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Abstract

Backdoor defenses have been studied to alleviate the
threat of deep neural networks (DNNs) being backdoor
attacked and thus maliciously altered. Since DNNs usu-
ally adopt some external training data from an untrusted
third party, a robust backdoor defense strategy during the
training stage is of importance. We argue that the core
of training-time defense is to select poisoned samples and
to handle them properly. In this work, we summarize the
training-time defenses from a unified framework as split-
ting the poisoned dataset into two data pools. Under
our framework, we propose an adaptively splitting dataset-
based defense (ASD). Concretely, we apply loss-guided split
and meta-learning-inspired split to dynamically update two
data pools. With the split clean data pool and polluted
data pool, ASD successfully defends against backdoor at-
tacks during training. Extensive experiments on multiple
benchmark datasets and DNN models against six state-of-
the-art backdoor attacks demonstrate the superiority of our
ASD. Our code is available at https://github.com/
KuofengGao/ASD.

1. Introduction
Backdoor attacks can induce malicious model behav-

iors by injecting a small portion of poisoned samples into
the training dataset with specific trigger patterns. The at-
tacks have posed a significant threat to deep neural networks
(DNNs) [31–33, 35, 37, 45], especially when DNNs are
deployed in safety-critical scenarios, such as autonomous
driving [10]. To alleviate the threats, backdoor defenses
have been intensively explored in the community, which
can be roughly grouped into post-processing defenses and
training-time ones. Since the training data collection is
usually time-consuming and expensive, it is common to
use external data for training without security guarantees

*Equal contribution.
†Corresponding author.

Table 1. Summary of the representative training-time backdoor
defenses under our framework.

Methods # Pool # Pool # Pool # Clean Hard
Initialization Maintenance Operation Sample Selection

ABL Fast Static Unlearn No
DBD Slow Adaptive Purify No

ASD (Ours) Fast Adaptive Purify Yes

[16, 24, 29, 42, 43]. The common practice makes backdoor
attacks feasible in real-world applications, which highlights
the importance of training-time defenses. We argue that
such defenses are to solve two core problems, i.e., to select
poisoned samples and to handle them properly.

In this work, we formulate the training-time defenses
into a unified framework as splitting the poisoned dataset
into two data pools. Concretely, a clean data pool contains
selected clean samples with trustworthy labels and a pol-
luted data pool is composed of poisoned samples and re-
maining clean samples. Under this framework, the mecha-
nisms of these defenses can be summarized into three parts,
i.e., pool initialization, pool maintenance, and pool oper-
ation. To be more specific, they need to first initialize
two data pools, deploy some data pool maintenance strate-
gies, and take different training strategies on those split
(clean and polluted) data pools. We illustrate our frame-
work with two representative training-time defenses, i.e.,
anti-backdoor learning (ABL) [27] as well as decoupled-
based defense (DBD) [21]. ABL statically initializes a pol-
luted pool by the loss-guided division. The polluted pool is
fixed and unlearned during training. Similarly, DBD initial-
izes two data pools after computationally expensive train-
ing. Then the model is fine-tuned by semi-supervised learn-
ing with two dynamically updated data pools. (More details
of these two methods are introduced in Sec. 2.2.)

Despite their impressive results, there is still room for
improvement. ABL initializes two pools with static data se-
lection, which raises the concern of mixing poisoned data
into clean ones. Once they are mixed, it is hard to alleviate
it in the followed training process. Besides, unlearning poi-
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Figure 1. Loss distribution of samples on the model trained by
ABL, DBD and our ASD against WaNet. Compared with ABL
and DBD, our proposed ASD can clearly separate clean samples
and poisoned ones better by a novel meta-split.

soned data directly can lose some useful semantic features
and degrade the model’s clean accuracy. As for DBD, its
pool initialization is computationally expensive and is hard
to be implemented end-to-end. Moreover, DBD adopts su-
pervised learning for the linear layer in the whole poisoned
dataset during the second stage, which can potentially im-
plant the backdoor in models.

