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Abstract

For robots to be generally useful, they must be able
to find arbitrary objects described by people (i.e., be
language-driven) even without expensive navigation train-
ing on in-domain data (i.e., perform zero-shot inference).
We explore these capabilities in a unified setting: language-
driven zero-shot object navigation (L-ZSON). Inspired by
the recent success of open-vocabulary models for image
classification, we investigate a straightforward framework,
CLIP on Wheels (CoW), to adapt open-vocabulary models
to this task without fine-tuning. To better evaluate L-ZSON,
we introduce the PASTURE benchmark, which considers
finding uncommon objects, objects described by spatial and
appearance attributes, and hidden objects described rel-
ative to visible objects. We conduct an in-depth empiri-
cal study by directly deploying 22 CoW baselines across
HABITAT, ROBOTHOR, and PASTURE. In total, we eval-
uate over 90k navigation episodes and find that (1) CoW
baselines often struggle to leverage language descriptions
but are proficient at finding uncommon objects. (2) A sim-
ple CoW, with CLIP-based object localization and classical
exploration—and no additional training—matches the nav-
igation efficiency of a state-of-the-art ZSON method trained
for 500M steps on HABITAT MP3D data. This same CoW
provides a 15.6 percentage point improvement in success
over a state-of-the-art ROBOTHOR ZSON model.'

1. Introduction

To be more widely applicable, robots should be
language-driven: able to deduce goals based on arbitrary
text input instead of being constrained to a fixed set of ob-
ject categories. While existing image classification, seman-
tic segmentation, and object navigation benchmarks like
ImageNet-1k [65], ImageNet-21k [22], MS-COCO [45],
LVIS [28], HABITAT [67], and ROBOTHOR [18] include a
vast array of everyday items, they do not capture all objects
that matter to people. For instance, a lost “toy airplane” may
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Figure 1. The PASTURE benchmark for L-ZSON. Text speci-
fies navigation goal objects. Agents do not train on these tasks,
making the evaluation protocol zero-shot. (a) Uncommon object
goals like “llama wicker basket”, not found in existing navigation
benchmarks. (b) Appearance, spatial descriptions, which are nec-
essary to find the correct object. (c) Hidden object descriptions,
which localize objects that are not visible.

become relevant in a kindergarten classroom, but this object
is not annotated in any of the aforementioned datasets.

In this paper, we study Language-driven zero-shot object
navigation (L-ZSON), a more challenging but also more ap-
plicable version of object navigation [5, 18,67,79, 89] and
ZSON [38,46] tasks. In L-ZSON, an agent must find an ob-
ject based on a description, which may contain different lev-
els of granularity (e.g., “toy airplane”, “toy airplane under
the bed”, or “wooden toy airplane”). L-ZSON encompasses
ZSON, which specifies only the target category [38, 46].
Since L-ZSON is “zero-shot”, we consider agents without
access to navigation training on the target objects or do-
mains. This reflects realistic application scenarios, where
the environment and object set may not be known a priori.

Performing L-ZSON in any environment with unstruc-
tured language input is challenging; however, recent ad-
vances in open-vocabulary models for image classifica-
tion [35, 58, 61], object detection [4,21,27,36,43,47,49,
62, 88], and semantic segmentation [3, 6, 15,33, 36,37, 86]
present a promising foundation. These models provide an
interface where one specifies—in text—the arbitrary ob-
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jects they wish to classify, detect, or segment. For example,
CLIP [61] open-vocabulary classifiers compute similarity
scores between an input image and a set of user-specified
captions (e.g., “a photo of a toy airplane.”, ...), selecting the
caption with the highest score to determine the image clas-
sification label. Given the flexibility of these models, we
would like to understand their capability to execute embod-
ied tasks even without additional training.

To this end, we present baselines and benchmarks for L-
ZSON. More specifically:

* A collection of baseline algorithms, CLIP on Wheels
(CoW), which adapt open-vocabulary models to the task
of L-ZSON. CoW takes inspiration from the semantic
mapping line of work [11,41,53], and decomposes the
navigation task into exploration when the language tar-
get is not confidently localized, and target-driven plan-
ning otherwise. CoW retains the textual user inter-
face of the original open-vocabulary model and does
not require any navigation training. We evaluate 22
CoWs, ablating over many open-vocabulary models, ex-
ploration policies, backbones, prompting strategies, and
post-processing strategies.

