able to recover the true position
θref. This is due to the fact that there exists a plateau in the
objective function (for a rigorous definition, see Jin et al.
[13]). To visualize this, consider a rendering where the cir-
cle is placed in the top left corner, as in Fig. 2 c). The scalar
produced by the objective function is identical for both b)
and c), as L measures the distance in image space. There-
fore, the change in L is zero almost everywhere, leading to
zero gradients and to the circle not moving towards the ref-
erence position. As we will see in Sec. 4, this is surprisingly
common in real applications.

Table 1. Rendering taxonomoy. See Sec. 2.2 and Sec. 2.3.

Rasterizer Path Tracer Ours

Differentiable ✓ ✓ ✓
Light Transport ✕ ✓ ✓
Plateau-reduced ✓ ✕ ✓

2.2. Path tracing
As there is no closed-form solution to Eq. 1, path tracing

uses MC to estimate the integral by sampling the integrand
at random paths xi:

P̂ ≈ 1

N

∑
i

f(xi, θ) (3)

Gradients: We are interested in the partial derivatives of
P with respect to the scene parameters θ, i.e.,

∂P

∂θ
=

∂

∂θ

∫
Ω

f(x, θ)dx =

∫
Ω

∂

∂θ
f(x, θ)dx . (4)

In order to make Eq. 4 compatible with automatic differ-
entiation, Li et al. [18] propose a re-sampling of silhouette
edges and Loubet et al. [23] suggest a re-parametrization of
the integrand. Both approaches allow to MC-estimate the
gradient as

∂̂P

∂θ
≈ 1

N

N∑
i

∂

∂θ
f(xi, θ) . (5)

This is now standard practice in modern differentiable
rendering packages [18, 28, 49, 51, 52], none of which at-
tempt to actively resolve plateaus.

2.3. Rasterization
Rasterization solves a simplified version of the RE,

where for every pixel, the light path length is limited to one.
It is often used in practical applications due to its simplic-
ity and efficiency, but lacks the ability to readily compute
complex light transport phenomena. Instead, rasterization
projects the primitives to screen space and then resolves oc-
clusion. Both steps introduce jump discontinuities that, for
differentiation, require special treatment.
Gradients: In differentiable rasterization, both these
operations therefore are replaced with smooth functions.
Loper and Black [22] approximate the spatial gradients dur-
ing the backward pass by finite differences. Early, Rhodin
et al. [34], often-used Liu et al. [21] and later Petersen et al.
[31] replace the discontinuous functions by soft approxima-
tions, e.g., primitive edges are smoothened by the Sigmoid
function. This results in a soft halfspace test that continu-
ously changes w.r.t. the distance from the triangle edge and
hence leads to a differentiable objective. Chen et al. [4]
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and Laine et al. [16] propose more efficient versions of this,
while Xing et al. [47] use an optimal-transport based loss
function to resolve the problem. However, most differen-
tiable rasterizers make simplifying assumptions, e.g., con-
stant colors, the absence of shadows or reflections, and no
illumination interaction between objects. Our formulation
does not make such assumptions.
Plateaus: Choosing smoothing functions with infinite
support (for instance, the Sigmoid), implicitly resolves the
plateau problem as well. Our method (Sec. 3) draws inspira-
tion from this concept of “differentiating through blurring”.
Shortcomings: Consider again Fig. 2 a), where the circle
continuously influences the rendered image, resulting in a
correct optimization outcome. For rasterizers, it is easy to
construct a case where this does not hold, by imagining the
circle to be the shadow of a sphere that is not seen in the
image itself. The smoothed triangles then do not influence
the rendering (most differentiable rasterizers do not even
implement a shadow test [18, 32]) and can therefore not be
used for gradient computation. Analogue examples can be
constructed for other forms of multi-bounce light transport.

2.4. Other renderers
Other ways to render that are neither path tracing or

rasterization exist, such as differentiable volume rendering
[8, 26, 43] or fitting Neural Networks (NNs) to achieve a
differentiable renderer [9, 27, 35, 37]. Also very specific
forms of light transport, such as shadows, were made differ-
entiable [24]. Finally, some work focuses on differentiable
rendering of special primitives, such as points [11, 48],
spheres [20], signed distance fields [2, 12, 46] or combi-
nations [5, 10]. While some of these methods also blur the
rendering equation and hence reduce plateaus, they remain
limited to simple light transport.