Under our framework, we introduce an adaptively
splitting dataset-based defense (ASD). With two initialized
data pools, we first adopt the loss-guided [51] split to up-
date two data pools. However, some (model-dependent)
clean hard samples can not be distinguished from poisoned
ones directly by their loss magnitudes. As shown in Fig.
1, ABL and DBD adopting loss-guided split have failed
to completely separate clean samples from poisoned sam-
ples. Instead, we propose a novel meta-learning-inspired
split (meta-split), which can make a successful separation.
Then we treat the clean data pool as a labeled data container
and the polluted one as unlabeled, where we adopt semi-
supervised learning on two data pools. As such, we can
utilize the semantic information of poisoned data without
labels to keep the clean accuracy meanwhile to avoid back-
door injection, which can be regarded as a fashion of purify-
ing poisoned samples. Note that, our ASD introduces clean
seed samples (i.e., only 10 images per class) in pool initial-
ization, which could be further extended to a transfer-based
version, by collecting clean seed samples from another clas-
sical dataset. Given previous methods [28, 34, 50, 54] usu-
ally assume they can obtain much more clean samples than
ours, our requirements are easier to meet. The properties of
ABL, DBD and our ASD are briefly listed in Table 1.

In summary, our main contributions are three-fold:
• We provide a framework to revisit existing training-

time backdoor defenses from a unified perspective,
namely, splitting the poisoned dataset into a clean pool
and a polluted pool. Under our framework, we pro-
pose an end-to-end backdoor defense, ASD, via split-
ting poisoned dataset adaptively.

• We propose a fast pool initialization method and adap-
tively update two data pools in two splitting manners,
i.e., loss-guided split and meta-split. Especially, the

proposed meta-split focuses on how to mine clean hard
samples and clearly improves model performance.

• With two split data pools, we propose to train a model
on the clean data pool with labels and the polluted data
pool without using labels. Extensive experiment re-
sults demonstrate the superiority of our ASD to previ-
ous state-of-the-art backdoor defenses.

2. Related Work
2.1. Backdoor Attack

Backdoor attacks are often implemented by injecting a
few poisoned samples to construct a poisoned dataset. Once
a model is trained on the constructed poisoned dataset, the
model will perform the hidden backdoor behavior, e.g.,
classifying samples equipped with trigger to the target label.
Apart from the malicious behavior, the backdoored model
behaves normally when the trigger is absent. Existing back-
door attacks can be divided into two categories: (1) poison-
label backdoor attacks [1,16,30,53,60] connect the trigger
with the target class by relabelling poisoned samples as tar-
get labels. Trigger patterns have been designed to enhance
the attack strength [16, 40] or stealthiness [8, 36, 39]. (2)
clean-label backdoor attacks [14,48] only poison the sam-
ples from the target class with labels unchanged. Although
they are stealthier than poison-label attacks, clean-label at-
tacks may fail to implant the model sometimes [25, 59].

2.2. Backdoor Defense

Recent work has explored various methods to mitigate
the backdoor threat. Existing backdoor defenses can be
grouped into two categories: (1) post-processing back-
door defenses [15, 23, 56] aim to repair a local backdoored
model with a set of local prepared data. A straightforward
way is to reconstruct the trigger pattern [6, 11, 17, 46, 49]
and then to unlearn the trigger pattern for repairing the
model. Apart from the trigger-synthesis defenses, other
methods are also widely used in erasing the backdoor,
e.g., pruning [34, 54, 62], model distillation [28] and mode
connectivity [58]. (2) training-time backdoor defenses
[7, 47, 52] intend to train a clean model directly on the
poisoned dataset. Anti-backdoor learning (ABL) [27] ob-
serves that the training losses of poisoned samples drop
abruptly in the early training stage. Thus ABL proposes to
first isolate a few samples with the lowest losses in early
epochs, then train a model without isolated samples and
finally unlearn isolated samples during the last few train-
ing epochs. Decouple-based backdoor defense (DBD) [21],
first adopts self-supervised learning to obtain the feature ex-
tractor. Then it uses supervised learning to update the lin-
ear layer. After identifying clean samples by the symmetric
cross-entropy loss, DBD conducts semi-supervised learn-
ing on the labeled clean data and unlabeled remaining data.
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Figure 2. Pipeline of our ASD. It mainly contains three stages. (1) Clean data pool DC is initialized with a few clean seed samples. Polluted
data pool DP is initialized with the poisoned training dataset D. Then DC is supplemented by samples in D with the lowest L1(fθ) losses,
which are equally selected from each class, dubbed class-aware loss-guided split. (2) DC is substantially supplemented by samples with
the lowest L1(fθ) losses in the entire dataset D, dubbed class-agnostic loss-guided split. (3) A novel meta-split is proposed to add clean
hard samples into DC and further improve the performance. Note that two data pools are adaptively updated at every epoch, where DC

is directly supplemented and the remaining samples in D are divided as DP . During the whole process, labels in DC are preserved while
labels in DP are removed. The model fθ is trained on DC and DP by semi-supervised learning following Eq. 2.