* A new benchmark, PASTURE, fo evaluate CoW and fu-
ture methods on L-ZSON. We design PASTURE, visual-
ized in Fig. 1, to study capabilities that traditional object
navigation agents, which are trained on a fixed set of cat-
egories, do not possess. We consider the ability to find
(1) uncommon objects (e.g., “tie-dye surfboard”), (2) ob-
jects by their spatial and appearance attributes in the pres-
ence of distractor objects (e.g., “green apple” vs. “red
apple”), and (3) objects that cannot be visually observed
(e.g., “mug under the bed”).

Together the CoW baselines and PASTURE benchmark
allow us to conduct extensive studies on the capabilities of
open-vocabulary models in the context of L-ZSON embod-
ied tasks. Our experiments demonstrate CoW’s potential
on uncommon objects and limitations in taking full advan-
tage of language descriptions—thereby providing empirical
motivation for future studies. To contextualize CoW rela-
tive to prior zero-shot methods, we additionally evaluate on
the HABITAT MP3D dataset. We find that our best CoW
achieves navigation efficiency (SPL) that matches a state-
of-the-art ZSON method [46] that trains on MP3D train-
ing data for 500M steps. On a ROBOTHOR object subset,
considered in prior work, the same CoW beats the leading
method [38] by 15.6 percentage points in task success.

2. Related Work

Mapping and exploration. Exploring effectively with
a mobile robot is a long-standing problem in vision and
robotics. Classical methods often decompose the task

into map reconstruction [30,32,51,52,72], agent localiza-
tion [17,20, 54], and planning [41, 78]. Recent work in-
vestigates learned alternatives for exploration [7, 14,56,57,
]. Here, agents are often trained end-to-end with self-
supervised rewards (e.g., curiosity [57]) or supervised re-
wards (e.g., state visitation counts [25,73,75]). Learning-
based methods typically need less hand-tuning, but require
millions of training steps and reward engineering. We test
both classical and learnable exploration strategies in the
context of CoW to study their applicability to L-ZSON.

Goal-conditioned navigation. Apart from open-ended
exploration, many navigation tasks are goal-conditioned,
where the agent needs to navigate to a specified position
(i.e., point goal [11,12,26,31,66,77,81,83]), view of the
environment (i.e., image goal [48, 64, 89]), or object cate-
gory (i.e., object goal [1,9, 10, 12,19,44,74,79,84]). We
consider an object goal navigation task.

Vision-Language Navigation. Prior work investigates
language-based navigation, where language provides step-
by-step instructions for the task [2,34,39,40,71]. This line
of work demonstrates the benefits of additional language in-
put for robot navigation, especially for long-horizon tasks
(e.g., room-to-room navigation [40]). However, provid-
ing detailed step-by-step instructions (e.g., move 3 meters
south [34]) could be challenging and time-consuming. In
our L-ZSON task, an algorithm gets natural language as
the goal description instead of low-level instructions. Prior
work also investigates navigation with target descriptions
in supervised settings [42, 60, 87]. In contrast, we explore
a zero-shot evaluation protocol and consider finding hid-
den objects (e.g., “mug under bed””) and uncommon objects
(e.g., “tie-dye surfboard”).

Zero-shot object navigation (ZSON). Recent work stud-
ies object navigation in zero-shot settings, where agents are
evaluated on object categories that they are not explicitly
trained on [38,46]. Our task encompasses ZSON; however
it also considers cases where more information—object at-
tributes or hidden objects descriptions—is specified. Khan-
delwal et al. [38] train on a subset of ROBOTHOR cate-
gories and evaluate on a held-out set. In concurrent work,
Majumdar et al. [46] train on an image goal navigation task
and evaluate on object navigation downstream by leverag-
ing CLIP multi-modal embeddings. Both algorithms neces-
sitate navigation training for millions of steps and train sep-
arate models for each simulation domain. In contrast, CoW
baselines do not necessitate any simulation training and can
be deployed in multiple environments.