3. Plateau-reduced Gradients
Intuition: As differentiable rasterization (cf. Sec. 2.3)
has established, the blurring of primitive edges is a viable
means for differentiation. But what if there is no “primi-
tive edge” in the first place, as we deal with general light
paths instead of simple triangles that are rasterized onto an
image? The edge of a shadow, for instance, is not optimiz-
able itself, but the result of a combination of light position,
reflection, occlusion, etc. Therefore, to achieve an effect
similar to that of differentiable rasterizers, we would need a
method that blurs the entire light path (instead of just prim-
itive edges) over the parameter space θ. If this method used
a blur kernel with infinite support (e.g., a Gaussian distribu-
tion), the plateau in the objective would vanish, as a small
parameter change in any direction would induce a change
in the objective function.
Example: Let us consider Fig. 3, where we again want
to optimize the cup’s rotation around its z-axis to have the

Mug Rotation

Im
ag

e 
M
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Figure 3. Optimizing the cup’s rotation in the hard (left, blue)
and smooth (right, orange) setting (note the blurred handle). The
image-space loss landscape is displayed on the right: blurring re-
solves the plateau.

handle point to the right, a 1D problem. As we have seen
previously, using an image-based objective function leads
to a plateau when optimizing L in the “hard” setting, i.e.,
without blur (the blue line in the plot). Blurring the cup’s
rotation parameter, on the other hand, leads to θ continu-
ously influencing the value of the objective and therefore
resolves the plateau (orange line in the plot). Naturally, it
is easy to descend along the gradient of the orange curve,
while the gradient is zero on the plateau of the blue curve.

3.1. The Plateau-reduced Rendering Equation
Formulation: We realize our blurring operation as a con-
volution of the rendering equation (Eq. 1) with a blur kernel
κ over the parameter space Θ:

Q(θ) = κ ⋆ P (θ) =

∫
Θ

κ(τ)

∫
Ω

f(x, θ − τ) dxdτ

=

∫
Θ×Ω

κ(τ)f(x, θ − τ) dxdτ . (6)

The kernel κ(τ) could be any symmetric monotonous de-
creasing function. For simplicity, we use a Gaussian here,
but other kernels would be possible as well. The kernel acts
as a weighting function that weights the contribution of pa-
rameters θ that were offset by τ ∈ Θ. This means that,
in addition to integrating all light paths x over Ω, we now
also integrate over all parameter offsets τ in Θ. We do not
convolve across the path space Ω but across the parameter
space θ, e.g., the cup’s rotation in Fig. 3.
Estimation: To estimate the (even higher-dimensional)
integral in Eq. 6, we again make use of an MC estimator

Q̂ ≈ 1

N

N∑
i

κ(τ)f(xi, θ − τi) , (7)

which is a practical approximation of Eq. 6 that can be
solved with standard path tracing, independent of the di-
mensionality of the light transport or the number of opti-
mization dimensions.
Gradient : Analogously to Eq. 5, we can estimate the
gradient of Q through the gradient of its estimator

∂̂Q

∂θ
=

∂

∂θ

1

N

N∑
i=1

κ(τi)f(xi, θ − τi) . (8)

4287



Due to the linearity of differentiation and convolution,
there are two ways of computing Eq. 8: one for having a
differentiable renderer, and one for a renderer that is not
differentiable. We discuss both options next.
Plateau-reduced gradients if P is differentiable: With
access to a differentiable renderer (i.e., access to ∂P/∂θ),
we can rewrite Eq. 8 as

∂̂Q

∂θ
=

1

N

N∑
i=1

κ(τi)
∂P

∂θ
(θ − τi)︸ ︷︷ ︸

Diff. Renderer

. (9)

Therefore, all that that needs to be done is to classically
compute the gradients of a randomly perturbed rendering
and weight them by the blur kernel.
Plateau-reduced gradients if P is not differentiable:
In several situations, we might not have access to a dif-
ferentiable renderer, or a non-differentiable renderer might
have advantages, such as computational efficiency, render-
ing features or compatibility with other infrastructure. Our
derivation also supports this case, as we can rewrite Eq. 8
as