Besides, adopting differential-privacy SGD [12] and strong
data augmentation [4] can also defend against backdoor at-
tacks to some degree. Our proposed ASD belongs to the
training-time backdoor defense.

3. Preliminaries
Threat model. We adopt the poisoning-based threat model
used in previous works [8, 16, 48], where attackers provide
a poisoned training dataset containing a set of pre-created
poisoned samples. Following previous training-time de-
fenses [4, 12, 21, 27], we assume that defenders can control
the training process. Besides, a few clean samples of each
class are available as seed samples. The goal of defenders
is to obtain a well-performed model without suffering back-
door attacks.
Problem formulation. Given a classification model fθ
with randomly initialized parameters θ and a training
dataset D = {(xi, yi)}Ni=1, the training dataset D contains
N samples xi ∈ Rd, i = 1, ..., N , and their ground-truth
labels yi ∈ {0, 1, ..., C − 1} where C is the number of
classes. Poisoned samples might be included in D. Un-
der our unified framework, we propose to divide the dataset
D into two disjoint data pools adaptively, i.e., a clean data
poolDC with labels and a polluted data poolDP , whose la-
bels will not be used. Moreover, we train the model on the
clean data pool and polluted data pool in a semi-supervised
learning-based manner by treating the polluted pool as un-

labeled data, denoted as:

min
θ
L (DC ,DP ;θ) , (1)

where DC ⊂ D and DP = {x|(x, y) ∈ D\DC}. L(·) de-
notes the semi-supervised loss function. In view of previous
semi-supervised learning methods [2,3,41,61], L(·) usually
contains two losses:

L =
∑

(x,y)∈DC

Ls(x, y;θ) + λ
∑

x∈DP

Lu(x;θ), (2)

where the supervised loss Ls is adopted on the clean data
pool DC with labels, the unsupervised loss Lu is used on
the polluted data pool DP without using labels, λ denotes
the trade-off between Ls and Lu. Since Ls can obtain the
precise relationship between images and labels. Hence, it is
critical to ensure as many clean samples and few poisoned
samples as possible in the clean data pool DC .

4. Proposed Backdoor Defense: ASD
In this section, we present the pipeline of our ASD.

The key challenge is to adaptively update and maintain two
pools, i.e., a clean data pool DC and a polluted data pool
DP . As shown in Fig. 2, our ASD is summarized in three
stages: (1) We first initialize DC with several fixed clean
seed samples and DP with the whole poisoned dataset D.
We perform the warming-up training and update DC by
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Figure 3. Loss distribution of samples on the model after different operations, which motivates us to propose the meta-split method in
stage 3. (a) The model fθ after previous two stages. The clean hard samples have similar high losses to the poisoned ones, which can not
be separated by the loss-guided split. (b) The ‘virtual model’ fθ′ in Fig. 3a after one-epoch supervised learning. The losses of poisoned
samples reduce to zero, which shows the poisoned samples can be fast learned. (c) The loss reduction between fθ in Fig. 3a and fθ′ in
Fig. 3b. (d) The model fθ after stage 3. Compared with Fig. 3a, poisoned samples and clean samples are better separated, especially for
clean hard samples, which benefits from our proposed meta-split.

class-aware loss-guided split. (2) Then, we adopt class-
agnostic loss-guided split on the entire dataset D and sup-
plement DC to accelerate the defense process. (3) To add
more clean hard samples into DC , we propose a meta-
learning-inspired (meta-split) method. During these three
stages, DP is composed of all remaining samples in D ex-
cept for those selected in DC . The model fθ is trained by
Eq. 2. Algorithm of our ASD is shown in Appendix A.