3. The L-ZSON Task

Language-driven zero-shot object navigation (L-ZSON)
involves navigating to goal objects, specified in language,
without explicit training to do so. Let O denote a set of
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Figure 2. CLIP on Wheels (CoW) overview. A CoW uses a
policy to explore and an object localizer (e.g., an open-vocabulary
object detector) to determine if an object goal is in view.
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natural language descriptions of target objects with poten-
tially many attributes (e.g., “plant”, “snake plant”, “plant
under the bed”, etc.). This contrasts with definitions studied
in prior object navigation [5, 18] and ZSON [38, 46] tasks,
which focus on high-level categories like “plant”. Let S de-
note the set of navigation scenes. Let py describe the initial
pose of an agent. A navigation episode 7 € T is written
as a tuple 7 = (s,0,pp), s € S,0 € O. Each 7 is a zero-
shot task as tuples of this form are not seen during train-
ing. Starting at pg, an embodied agent’s goal is to find o.
The agent receives observations and sensor readings I (e.g.,
RGB-D images). At each timestep ¢, the agent executes a
navigation action a € A. A special action STOP € A ter-
minates the episode. If the agent is within c units of o and o
meets a visibility criteria, the episode is successful.

4. CLIP on Wheels (CoW) Baselines

To address L-ZSON, we investigate a simple baseline ap-
proach, CoW, which adapts open-vocabulary models like
CLIP to make them suitable for the task. A CoW takes as
input an egocentric RGB-D image and an object goal spec-
ified in language. As a CoW moves, it updates a top-down
map of the world created using RGB-D observations and
pose estimates (Sec. 4.1). Each CoW gets an exploration
policy and a zero-shot object localization module as seen
in Fig. 2. To observe diverse views of the scene, a CoW
explores using a policy (Sec. 4.2). As the CoW roams, it
keeps track of its confidence about the target object’s lo-
cation using an object localization module (Sec. 4.3) and
its top-down map. When a CoW’s confidence exceeds a
threshold, it plans to the location of the goal and issues the
STOP action. We now describe the ingredients used to make
the CoWs evaluated in our experiments (Sec. 0).

4.1. Depth-based Mapping

As a CoW moves, it constructs a top-down map using
input depth, pose estimates, and known agent height. The
map is initialized using known camera intrinsics and the
first depth image. Since a CoW knows the intended con-
sequences of its actions (e.g., MOVEFORWARD should re-
sult in a 0.25m translation), each action is represented as a

free  frontier@ occupied @ path

object relevance W Wl

Figure 3. Mapping. Top-down map created from egocentric depth
observations as a CoW roams a space. (a) Frontier Based Explo-
ration [82] showing a planned path exploration path to the next
frontier. (b) Back-projected object relevance scores provide object
goal targets when a CoW has found an object.

pose delta transform to approximate a transition. To deal
with noise associated with actuation or depth, a CoW main-
tains a map at 0.125m resolution. To improve map accuracy,
a CoW checks for failed actions by comparing successive
depth frames for movements (see Appx. A for details). Us-
ing known agent height (0.9m), map cells are projected to
the ground plane to maintain a top-down representation of
the world, which suffices for most navigation applications.
Cells close to the floor are considered free space (white
points in Fig. 3 (a)), while other cells are considered oc-
cupied (blue points in Fig. 3 (a)).

4.2. Exploration

Exploration generates diverse egocentric views so a
CoW is more likely to view the language-specified target
object. We consider two exploration methods, frontier-
based and learning-based.

Frontier based exploration (FBE) [82]. Using the top-
down map discussed in Sec. 4.1, a CoW can navigate using
a simple exploration heuristic: move to the frontier between
free and unknown space to discover new regions. Once the
navigator reaches a frontier (visualized as purple points in
Fig. 3 (a)), it moves greedily to the next closest frontier.
Since the map is updated at every timestep, a noisy pose
estimate can contribute to inaccuracies. For example, nar-
row passages may collapse in the map due to pose drift. To
circumvent such problems, we reinitialize the map when no
paths exist to any frontiers in the map.

