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Abstract

With only video-level event labels, this paper targets at
the task of weakly-supervised audio-visual event perception
(WS-AVEP), which aims to temporally localize and catego-
rize events belonging to each modality. Despite the recent
progress, most existing approaches either ignore the unsyn-
chronized property of audio-visual tracks or discount the
complementary modality for explicit enhancement. We ar-
gue that, for an event residing in one modality, the modality
itself should provide ample presence evidence of this event,
while the other complementary modality is encouraged to
afford the absence evidence as a reference signal. To this
end, we propose to collect Cross-Modal Presence-Absence
Evidence (CMPAE) in a unified framework. Specifically,
by leveraging uni-modal and cross-modal representations,
a presence-absence evidence collector (PAEC) is designed
under Subjective Logic theory. To learn the evidence in a
reliable range, we propose a joint-modal mutual learning
(JML) process, which calibrates the evidence of diverse au-
dible, visible, and audi-visible events adaptively and dy-
namically. Extensive experiments show that our method
surpasses state-of-the-arts (e.g., absolute gains of 3.6%
and 6.1% in terms of event-level visual and audio metrics).
Code is available in github.com/MengyuanChen21/
CVPR2023-CMPAE.

1. Introduction
Research in computer vision places a significant empha-

sis on the visual aspects of event perception; nevertheless, in

the real world with multisensory modalities, natural events

are distinguished by a great deal more than just their appear-

ance [11, 30, 52, 53, 56, 66]. For instance, think of playing a

specific musical instrument in a concert hall, a barking dog,

or starting a car with the engine sound. To properly compre-
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Figure 1. With only video-level annotations, weakly-supervised

audio-visual event perception (WS-AVEP) aims to predict the tem-

poral boundaries of various only audible (in orange), only visible

(in green), or audi-visible (in blue) events in a video.

hend an event, it is necessary to take acoustics into account

and engage in joint audio-visual perception.

The target of audio-visual event perception (AVEP) is

to temporally categorize video events. However, collecting

precisely temporal audio-visual annotations is a bottleneck

and consequently limits the scalability of a fully-supervised

learning framework. As a result, Tian et al. [52,53] propose

to perceive audio-visual events in an weakly-supervised

manner, where only easily available video-level labels are

needed during model training. As depicted in Figure 1,

given videos which may have various audible, visible,

or audi-visible events, the weakly-supervised audio-visual

event perception (WS-AVEP) is commonly optimized by

utilizing the video-level annotations.

To date in the literature, current WS-AVEP approaches

mainly embrace two types of pipelines: (1) To comprehen-

sively incorporate both modalities, some pioneering meth-

ods [53] assume that each event in a video is simultane-

ously audible and visible. Based on this characteristic,

numerous cross-modal fusion strategies are proposed, in-

cluding cross attention [60, 61, 63] and modality interac-

tion [47, 62]. Although achieving promising performance,

the rigorous assumption may not always hold in practice
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Table 1. Comparison with the state-of-the-art methods on two

tasks, AVVP and AVE. Note that the two tasks have different goals

and properties. Please refer to the text for more details.

Task

Method
CMBS [61] JoMoLD [6] Ours

AVVP [52] 51.7 57.3 60.1
AVE [53] 74.2 71.8 74.8

due to some audio-visual non-correspondence caused by

out-of-screen objects and background noises. To this end,

targeting at unsynchronized audio and visual information

modeling, (2) Tian et al. [52] suggest a more general setting

that recognizes event categories and temporal boundaries

bind to sensory modalities, which breaks the modality con-

sistency restriction. Since video-level labels do not indicate

the detailed modality information, further research focuses

on mining audio- or visual-specific information by learning

from modality-specific noises [6], heterogeneous informa-

tion [58], or hierarchical features [22]. Nonetheless, these

approaches discount the complementary modality for ex-

plicitly enhancing the prediction of the other modality. Al-

though the multimodal multiple instance learning (MMIL)

framework [6, 30, 52] can perform cross-modal enhance-

ment for the feature learning, it still neglects the explicit and

extra assistance of the complementary clues for individual

modality prediction. Consequently, as shown in Table 1,

state-of-the-arts of the two pipelines can only achieve sig-

nificant performance in one single WS-AVEP setting, show-

ing that current methods are in a dilemma of making full use

of both uni-modal and cross-modal information.