4.1. Warming-up and training with loss-guided split

We introduce the first two stages of ASD. Both two
stages utilize the loss-guided data split to update the clean
data pool DC and the polluted data pool DP adaptively. To
be more specific, given a model fθ at any epoch during
stage 1 and stage 2, DC is supplemented by samples with
the lowest L1(fθ) losses, whileDP is composed of remain-
ing samples. As suggested in [21], symmetric cross-entropy
(SCE) [51] loss is adopted as L1(·) because it can amplify
the difference between clean samples and poisoned samples
when compared with cross-entropy (CE) loss.
Warming up with class-aware loss-guided split. In the
warming-up stage, we first initial DC with the clean seed
samples and DP with all the poisoned training data. Since
only a few clean seed samples are available in DC , we pro-
gressively increase the number of samples in DC , namely
we add n every t epochs in each class. Next, we add sam-
ples with the lowest L1(·) losses in each class to DC dy-
namically, and remaining samples are used as DP . The rea-
son for the class-aware way is to prevent the performance
collapse caused by the class imbalance in the small clean
data pool. Based on the tiny but progressively growing DC

and its complement DP , the model will be warmed up ac-
cording to Eq. 2 during the first T1 epochs.
Training with class-agnostic loss-guided split. After the
first stage, the model with certain accuracy can be used to

better distinguish clean samples and poisoned samples. In
the second stage, we further enlarge |DC | to accelerate the
defense process. We directly add α% samples with the low-
est L1(·) losses in the entire dataset intoDC , and remaining
samples are used as DP . Such a class-agnostic loss-guided
data split method can avoid selecting poisoned samples into
DC from the target class and further suppress the attack suc-
cess rate. With two split data pools, we adopt Eq. 2 to train
the model from epoch T1 to epoch T2.

4.2. Hard sample training with meta-split
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Figure 4. The clean ac-
curacy of our ASD de-
fended model during pre-
vious two stages and nor-
mally trained model.

After previous two stages,
there is still a small gap in clean
accuracy between our ASD de-
fended model and the normally
trained model (in Fig. 4). We
assume that the gap is caused by
that some clean samples can not
be accessed by the loss-guided
split. To verify our assump-
tion, we calculate the losses of
all training data for BadNets at-
tack [16]. In Fig. 3a, though the
losses of most clean samples are
nearly zeros, there are still some
clean samples with high losses, which are similar to poi-
soned ones. Such phenomena indicate that most clean data
have been well learned while poisoned data are not by our
model after previous two stages. However, there are still
some (model-dependent) clean hard samples, which are dif-
ficult to be separated from poisoned ones just by loss mag-
nitudes. We argue such clean hard samples are quite diffi-
cult to learn by a model yet poisoned samples can be easy
to learn during supervised learning. Fig. 3b and Fig. 3c
can verify our claim and show that losses of poisoned sam-
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ples drop much faster than those of clean hard samples after
one-epoch supervised learning, which inspires us to provide
a new solution to successfully separate clean hard samples
and poisoned ones.

To distinguish clean hard samples from poisoned ones
and inspired by meta-learning [13, 19], we propose a novel
manner to supplementDC , called meta-split. Given a model
fθ at any epoch in the third stage, we first create a new ‘vir-
tual model’ fθ′ with the same parameters and architecture
as fθ. The virtual model fθ′ is updated on the entire poi-
soned datasetD by the lossL2(·) with learning rate β which
can be denoted as:

θ′ ← θ,

θ′ ← θ′ − β∇θ′L2(fθ′(x), y),
(3)

where cross-entropy (CE) loss is adopted as L2(·). Finally,
γ% samples with the least loss reduction L1(fθ)−L1(fθ′)
are chosen to supplement DC .

Note that the virtual model fθ′ is only used for sam-
ple separation and is not involved in the followed training
process. After supplementing DC by meta-split and con-
sistently updating the model fθ using Eq. 2 until training
end at epoch T3, fθ can successfully split more clean hard
samples in DC and thus obtain higher accuracy. The loss
distribution of samples on fθ at T3 in Fig. 3d shows clean
samples and poisoned samples have been successfully sepa-
rated, which further demonstrates the effectiveness of meta-
split during the third stage of our ASD.

5. Experiments
5.1. Experimental Setups

Datasets and DNN models. We adopt three benchmark
datasets to evaluate all the backdoor defenses, i.e., CIFAR-
10 [9], GTSRB [44] and an ImageNet [9] subset. ResNet-
18 [18] is set as the default model in our experiments. More
details are listed in Appendix B.1. Moreover, we also pro-
vide the results on VGGFace2 dataset [5] and DenseNet-
121 [20] in Appendix C.
Attack baselines and setups. We conduct six state-of-
the-art backdoor attacks, including BadNets [16], Blend
backdoor attack (Blend) [8], Warping-based backdoor at-
tack (WaNet) [39], Input-aware backdoor attack (IAB) [40],
Reflection-based attack (Refool) [36] and clean-label at-
tack with adversarial perturbations (dubbed ‘CLB’) [48].
All these backdoor attacks are implemented as suggested
in [21] and their original papers. Following [21], we choose
3 (yt = 3) as the target label and set the poisoned rate as
25% poisoned samples in the target class for the clean-label
attack and 5% for other five backdoor attacks. More details
about the attack setups are summarized in Appendix B.2.
Besides, we also provide the results against the sample-
specific attack [26] and all2all attack in Appendix D.