Learnable exploration. In addition to FBE, we consider
learnable alternatives, which may explore more intelligently
but incur substantial training costs. We investigate an archi-
tecture and reward structure similar to prior work in embod-
ied AI (e.g., [25, 38, 75]). Specifically, we adopt a frozen
CLIP backbone with a trainable GRU [16] and linear heads
for the actor and critic networks. We train agents indepen-
dently in HABITAT [67] and ROBOTHOR [18] simulation
environments for 60M steps each, using DD-PPO [69,77] in
the AllenAct [76] framework. We employ a simple count-
based reward [73]. All training scenes are disjoint from
downstream navigation test scenes. For details on reward,
hyperparameters, and training, see Appx. B.
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4.3. Object Localization

Successful navigation depends on object localization:
the ability to tell if and where an object is in an image. Re-
gions of high object relevance, extracted from 2D images,
are projected to the depth-based map (Fig. 3 (b)) where they
serve as natural navigation targets. To determine if and
when a target is in an image, we consider the following ob-
ject localization modules, used in our experiments (Sec. 6).
For more details see Appx. C.

Adapting open-vocabulary classifiers. We experiment
with three strategies to turn CLIP [61] models into object
localizers. First, we utilize the CLIP text encoder to em-
bed k referring expressions, which specify regions where
the target object may appear in the image. For example,
“a plant in the top left of the image.” We then match the
language embeddings against a CLIP visual embedding for
the current observation. We compute similarity between the
image and text features to determine relevance scores over
the regions. Second, we discretize the image into k£ smaller
patches and obtain CLIP patch embeddings. We then con-
volve each patch embedding with a CLIP text embedding
for the target object. If the object is in a patch, the rele-
vance score for that patch should be high. Third, we modify
an interpretability method [13, 70] designed to extract ob-
ject relevancy from vision transformers (ViTs) [24]. Using
a target CLIP text embedding and gradient information ac-
cumulated through the CLIP vision encoder, we construct
a relevance map over input pixels, which qualitatively seg-
ments the target when it is in view.

Adapting open-vocabulary detectors and segmentors. In
addition to CLIP-based methods, we consider two addi-
tional open-vocabulary models for object localization. First,
the MDETR segmentation model [36], which extends the
DETR detector [8] to take arbitrary text and images as in-
put and output box detections. The base model is fine-tuned
on PhraseCut [80], a dataset of paired masks and attribute
descriptions, to support segmentation. Second, we consider
the OWL-VIiT detector [49], which uses a set prediction
fine-tuning recipe to turn CLIP-like models into object de-
tectors. We use this MDETR and OWL-ViT models to di-
rectly query images for targets.

Post-processing. The aforementioned models give con-
tinuous valued predictions. However, we are interested
in binary masks giving if and where objects are in im-
ages. Hence, we threshold predictions for each model (see
Appx. C for details). We further investigate two strategies
for using the masks downstream: (1) using the entire mask
or (2) using the center pixel. The second strategy is reason-
able because only part of an object needs to be detected for
successful navigation.

Target driven planning. Recall, CoWs have depth sensors.
We back-project object relevance from 2D images into the

“whiteboard saying CVPR”

“tie-dye surfboard”

“red and blue tricycle”

“white electric guitar”

“llama wicker basket” “espresso machine”

“wooden toy airplane”

“green plastic crate”

“rice cooker” “gingerbread house™

“maté gourd” “graphics card”

Uil

Figure 4. Uncommon objects in PASTURE.

depth-based map (Sec. 4.1). We keep only the max rele-
vance for each map cell (Fig. 3 (b)). CoWs can then plan to
high relevance areas in the map. See Appx. D for additional
method visualization.

Incorporating object priors. Since CoW does not train
or fine-tune on navigation datasets, we investigate alterna-
tive approaches to inject object-level priors into the model.
For each target object, we prompt GPT-3.5 [55] to generate
rooms where the target objects are likely to be found. For
example, GPT-3.5 states that apples are likely to be found in
“kitchen” or “dining room” scenes. Following this prior, a
GPT-3.5 enabled CoW first uses its object localization mod-
ule to localize a kitchen or a dining room, and then looks for
an apple. This straightforward extension, demonstrates how
outside information can be incorporated into CoW.