∂̂Q

∂θ
≈ 1

N

N∑
i=1

∂κ

∂θ
(τi)︸ ︷︷ ︸

Diff. Kernel

P (θ − τi)︸ ︷︷ ︸
Renderer

, (10)

which equals sampling a non-differentiable renderer and
weighting the result by the gradient of the blur kernel.
This is possible due to the additional convolution we intro-
duce: prior work [18, 23] must take special care to compute
derivatives (Eq. 5), as in their case, optimizing θ might dis-
continuously change the pixel integral. We circumvent this
problem through the convolution with κ, which ensures that,
in expectation, θ continuously influences the pixel integral.

3.2. Variance Reduction
Drawing uniform samples from Θ × Ω will result in a

sample distribution that is not proportional to the integrand
and hence lead to high-variance gradient estimates and ulti-
mately slow convergence for inverse rendering. In our case,
the integrand is the product of two functions (the kernel κ
and the scene function f ), which Veach [44] showed how
to optimally sample for. As we generally consider the ren-
dering operator a black box, we can only reduce variance
by sampling according to the remaining function, the (dif-
ferentiated) kernel κ (Fig. 4b).

While importance-sampling for a Gaussian (τi ∼ κ,
required to reduce variance of Eq. 9) is easily done,
importance-sampling for the gradient of a Gaussian (τi ∼
∂κ/∂θ, to be applied to Eq. 10) is more involved. The gra-
dient of our kernel κ is

∂κ

∂θ
(τ) =

−τ
σ3
√
2π

exp

(
−τ2

2σ2

)
, (11)

y=κ(τ)

a)

y=∇κ(τ)

b)

y~|∇κ(τ)|

d)c)

y=|∇κ(τ)|
Figure 4. Our kernel κ (a), its gradient ∇κ (b), the positivized
gradient (c) and samples drawn proportional thereto (d).

which is negative for τ > 0. We enable sampling propor-
tional to its Probability Density Function (PDF) by “pos-
itivization” [30], and hence sample for |∂κ∂θ (τ)| instead
(Fig. 4c). We note that this function is separable at τ = 0
and thus treat each halfspace separately in all dimensions of
τ and σ. In order to sample we use the inverse Cumulative
Distribution Function (CDF) method. The CDF of Eq. 11 is

F (τ) = 0.5 sgn(τ) exp

(
− τ2

2σ2

)
+ C ,

where C = 1 on the positive halfspace and 0 otherwise (this
originates from the fact that the CDF must be continuous,
monotonically increasing and defined on (0, 1)). Inverting
the CDF leads to

F−1(ξ) =
√
−2σ2 log(ξ) ,

into which we feed uniform random numbers ξ ∈ (0, 1)
that generate samples proportional to |∂κ∂θ (τ)| (Fig. 4d).

Obtaining a zero-variance estimator for a positivized
function requires sampling at at least two points: on the pos-
itivized and the regular part of the function [30]. We note
that the function we sample for is point-symmetric around
0 in each dimension and hence use antithetic sampling [7],
i.e., for each sample τ , we additionally generate its negated
counterpart −τ . Doing so results in a zero-variance estima-
tor, as we can perfectly sample for both parts of the func-
tion. In additional experiments, we found stratified sam-
pling to be more brittle than antithetic sampling.

Previous inverse rendering work applies antithetics to
BSDF gradients in classic rendering [1, 49] and to im-
prove convergence on specular surfaces [52], while we use
them as a means of reducing gradient variance for plateau-
reduction, which is not present in such approaches.

3.3. Adaptive bandwidth
Adjusting σ gives us control over how far from the cur-

rent parameter θ our samples will be spaced out. A high σ
may be useful in the early stages of the optimization, when
there still is a considerable difference between θ and θref,
whereas we want a low σ towards the end of the optimiza-
tion to zero-in on θref. Throughout the optimization, we
hence decay the initial σ0 according to a linear schedule,
i.e., σt+1 = σ0 − t(σ0 − σm), where σm is a fixed mini-
mum value we choose to avoid numerical instabilities that
would otherwise arise from σ → 0 in, e.g., Eq. 11. Fig. 5
shows the blur’s progression throughout the optimization.
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75%25% 50% 100%
Figure 5. We visualize the adaptive spread of the smoothing at n%
of the optimization. The reference position is shown dotted.