Defense baselines and setups. We compare our pro-
posed method with four existing backdoor defenses, in-
cluding Fine-pruning (FP) [34], Neural Attention Distilla-
tion (NAD) [28], Anti-Backdoor Learning (ABL) [27] and
decoupling-based backdoor defense (DBD) [21]. Since FP,
NAD and ABL are sensitive to their hyper-parameters, we
report their best results optimized by grid-search (See Ap-
pendix N). DBD is implemented based on the original pa-
per [21]. Besides, FP and NAD are assumed to have access
to 5% of the clean training data. Furthermore, we also pro-
vide the results of cutmix-based defense [4] and differential
privacy SGD-based defense [12] in Appendix E.

For our ASD, we follow DBD [21] to adopt MixMatch
[3] as our default semi-supervised method. The initial num-
ber of clean seed samples w is 10 in each class and it will
increase n = 10 at every t = 5 epochs. After stage 1, the
filtering rate α% is set to 50%. For meta-split, we choose
Adam [22] optimizer with the learning rate β = 0.015 to
perform one-epoch supervised learning on a virtual model.
In particular, we only update the parameters of the last
three layers. The discussions about the hyper-parameters
for meta-split are demonstrated in Appendix I. On CIFAR-
10 and ImageNet, T1, T2 and T3 are chosen as 60, 90 and
120, and T3 is chosen as 100 on GTSRB. More details about
the defense setups are in Appendix B.3.
Evaluation metrics. We evaluate backdoor defenses by
two widely used metrics, i.e., the accuracy on clean dataset
(ACC) and the attack success rate (ASR). Specifically, ASR
is the fraction of the samples from the non-target class with
the trigger classified to the target label by the backdoored
model. For a backdoor defense, the higher ACC and the
lower ASR correspond to better performance.

5.2. Main Results

To verify the superiority of our backdoor defense, we
summarize the ACC and ASR of five backdoor defenses
against six backdoor attacks on three datasets in Table 2. We
also report the time cost of three training-time defenses in
Table 3. Table 2 shows that our ASD can achieve low ASRs
meanwhile maintain high ACCs on three datasets. In par-
ticular, ASD can purify and better utilize poisoned samples,
even outperforming ‘No Defense’ on ImageNet on aver-
age. In comparison, although FP and NAD require a larger
amount of local clean samples (2,500) than ours (100), FP
provides a limited reduction on ASR and NAD damages
the ACC of the models by a large margin, which constrains
their deployment in repairing the model. Table 3 shows that
ABL requires the least training time among three training-
time defenses but needs grid-search for hyper-parameters
to defend against different attacks. Besides, when ABL
encounters the WaNet or Refool, its static backdoor isola-
tion samples can be mixed with some clean samples. Once
ABL adopts these backdoor isolation samples to unlearn for
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Table 2. The clean accuracy (ACC %) and the attack success rate (ASR %) of five backdoor defenses against six backdoor attacks across
three datasets, including CIFAR-10, GTSRB and ImageNet. Note that the results of FP, NAD and ABL are reported by grid-searching the
best ones in different hyper-parameters. In contrast, the results of DBD and our ASD are provided in the same hyper-parameters. Best
results among five defenses are highlighted in bold.