5. The PASTURE Benchmark

To evaluate CoW baselines and future methods on L-
ZSON, we introduce the PASTURE evaluation benchmark.
PASTURE builds on ROBOTHOR validation scenes, which
have parallel environments in the real-world. We tar-
get ROBOTHOR to facilitate future real-world benchmark-
ing. PASTURE probes for seven capabilities explained in
Sec. 5.1. We provide dataset statistics in Sec. 5.2.

5.1. PASTURE Tasks

PASTURE evaluates seven core L-ZSON capabilities.

Uncommon objects. Traditional benchmarks (e.g.,
ROBOTHOR and HABITAT MP3D) evaluate agents on
common object categories like TVs; however, given the rich
diversity of objects in homes, we would like to understand
navigation performance on uncommon objects. Hence we
add 12 new objects to each room. We use names shown in
Fig. 4 as instance labels, which are minimal descriptions to
identify each object. Some identifiers refer to text in im-
ages (e.g., “whiteboard saying CVPR”) or to appearance at-
tributes (e.g., “wooden toy airplane”). Other objects are less
common in North America, like “maté”, which is a popular
Argentinian drink.

Appearance descriptions. To evaluate if baselines can take
advantage of visual attributes, we introduce descriptions
of the form: “{size}, {color}, {material} {object}”. For
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example: “small, red apple”, “orange basketball”, “small,
black, metallic alarm clock”. Objects are considered small
if their 3D bounding box diagonal is below a threshold. We
determine color and materials by inspection.

Spatial descriptions. To test if agents can leverage spa-
tial information in navigation, we introduce descriptions:
“{object} on top of {x}, near {y}, {z}, ...”. For example,
“house plant on a dresser near a spray bottle”. To determine
[on top of] relations, we use THOR metadata and to deter-
mine [nearness] we use a distance threshold between pairs
of objects. We inspect all descriptions for correctness.

Appearance descriptions with distractors. To probe if
appearance attributes better facilitate finding objects in the
presence of distractors, we reuse the appearance captions
from before, but evaluate on an modified environment with
two visually distinct instances of each ROBOTHOR object
category. For example, for the task of finding a “red apple”,
we have both a red apple and a green apple in the room. A
navigator must leverage appearance information—and not
just class information—to successfully complete the task.
Distractor objects are sufficiently far from the target objects
so that finding a distractor cannot count as success.

Spatial descriptions with distractors. This capability is
similar to the one above; however, we evaluate with spatial
descriptions in the presence of distractor objects.

Hidden object descriptions. An ideal object navigator
should find objects, even when they are hidden. Hence, we
introduce descriptions: “{object} under/in {x}”. For exam-
ple, “basketball in the dresser drawers” or “vase under the
sofa”. We sample large objects (e.g., beds, sofas, dressers)
in each scene to determine [under/in] relations. Addition-
ally we remove visible instances of {object} from the room.

Hidden object descriptions with distractors. We use the
hidden object descriptions from before, but reintroduce vis-
ible instances of {object} to serve as distractors. Consider
finding a “mug under the bed”. A distractor mug will also
appear in the scene making the task more challenging.

5.2. Dataset Creation and Statistics

PASTURE contains three variations for each of the orig-
inal 15 validation ROBOTHOR rooms: uncommon objects
added, additional object instances added, and target objects
removed. For each of the seven settings presented above,
we evaluate over 12 object instances in 15 rooms with two
initial agent starting locations. Hence PASTURE consists
of 2,520 tasks, which is a similar order of magnitude to
ROBOTHOR (1,800) and HABITAT MP3D (2,195) valida-
tion sets. For appearance attributes, 47% of the objects are
considered “small”. Each object gets an average of 1.2 color
descriptors out of 22 possible choices, and 0.6 material de-
scriptors out of 5 possible choices. Similarly, for spatial at-
tributes, each object gets one object it is on top of or in (e.g.,

“vase in a shelving unit”) and an average of 1.9 objects it is
near. For a sample of appearance and spatial attributes see
Fig. 1. For more dataset details and statistics see Appx. E.