3.4. Implementation
We outline our gradient estimator in pseudo-code in

Alg. 1. We importance-sample for our kernel with zero
variance, use antithetic sampling and adapt the smoothing
strength via σ. As Alg. 1 shows, our method is simple
to implement and can be incorporated into existing frame-
works with only a few lines of code. We implement our
method in PyTorch, with Mitsuba as rendering backbone,
and use Adam as our optimizer. For the remainder of
this work, we use all components unless otherwise spec-
ified: importance sampling, adaptive smoothing and anti-
thetic sampling. Moreover, we use Eq. 10 for computational
efficiency (cf. Sec. 4.3) if not specified otherwise.

Algorithm 1 Gradient estimation of the scene function f at
parameters θ with perturbations τ ∼ N (0, σ) at N samples.

1: # Equation 10
2: procedure ESTIMATEGRADIENT(P , θ, σ, N )
3: G := 0
4: for i ∈ (1, N/2) do
5: ξ ← UNIFORM(0, 1)
6: τ ←

√
−2σ2 log(ξ)

7: G← G+ P (θ + τ)− P (θ − τ)
8: end for
9: return G / N

10: end procedure

4. Experiments
We analyze our method and its variants in qualitative and

quantitative comparisons against other methods and further
compare their runtime performance. For the hyperparame-
ters we use for our method and the competitors, please cf.
the supplemental, Tab. 1.

4.1. Methodology
Methods: For our experiments, we compare four meth-
ods. The first is a differentiable rasterizer, SoftRas [21]. Re-
call that soft rasterizers implicitly remove plateaus, which is
why they are included here, despite their shortcomings for
more complex forms of light transport. For our method, we
evaluate its two variants: The first uses a differentiable ren-
derer and weights its gradients (Ourκ∂P , Eq. 9), while the
second one performs differentiation through perturbation
(Our∂κP , Eq. 10). For both, we use Mitsuba 3 as our back-
bone, in the first variant using its differentiation capabilities

to compute ∂P , in the latter using it as a non-differentiable
black-box to compute only P . We run all methods for the
same number of iterations and with the same rendering set-
tings (samples per pixel (spp), resolution, path length, etc.).
Metrics: We measure the success of an optimization on
two metrics, image- and parameter-space Mean Squared Er-
ror (MSE). As is common in inverse rendering, image-
space MSE is what the optimization will act on. Parameter-
space MSE is what we employ as a quality control met-
ric during our evaluation. This is necessary to interpret
whether the optimization is working correctly once we have
hit a plateau, as the image-space MSE will not change there.
Note that we are not optimizing parameter-space MSE and
the optimization never has access to this metric.
Tasks: We evaluate our method and its competitors on
six optimization tasks that feature advanced light transport,
plateaus and ambiguities. We show a conceptual sketch of
each task in Fig. 6 and provide a textual explanation next.