Dataset Attack No Defense FP NAD ABL DBD ASD (Ours)
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

BadNets 94.9 100 93.9 1.8 88.2 4.6 93.8 1.1 92.3 0.8 93.4 1.2
Blend 94.1 98.3 92.9 77.1 85.8 3.4 91.9 1.6 91.7 0.7 93.7 1.6
WaNet 93.6 99.9 90.4 98.6 71.3 6.7 84.1 2.2 91.4 0 93.1 1.7
IAB 94.2 100 89.3 98.1 82.8 4.2 93.4 5.1 91.6 100 93.2 1.3
Refool 93.8 98.2 92.1 86.1 86.2 3.6 82.7 1.3 91.5 0.5 93.5 0
CLB 94.4 99.9 90.2 92.8 86.4 9.5 86.6 1.3 90.6 0.1 93.1 0.9
Average 94.2 99.4 91.5 75.8 83.5 5.3 88.7 2.1 91.5 17.0 93.3 1.1

GTSRB

BadNets 97.6 100 84.2 0 97.1 0.2 97.1 0 91.4 0 96.7 0
Blend 97.2 99.4 91.4 68.1 93.3 62.4 97.1 0.5 91.5 99.9 97.1 0.3
WaNet 97.2 100 92.5 21.4 96.5 47.1 97.0 0.4 89.6 0 97.2 0.3
IAB 97.3 100 86.9 0 97.1 0.1 97.4 0.6 90.9 100 96.9 0
Refool 97.5 99.8 91.5 0.2 95.5 1.4 96.2 0 91.4 0.4 96.8 0
CLB 97.3 100 93.6 99.3 3.3 21.1 90.4 2.3 89.7 0.3 97.3 0
Average 97.4 99.9 90.0 31.5 80.5 22.1 95.9 0.6 90.8 33.4 97.0 0.1

ImageNet

BadNets 79.5 99.8 70.3 1.6 65.1 5.1 83.1 0 81.9 0.3 83.3 0.1
Blend 82.5 99.5 63.4 9.5 64.8 0.3 82.6 0.7 82.3 100 82.5 0.2
WaNet 79.1 98.9 58.2 84.4 63.8 1.3 74.9 1.1 80.6 9.8 84.1 0.8
IAB 78.2 99.6 58.7 84.2 63.8 0.6 81.7 0 83.1 0 81.6 0.5
Refool 80.6 99.9 61.4 10.3 63.7 0.3 76.2 0.2 82.5 0.1 82.6 0
CLB 80.1 42.8 73.2 38.3 62.7 1.7 82.8 0.8 81.8 0 82.2 0
Average 80.0 90.1 64.2 38.1 64.0 1.5 80.2 0.5 82.0 18.4 82.7 0.3

Table 3. The average training time (s) of ABL, DBD and our ASD.

Dataset Method Stage 1 Stage 2 Stage 3 Total

CIFAR-10
ABL 740 2,450 10 3,200
DBD 30,000 80 15,770 45,850
ASD (Ours) 4,980 2,490 2,520 9,990

GTSRB
ABL 520 1,750 5 2,275
DBD 23,000 57 15,580 38,637
ASD (Ours) 4,920 2,460 830 8,210

ImageNet
ABL 900 2,940 15 3,855
DBD 180,000 350 42,750 223,100
ASD (Ours) 13,500 6,750 6,780 27,030

the backdoored model, the ACC will drop. In contrast, our
adaptive split can update two data pools dynamically, which
stabilizes the defense process of our ASD.

DBD can achieve a low ASR in most cases but fails
sometimes, e.g., when it defends the IAB attack on CIFAR-
10. The reason behind the observation is that DBD trains
the linear layer on the whole poisoned dataset during stage
2 for 10 epochs, which introduces the risk to implant the
backdoor. Besides, DBD needs a larger amount of time than
our ASD, e.g., 8 times our ASD on ImageNet. Stage 3 of
DBD under our framework also splits the poisoned dataset
into two data pools adaptively. Hence, after stage 3 of DBD
for 10 epochs, we replace the original data split method in
DBD with our proposed meta-split. As shown in Fig. 5a,
stage 3 of DBD can be compressed from the original 190
epochs to 25 epochs and with 91+% ACC and 4−% ASR,
which shows that our meta-split can help accelerate DBD.
Moreover, we compare the number of clean hard samples
and poisoned samples in DC during the final 30 epochs of
DBD and our ASD. Specifically, we choose 5,000 samples

1 20 40 60 80 100
Epoch

70

75

80

85

90

AC
C 

(%
)

DBD
DBD with
Our Meta-split

(a)

1 5 10 15 20 25 30
Epoch

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r

DBD Clean Hard Samples
ASD Clean Hard Samples
DBD Poisoned Samples
ASD Poisoned Samples

(b)

Figure 5. Combination and comparison between DBD and our
ASD. The experiments (±std over 5 random runs) are conducted
on CIFAR-10 for BadNets. (a) Combine DBD and our meta-split
to converge faster. (b) The number of clean hard samples and
poisoned samples in the clean data pool DC during the final 30
epochs. Our ASD can successfully select clean hard examples.

with the largest L1(·) losses chosen by the model as the
clean hard samples. Fig. 5b demonstrates that our ASD
can access much more clean hard samples than DBD and
poisoned samples with a similar low scale. More results
about the combination and comparison between DBD and
our ASD are in Appendix F and G.