6. Experiments

We first present our experimental setup, including the
datasets, metrics, embodiment, and baselines considered
in our study (Sec. 6.1). Then we present results on PAS-
TURE, thereby elucidating the strengths and weakness of
CoW baselines for L-ZSON (Sec. 6.2). Finally, we compare
to prior ZSON art in ROBOTHOR and HABITAT (MP3D)
environments (Sec. 6.3).

6.1. Experimental setup

Environments. We consider PASTURE (Sec. 5),
ROBOTHOR [18], and HABITAT (MP3D) [67] validation
sets as our test sets. We utilize validation sets for testing
because official test set ground-truth is not publicly avail-
able. Domains are setup with noise that is faithful to their
original challenge settings. For ROBOTHOR—and by ex-
tension PASTURE—this means actuation noise but no depth
noise. For HABITAT this means considerable depth noise
and reconstruction artifacts, but no actuation noise.

Navigation Metrics. We adopt standard object navigation

metrics to measure performance:

* SUCCESS (SR): the fraction of episodes where the agent
executes STOP within 1.0m of the target object.

* Success weighted by inverse path length (SPL): Success
weighted by the oracle shortest path length and normal-
ized by the actual path length [5]. This metric points to
the success efficiency of the agent.

In ROBOTHOR and PASTURE, the target must additionally
be visible for the episode to be a success, which this is not
the case in HABITAT—as specified in their 2021 challenge.

Embodiment. The agent is a LoCoBot [29]. All agents
have discrete actions: {MOVEFORWARD, ROTATERIGHT,
ROTATELEFT, STOP}. The move action advances the agent
by 0.25m, while rotation actions pivot the camera by 30°.

CoW Baselines. For exploration we consider policies
presented in Sec. 4.2: FBE heuristic exploration, learn-
able exploration optimized on HABITAT (MP3D) train
scenes, and learned exploration optimized on ROBOTHOR
train scenes. Learned exploration requires training in
simulation—which is counter to our zero-shot goals;
nonetheless, we ablate these explorers to contextualize their
performance within the CoW framework. FBE is the default
CoW exploration strategy.

For object localization, we consider:
» CLIP with k£ = 9 referring expressions ( )
* CLIP with k& = 9 patches ( )

* CLIP with gradient relevance (CLIP-Grad.)
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PASTURE ROBOTHOR
CoW breeds Uncom.  Appear. Space Appear. Space  Hid. Hid. Avg.
distract  distract distract

ID Localizer Arch. SR SR SR SR SR SR SR SPL SR SPL SR
CLIP-Ref. B/32 3.6 0.6 1.7 0.6 1.7 2.2 2.5 0.9 1.8 1.0 1.8
CLIP-Ref. B/16 1.4 2.8 2.8 3.1 33 1.7 1.9 1.7 2.4 2.1 2.7
CLIP-Patch B/32 18.1 13.3 13.3 8.6 10.8 17.5 17.8 9.0 14.2 10.6  20.3
CLIP-Patch B/16 10.6 11.4 7.8 10.8 8.1 16.4 15.6 7.7 11.5 9.7 15.7

A  CLIP-Grad. B/32 16.1 11.9 11.7 9.7 10.3 14.4 16.1 9.2 12.9 9.7 15.2
. CLIP-Grad. B/16 8.1 10.8 8.6 8.6 6.7 11.1 11.4 6.7 9.3 8.6 11.6
‘ MDETR B3 ‘ 3.1 7.2 5.0 6.9 4.7 8.1 8.9 ‘ 5.4 6.3 ‘ 8.4 9.9
OWL B/32 32.8 26.4 194 194 16.1 19.2 14.4 126 21.1 16.9 26.7

OWL B/16 31.9 26.9 18.9 194 14.7 18.1 15.8 12.6 208 | 17.2 275
ProcTHOR fine-tune (supervised) [19] ‘ n/a n/a n/a n/a n/a n/a n/a ‘ n/a n/a ‘ 27.4 66.4

Table 1. Benchmarking CoWs on PASTURE for L-ZSON. On PASTURE we identify several key takeaways. (1) Average success on
PASTURE is lower than on ROBOTHOR; however, CoWs are surprisingly good at finding uncommon objects (Uncom.), often finding
them at higher rates than more common ROBOTHOR objects. (2) Comparing square (H) vs. triangle (A) IDs, we see that architectures
(Arch.) using more compute (i.e., ViT-B/16) often perform comparably or worse than their competitors (i.e., ViT-B/32). This is especially
true for CLIP [61] models (indicated in N , and purple). (3) OWL-VIT [49] models perform best. (4) PASTURE tasks with
distractor objects (distract) hurt performance and natural language specification is not sufficient to mitigate against the added difficulties
in these tasks. (5) A supervised baseline shown in gray significantly outperforms CoWs on ROBOTHOR; however, it is unable to support

PASTURE tasks out-of-the-box.