4.2. Results
Qualitative: We now discuss our main result, Fig. 6.
CUP: A mug is rotated around its vertical axis and as
its handle gets occluded, the optimization has reached a
plateau. Our method differentiates through the plateau. The
differentiable path tracer gets stuck in the local minimum
after slightly reducing the loss by turning the handle to-
wards the left, due to the direction of the incoming light.
SHADOWS: An object outside of the view frustum is
casting a shadow onto a plane. Our goal is to optimize the
hidden object’s position. Differentiable rasterizers can not
solve this task, as they a) do not implement shadows, and b)
cannot differentiate what they do not rasterize. The plateau
in this task originates from the fact that the shadows do not
overlap in the initial condition, which creates a situation
akin to Fig. 2 b). Again, our method matches the reference
position very well. Mitsuba first moves the sphere away
from the plane (in negative z-direction), as this reduces the
footprint of the sphere’s shadow on the plane and thus leads
to a lower error, and then finally moves the sphere out of the
image, where a plateau is hit and the optimization can not
recover. The blue line in the image-space plot in Fig. 6 illus-
trates this problem, as the parameter-error keeps changing
very slightly, but the image-space error stays constant.
OCCLUSION: Here, a sphere translates along the view-
ing axis to match the reference. The challenge is that the
sphere initially is occluded by another sphere, i.e., we are
on a plateau as long as the occluder is closer to the camera
than the sphere we are optimizing. The baseline path tracer
initially pushes the red sphere towards the back of the box,
as this a) reduces the error in the reflection on the bottom
glass plane, and b) lets the shadow of the red sphere (visi-
ble underneath the blue sphere in the initial configuration)
shrink, which again leads to a lower image-space error. Our
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Figure 6. We show the optimization tasks and results for Our∂κP (“Ours”, orange) and our baseline Mitsuba (“Diff. Path Tracer”, blue).

Table 2. Image- and parameter-space MSE of different methods (columns) on different tasks (rows).

Rasterizer Path Tracer

SoftRas Mitsuba Our∂κP Ourκ∂P

Img. Para. Img. Para. Img. Para. Img. Para.

CUP 3.66×10−1 2.72×10−2 5.49×10−3 0.75×10−1 4.92×10−6 4.18×10−7 4.75×10−4 2.77×10−1

SHADOWS 1.64×10−3 1.42×10−1 1.64×10−3 5.06×10−0 1.74×10−5 1.81×10−3 5.12×10−4 1.28×10−0

OCCL. 5.33×10−2 7.18×10−3 5.85×10−2 5.23×10+1 2.34×10−4 3.29×10−3 5.37×10−2 1.87×10+1

GLOBAL ILL. – – 3.78×10−2 3.87×10−1 5.07×10−5 8.71×10−4 5.88×10−2 2.55×10−1

SORT 1.85×10−2 1.57×10−0 1.18×10−2 6.64×10−0 3.81×10−3 4.19×10−1 1.02×10−2 2.24×10−0

CAUSTIC – – 3.12×10−1 8.50×10−0 1.89×10−5 9.76×10−5 2.42×10−1 4.03×10−0

method, in contrast, successfully differentiates through both
the plateau (the red sphere has a negligible effect on the ob-

jective) and the discontinuity that arises when the red sphere
first moves closer to the camera than the blue occluder.
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GLOBAL ILLUMINATION: We here show that our
method is compatible with the ambiguities encountered in
advanced light transport scenarios. The goal of this op-
timization task is to simultaneously move the top-light to
match the scene’s illumination, change the left wall’s color
to create the color bleeding onto the box, and also to rotate
the large box to an orientation where the wall’s reflected
light is actually visible. The optimization only sees an inset
of the scene (as shown in Fig. 6; for a view of the full scene
cf. the supplemental) and hence only ever sees the scattered
light, but never the wall’s color or light itself. The baseline
cannot resolve the ambiguity between the box’s rotation, the
light position and the wall’s color, as it is operating in a non-
smoothed space. Our method finds the correct combination
of rotation, light position and wall color.
SORT: In this task, we need to sort a randomly perturbed
assortment of 75 colored primitives into disjoint sets. We
optimize the x- and y-coordinates of each cube, which leads
to a 150-dimensional setting, with a plateau in each dimen-
sion, as most of the cubes are initially not overlapping their
reference. Mitsuba cannot find the correct position of non-
overlapping primitives and moves them around to minimize
the image error, which is ultimately achieved by moving
them outside of the view frustum. Our method, admittedly
not perfect on this task, finds more correct positions, a result
more similar to the reference.
CAUSTIC: Lastly, the CAUSTIC task features a light
source outside the view frustum illuminating a glass sphere,
which casts a caustic onto the ground. The goal is to opti-
mize the light’s position in order to match a reference caus-
tic. As the sphere does not change its appearance with the
light’s movement, the optimization has to solely rely on the
caustic’s position to find the correct parameters. Similar to
the GI task, this is not solvable for rasterizers. Our method
reaches the optimum position with high accuracy. For the
baseline path tracer, we see a failure mode that is similar to
the SHADOW task. In this case, the image space error can
be reduced by moving the light source far away, as the bulk
of the error comes from the caustic not being cast onto the
correct position. Moving the light source far away reduces
this error, but also leads into a local minimum where there is
no illumination at all, resulting in the gray image in Fig. 6.
Quantitative: Tab. 2 reports image- and parameter-space
MSE for all methods across all tasks. The quantitative
results confirm what Fig. 6 conveyed visually: regular
gradient-based path tracers that operate on non-smooth loss
landscapes fail catastrophically on our tasks. SoftRas
manages to overcome some plateaus, but struggles with
achieving low parameter error, as it blurs in image space
but must compare to the non-blurred reference (as all meth-
ods), which leads to a notable difference between the fi-
nal state and the reference parameters. To achieve compa-
rable image-space errors, we render the parameters found