5.3. Ablation Study on Defense Settings

In summary, ASD is composed of three stages. Here we
study the necessity of each stage by conducting the follow-
ing experiments. Results are shown in Fig. 6. We set the
poisoned rate of BadNets, Blend and WaNet as 20% and re-
main other settings unchanged. (1) Without Stage 1. The
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Figure 6. The clean accuracy (ACC %) and the attack success rate (ASR %) of different ablation studies for three stages in ASD on
CIFAR-10 for four backdoor attacks, which shows the necessity of each stage in our ASD.
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Figure 7. The clean accuracy (ACC %) and the attack success rate (ASR %) of different warming-up strategies in stage 1 on CIFAR-10 for
four backdoor attacks. A smaller t and a larger n correspond to a faster warming-up. The t and n should be set carefully to progressively
increase the number of samples in DC during stage 1 instead of building it in short time, which can prevent the collapse of ASD.

two data pools will approximate random initialization if we
directly start our defense without stage 1. Fig. 6 indicates
that the defense process will be completely disrupted with
two randomly initialized data pools. (2) Without Stage 2.
In stage 2, since less poisoned samples from the target class
will be introduced to a larger DC by class-agnostic loss-
guided split, it can rapidly promote the ACC and suppress
the ASR by a large margin. The defaulted ASD can achieve
a lower ASR and a higher ACC than that without stage 2.
(3) Without stage 3. As shown in Fig. 6, ACC will achieve
only about 80% without stage 3 owing to the lack of the
model-dependent clean hard samples in DC . More results
about the ablation study on attack settings and defense set-
tings are shown in Appendix H and I.
Different warming-up strategies. Compared with our de-
fault setting (t = 5 and n = 10), ACC can increase faster
when building DC in shorter time, i.e., t is smaller and n is
larger, as shown in Fig. 7. However, it can wrongly intro-
duce a large number of poisoned samples intoDC and result
in the failure of our ASD, especially under WaNet and CLB.
Hence, it is necessary to control the speed to build DC and

constrain the number of samples in DC during stage 1.
Different semi-supervised learning methods. We treat
the samples in DP as unlabeled and apply semi-supervised
learning to learn from both data pools. In this experi-
ment, we show our ASD can work well with various semi-
supervised learning, e.g., UDA [55] and ReMixMatch [2].
We keep all settings unchanged. As shown in Table 4,
UDA and ReMixMatch can still have similar robustness
against backdoor attacks compared with MixMatch [3] un-
der our proposed ASD. More details about these three semi-
supervised learning methods are in Appendix J.

5.4. Ablation Study on Seed Sample Selection

In our method, we utilize the seed samples with 10 clean
samples per class to warm up the model. Here, we discuss
the flexibility of the seed sample selection. (1) Seed samples
contain a few poisoned samples. (2) Seed samples are from
another classical dataset, e.g., ImageNet.

First, we discuss the case that some poisoned samples are
introduced in the seed samples and the results are shown in
Table 5. It can be seen that our ASD can still exceed 91%
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Table 4. The clean accuracy (ACC %) and the attack success
rate (ASR %) on CIFAR-10 of our ASD implemented by differ-
ent semi-supervised methods. Consistent satisfactory results show
the stability of ASD.

Method BadNets Blend WaNet CLB
ACC ASR ACC ASR ACC ASR ACC ASR

MixMatch 93.4 1.2 93.7 1.6 93.1 1.7 93.1 0.9
UDA 92.6 2.1 91.9 2.3 92.5 1.6 92.1 2.8
ReMixMatch 91.6 1.4 91.5 1.0 91.9 0 91.1 0.1

Table 5. The clean accuracy (ACC %) and attack success rate
(ASR %) on CIFAR-10 for different numbers of poisoned samples
in the seed sample.