* MDETR segmentation model (MDETR)
e OWL-VIT detector ( )

Descriptions of these models are in Sec. 4.3 and additional
details are in Appx. C. All models are open-vocabulary. No
models are fine-tuned on navigation, and hence we consider
their inference zero-shot on our tasks.”> We also consider
various backbone architectures:

¢ A vision transformer [24], ViT-B/32 (A B/32)

* ViT-B/16 (M B/16), which uses a smaller patch size of
16x16 and hence more compute.

« EfficentNet B3 (¢ B3), which is convolutional and similar
in compute requirements to a ViT/B32.

For every model we evaluate with post-processing as the
default setting, where only the center pixel of detections is
registered in the top-down CoW map. Recall, this is a sen-
sible strategy as only some part of the object needs to be
found for an episode to be successful. We find that this de-
cision improves performance on our best performing mod-
els from 0.1 to 6.0 percentage points on ROBOTHOR Suc-
CESS. For a full comparison between models with and with-
out post-processing see Appx. F. For details on hyperpa-
rameters, learned agents, object localization threshold tun-
ing, and CLIP prompt-tuning, see Appx. C, G.

End-to-end learnable baselines. We also compare against
methods that are trained in simulation for millions of steps:

2The claim is not that these models have never seen any synthetic data
in their large-scale training sets, only that they are not trained to navigate.

e EmbCLIP-ZSON [38] trains on eight ROBOTHOR cate-
gories, using CLIP language embeddings to specify the
goal objects. At test time, the model is evaluated on four
held-out object categories, which are also specified CLIP
language embeddings for the target category names.

» SemanticNav-ZSON [46] trains models separately, one
for each dataset, for image goal navigation. Image goals
are specified with CLIP visual embeddings. At test time,
image goals are swapped for CLIP language embeddings
for the object goals. We compare to the MP3D model.

Both EmbCLIP-ZSON and SemanticNav-ZSON leverage
multi-modal CLIP visual and language embeddings in
learnable frameworks that require simulation training.

6.2. CoWs on PASTURE

Tab. 1 shows our main results of CoWs evaluated on
PASTURE. For category-level results see Appx. H. We now
discuss several salient questions.

How well can CoWs find common objects vs. uncom-
mon objects? Comparing ROBOTHOR and uncommon
(Uncom.) PASTURE success rate (SR) in Tab. 1—first and
last columns—we notice that CoWs often find uncommon
objects at higher rates than common ROBOTHOR objects
(e.g., by ~6 percentage points SUCCESS for the OWL ViT-
B/32 CoW (A)). We hypothesize that though uncommon
objects are less prevalent in daily life, they are still rep-
resented in open-vocabulary datasets and hence recogniz-
able for the object localization modules. We further ex-
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = z line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar

when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.

Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.

Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.

Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SuccEiss on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.

Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) | ROBOTHOR

ID Loc. Arch. \ Exp. Strategy SPL SR SPL SR
OWL B/32 | ROBOTHOR learn. | 10.2 17.3 13.1 209
OWL B/32 | HABITAT learn. 8.6 19.4 9.8 20.4
OWL B/32 | FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR

D Loc. Arch. \ Obj. Prior | SPL SR SPL SR
OWL  B/32 None 20.5 32.8 16.8 26.7

OWL  B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best?  We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (A)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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Figure 6. Failure analysis for OWL, B/32 (A). Exploration and
object localization errors occur at similar ratios, with increased
localization failures in the presence of distractors.