by SoftRas with Mitsuba. Our method Our∂κP , in con-
trast, achieves errors of as low as 10−7, and consistently
outperforms its competitors on all tasks by several orders
of magnitude. Interestingly, Ourκ∂P (i.e., using the gradi-
ents from the differentiable renderer) works notably worse
than Our∂κP (but mostly still outperforms Mitsuba). We
attribute this to the fact that we cannot importance-sample
for the gradient here, as we do not know its PDF. Instead,
we can only draw samples proportional to the first term in
the product, κ(τ), which places many samples where the
kernel is high, i.e., at the current parameter value. As we
can see from the rigid optimization by Mitsuba, the gradi-
ent at the current parameter position is not very informative,
so placing samples there is not very helpful.

4.3. Timing
We now compare our approach’s runtime and will see

that, while Ourκ∂P needs more time to complete an op-
timization, Our∂κP on average is 8× faster than differen-
tiable rendering with Mitsuba.

Our method requires the additional step of (over-) sam-
pling the parameter space in order to compute our smooth
gradients. However, as shown in Eq. 10, our stochastic gra-
dient estimation through the derivative-kernel (Our∂κP ) al-
lows us to skip the gradient computation step of the ren-
derer. While there exist techniques like the adjoint path
formulation [29] and path replay backpropagation [45], the
gradient computation in inverse rendering still is compu-
tationally expensive and requires the creation of a gradient
tape or compute graph. Additionally, correct gradients w.r.t.
visibility-induced discontinuities require a special integra-
tor (re-parametrization or edge sampling).

Our method Our∂κP , in contrast, does not need to com-
pute ∂P/∂θ and only requires a forward model. We can
hence conveniently use the regular path integrator instead
of its re-parametrized counterparts, and skip the gradient
computation altogether. Moreover, our earlier efforts to de-
velop an efficient importance-sampler will now pay off, as
our method converges with as few as one extra sample only.
This results in notable speedups, and Our∂κP hence signif-
icantly outperforms other differentiable path tracers in wall-
clock time at otherwise equal settings (cf. Tab. 3).

Table 3. Timing comparison for the three path tracing variants
on all tasks. We report the average time for a single optimization
iteration (with same hyperparameters) in seconds, so less is better.

CUP SHAD. OCCL. GI SORT CAUS.

Mitsuba 1.12 s 0.64 s 0.37 s 0.44 s 2.88 s 1.02 s
Our∂κP 0.10 s 0.04 s 0.09 s 0.15 s 2.23 s 0.08 s
Ourκ∂P 2.22 s 1.43 s 0.91 s 1.72 s 32.02 s 4.02 s
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4.4. Ablation
We now ablate our method to evaluate the effect its

components have on the success of the optimization out-
come. We will use Our∂κP from Tab. 2 as the baseline
and ablate the following components: importance sampling
(noIS), adaptive perturbations (noAP) and antithetic sam-
pling (noAT). We hold all other parameters (spp, resolution,
etc.) fixed and run the same number of optimization itera-
tions that was also used in Tab. 2 and Fig. 6.