Poisoned Number 0 1 2 3 4

BadNets ACC 93.4 94.1 93.6 93.6 93.5
ASR 1.2 1.5 2.5 1.4 1.3

Blend ACC 93.7 93.6 93.5 93.5 93.1
ASR 1.6 2.5 2.7 0.8 99.9

WaNet ACC 93.1 93.6 93.7 93.4 93.5
ASR 1.7 1.4 2.2 4.1 5.4

CLB ACC 93.1 93.5 91.3 93.7 93.2
ASR 0.9 1.3 2.5 1.5 98.9

ACC and suppress the creation of backdoor even though the
seed samples contain 1 ∼ 3 poisoned samples. Meanwhile,
as the poisoned number increases to 4, our ASD can also
defend against BadNets and WaNet successfully. This il-
lustrates that our method has certain resistance to the seed
samples mixed with a few poisoned samples. Then, we in-
troduce the transfer learning-based ASD when adopting the
seed samples from another classical dataset as follows.
Threat model. Considering a more realistic scenario, we
cannot obtain any clean sample from the source dataset.
Here, we specify the source training data as CIFAR-10.
However, only 100 clean samples from the classical Ima-
geNet dataset are available.
Methods. We first assign the 100 ImageNet clean samples
as DC and remove the labels of the entire poisoned CIFAR-
10 as DP and perform the semi-supervised learning for 10
epochs. Then we freeze the pre-trained backbone and fine-
tune the linear layer on the entire poisoned dataset via su-
pervised learning for 1 epoch. Finally, this model will be
regarded as the initialized model of our ASD and other set-
tings of our ASD remain unchanged.
Results. As shown in Table 6, after the above transfer-
based pre-training, the model will achieve about 52% ACC
and 9% ASR. By adopting this transfer-based initialized
model, our ASD achieves 92+% ACC and 4−% ASR,
which shows our ASD can obtain robustness against back-
door attacks without clean seed samples from the poisoned
training dataset. More results are in Appendix I.

5.5. Resistance to Potential Adaptive Attacks

In the above experiments, we assume that attackers have
no information about our backdoor defense. In this section,

Table 6. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 under the proposed transfer-based setting.
Transfer learning-based ASD works well.

Method BadNets Blend WaNet CLB
ACC ASR ACC ASR ACC ASR ACC ASR

Transfer-based
pre-training 52.6 8.9 51.5 10.2 53.4 9.3 52.6 9.5

Transfer-based
ASD 92.9 2.4 92.5 2.6 92.5 3.5 92.1 2.8

we consider a more challenging setting, where the attack-
ers know the existence of our defense and can construct the
poisoned dataset with an adaptive attack.
Threat model for the attackers. Following existing work
[8, 16, 48], we assume that the attackers can access the en-
tire dataset and know the architecture of the victim model.
However, the attackers can not control the training process
after poisoned samples are injected into the training dataset.
Methods. Our defense separates samples by the magnitude
of the loss reduction in the final stage, so adaptive attacks
should aim to minimize the difference in the loss reduction
between clean samples and poisoned samples. First, the at-
tackers train a clean model in advance. Then, since the gra-
dient determines the loss reduction of the model [22,57], the
trigger pattern can be optimized by minimizing the gradient
for poisoned samples w.r.t the trained model and maximiz-
ing that for clean samples.
Settings. We conduct experiments on CIFAR-10. Based on
the clean model, we adopt projected gradient descent (PGD)
[38] to optimize the trigger pattern for 200 iterations with a
step size 0.001. Besides, we set the perturbation magnitude
as 32/255 and the trigger size as 32×32.
Results. The adaptive attack can achieve 94.8% ACC and
99.8% ASR without any defense. However, this attack can
obtain 93.6% ACC and only 1.4% ASR under our ASD,
which illustrates our defense can resist the adaptive attack.
The probable reason is that the trigger pattern is optimized
on the surrogate clean model and has low transferability.
The details of this adaptive attack and another designed
adaptive attack are stated in Appendix K and Appendix L.

6. Conclusion

In this paper, we revisit training-time backdoor defenses
in a unified framework from the perspective of splitting the
poisoned dataset into two data pools. Under our frame-
work, we propose a backdoor defense via adaptively split-
ting the poisoned dataset. Extensive experiments show that
our ASD can behave effectively and efficiently against six
state-of-the-art backdoor attacks. Furthermore, we explore
a transfer-based ASD to show the flexibility of seed sam-
ple selection in our method. In summary, we believe that
our ASD can serve as an effective tool in the community to
improve the robustness of DNNs against backdoor attacks.
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