Can CoW incorporate object priors? Examining Tab. 3,
we see that incorporating GPT-3.5 object-level priors im-
proves performance on both PASTURE uncommon objects
and ROBOTHOR. These initial results suggest positive
trends for incorporating outside knowledge into CoW. Fu-
ture work may consider more sophisticated methods for in-
jecting priors to steer navigation.

How do CoWs fail? We identify three high-level failure
modes. (1) Exploration fail: the target is never seen. (2)
Object localization fail: the target is seen but the localizer
never fires. (3) Planning fail: the target is seen and the
localizer fires, but planning fails due to inaccuracy in the
map representation (Sec. 4.2). Looking at Fig. 6, we notice
a large fraction of failures are due to exploration and object
localization. This suggests CoWs may continue to improve
as research in these fields progress. In Fig. 6 we also see
that in cases where distractors are present a higher fraction
of object localization failures occur, further suggesting that
open-vocabulary models currently struggle to make full use
of attribute prompts. See Appx. I for more failure analysis.

6.3. Comparison to Prior Art

We primarily evaluate CoWs in general L-ZSON set-
tings; however, we further evaluate CoWs on ZSON bench-
marks to establish them as a strong baseline for these tasks.
Recall, ZSON can be seen as a case of L-ZSON where only
object goals are specified (no attributes).

In Tab. 4, we see there exists a CoW that outperforms
the end-to-end baselines in all cases except SUCCESS on
HABITAT (MP3D). For instance, the CLIP-Grad., B/32
(A) matches the SemanticNav-ZSON model on HABITAT
(MP3D) SPL: 4.9 for CoW v.s. 4.8 for the competitor,
while improving over EmbCLIP-ZSON ROBOTHOR by
15.6 percentage points. To contextualize this result, CoWs
train for 0 navigation steps, while SemanticNav-ZSON and
EmbCLIP-ZSON train in the target evaluation simulators
for 500M and 60M steps respectively.

HABITAT | ROBOTHOR | ROBOTHOR | Nav.

CoW breeds (MP3D) (subset) (full) training

D Loc. Arch. |[SPL SR |SPL SR |SPL SR steps
A CLIP-Grad. B/32 | 49 92 (150 237 |97 152 0
OWL B/32 | 3.7 74 (208 325 (169 26.7 0
EmbCLIP-ZSON [38] | = - | — 81 | — 140" | 60M

SemanticNav-ZSON [46] | 4.8 15.3| - -] - - | 500M

Table 4. Comparison to prior art on existing ZSON bench-
marks. CoWs are able to match or out-compete existing methods
that leverage millions of steps of navigation training in the evalu-
ation simulator. *indicates a result from prior work that includes,
non-zero-shot evaluation. Specifically, only 1/4 of the evaluations
are zero-shot on ROBOTHOR (subset) and the remaining 3/4 on
categories seen during training.

The superior performance of SemanticNav-ZSON in
terms of MP3D SUCCESS indicates that there can be bene-
fits to in-domain learning. Future work may consider unify-
ing the benefits of CoW-like models and fine-tuned models.

7. Limitations and Conclusion

Limitations. While our evaluation of CoWs on HABI-
TAT, ROBOTHOR, and PASTURE is a step towards assess-
ing their performance in different domains, ultimately, real-
world performance matters most. Hence, the biggest lim-
itation of our work is the lack of large-scale, real-world
benchmarking—which is also missing in much of the re-
lated literature. Additionally, CoW inherents the meta-
limitations of the object localization and exploration meth-
ods considered. For example, object localizers require tun-
ing a confidence threshold to balance precision and recall.
Finally, we do not consider different agent embodiment or
continuous action spaces. This is a pertinent investigation
given recent findings of Pratt et al. [5°] that agent morphol-
ogy can be a big determinant of downstream performance.

Conclusion. This paper introduces the PASTURE bench-
mark for language-driven zero-shot object navigation and
several CLIP on Wheels baselines, translating the successes
of existing zero-shot models to an embodied task. We view
CoW as an instance of using open-vocabulary models, with
text-based interfaces, to tackle robotics tasks in more flex-
ible settings. We hope that the baselines and the proposed
benchmark will spur the field to explore broader and more
powerful forms of zero-shot embodied Al.
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