We report the relative change between the ablations and
our baseline in Tab. 4. We report log-space values, as the
results lie on very different scales. From the averages in the
last row, it becomes apparent that all components drastically
contribute to the success of our method, while the most im-
portant part is the antithetic sampling. We emphasize that
importance- and antithetic-sampling are variance reduction
techniques that do not bias the integration, i.e., they do not
change the integral’s value in expectation. Therefore, our
approach should converge to similar performance without
these components, but it would take (much) longer, as the
gradient estimates will exhibit more noise.

Table 4. Ablation of different components (columns) for different
tasks (rows). We report the log-relative ratio w.r.t. Our∂κP , so
higher values mean higher error.

noIS noAP noAT

Img. Para. Img. Para. Img. Para.

CUP 4.75× 6.30× 6.96× 11.89× 3.19× 4.27×
SHAD. 5.27× 5.98× 3.07× 1.27× 5.30× 6.03×
OCCL. 3.18× 3.29× 8.73× 8.62× 8.73× 9.65×

GI 10.38× 10.84× 6.40× 9.15× 5.62× 12.06×
SORT 1.48× 0.70× 1.14× 2.04× 1.59× 1.09×

CAUS. 3.76× 8.35× 0.69× 1.70× 4.24× 9.27×
Mean 4.81× 5.91× 4.50× 5.78× 4.78× 7.06×

5. Discussion
Related Approaches Other methods proposed blurring
by down-sampling in order to circumvent plateaus [16, 33].
The quality upper bound for this is SoftRas, which we
compare against in Tab. 2, as blurring by down-sampling
does not account for occlusion, whereas SoftRas uses a
smooth z-test. Another method that could be tempting to
employ is Finite Differences (FD). Unfortunately, FD does
not scale to higher problem dimensions, as it requires 2n
function evaluations on an n-dimensional problem (on our
SORT task, this would increase the per-iteration runtime by
×375). A more economical variant is Simultaneous pertur-
bation stochastic approximation (SPSA), which perturbs all
dimensions at once [38]. However, neither FD nor SPSA
actively smoothes the loss landscape, as the gradient is al-

ways estimated from exactly two measurements, taken at
fixed locations, often from a Bernoulli distribution. Our ap-
proach, in contrast, uses N stochastic samples, where N
is independent of the problem dimension. In fact, we use
N = 2 for most of our experiments (cf. Suppl. Tab. 1). Our
method’s advantages thus are twofold: first, we do not re-
quire a fixed number or spacing of samples in the parameter
space, but instead explore the space by stochastically sam-
pling it. Second, our developed formalism allows to inter-
pret this stochastic sampling as a means to compute a MC-
estimate of the gradient, and thus allows to simultaneously
smooth the space and perform (smooth) differentiation.

Indeed, the formalism developed in Sec. 3.1 can be inter-
preted as a form of variational optimization [39, 40], where
one would descend along the (smooth) variational objective
instead of the true underlying function. As such, Eq. 10
can be seen as an instance of a score-based gradient estima-
tor [42], while Eq. 9 can be interpreted as reparametrization
gradient [15, 36]. Suh et al. [41] provide intuition on each
estimator’s performance and align with our findings of the
score-based estimator’s superiority under a discontinuous
objective. It is one of the contributions of this work to con-
nect these variational approaches with inverse rendering.

Limitations As our method relies on Monte Carlo esti-
mation, the variance increases favourably, but still increases
with higher dimensions. This can usually be mitigated by
increasing the number of samples N . We show examples
of a high-dimensional texture optimization in the supple-
mental. Moreover, a good initial guess of σ is helpful for a
successful optimization outcome (cf. Suppl. Sec. 2). We
recommend setting σ to roughly 50 % of the domain and
fine-tune from there, if necessary.

6. Conclusion
We have proposed a method for inverse rendering that

convolves the rendering equation with a smoothing ker-
nel. This has two important effects: it allows straight-
forward differentiation and removes plateaus. The idea
combines strengths of differentiable rasterization and dif-
ferentiable path tracing. Extensions could include applying
our proposed method to path tracing for volumes or Eikonal
transport [3, 50] or other fields that suffer from noisy or
non-smooth gradients, such as meta-learning for rendering
[6, 19]. Our approach is simple to implement, efficient, has
theoretical justification and optimizes tasks that existing dif-
ferentiable renderers so far have diverged upon.
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