To tackle the above issues, we argue that, for an event re-

siding in one modality1, the modality itself should provide
ample presence evidence of this event, while the other com-
plementary modality is encouraged to afford the absence
evidence as a reference signal. On the one hand, to fully

tap the potential of each modality, it is desirable to make the

modality self-reliable for determining the evidence strength

of an present event in the corresponding track. On the other

hand, for judging which events are absent, relying on a

single modality is insufficient, whereas the other track can

hand over complementary but not dominant assistance [66].

For example, although a baby is out-of-screen and the event

“baby cry” only appears in the audio modality, we can still

infer that the audio track might not contain outdoor events

because the perceived visual scene is considered to be in-

doors. Similarly, when the audio track is salient, some vig-

orous activity may be less likely to occur in the visual track.

Motivated by the above observations, we aim to cap-

ture the presence and absence evidence for individual events

by using uni-modal and cross-modal information. To ob-

tain reliable evidence that can explicitly reflect and mea-

1No matter whether the event is modality-specific or audi-visible.

sure the event presence/absence intensity in each modal-

ity, conventional convolutional neural networks, which are

based on classification probability, could be overconfident

and in the cart [43, 50, 55]. Recently, evidential deep learn-

ing (EDL) [36,50], which can quantify uncertainty in model

predictions trustfully by collecting subjective evidence, has

attracted increasing attention and been successfully used in

a variety of computer vision tasks [1, 3, 5, 17, 27, 57]. In

this paper, we propose to collect Cross-Modal Presence-

Absence Evidence (CMPAE) for WS-AVEP in a unified

framework. As shown in Figure 2, we design a presence-

absence evidence collector (PAEC) by using uni-modal and

cross-modal representations. Here, the presence evidence

of events in each track is derived from the modality itself,

whereas the other modality acts as a cross-modal selector

for generating the absence evidence. The evidence of each

temporal snippet is then accumulated to video-level evi-

dence and optimized in accordance with Subjective Logic

theory [23, 64]. To learn the evidence in a reliable range,

we propose a joint-modal mutual learning (JML) process,

which calibrates the evidence of diverse audible, visible,

and audi-visible events adaptively and dynamically. By

virtue of the above design, the proposed PAEC and JML

modules can cooperate with each other in a unified frame-

work for effective presence-absence evidence learning.

Our main contributions can be summarized as follows:

• We propose a novel cross-modal presence-absence evi-

dence learning framework for weakly-supervised audio-

visual event perception, which jointly enjoys the merits

of uni-modal discrimination and cross-modal enhance-

ment under Subjective Logic theory.

• With the cooperative presence-absence evidence collec-

tor and the joint-modal mutual learning process, we in-

ject the uni-modal and cross-modal information into the

learned evidence and calibrate it to a reliable range.

• We conduct extensive and in-depth experiments on sev-

eral popular and standard WS-AVEP datasets [52, 53].

The encouraging results compared with state-of-the-arts

demonstrate the effectiveness of our method.

2. Related Work
Audio-Visual Learning. Living in the multi-modal world

with fruitful audio and visual information, humans un-

derstand events via seeing and hearing from the environ-

ments [8–10, 12, 30, 52, 66]. To perceive the world both vi-

sually and aurally, learning audio-visual representation si-

multaneously is fundamental [2, 14, 20, 34, 40, 41, 44]. To

obtain effective multi-modal representation, cross-modal at-

tention mechanisms [26,30,60,66] are commonly leveraged

for audio-visual feature fusion. With the joint multi-modal

representation, several tasks are explored, such as vision-

infused audio inpainting [69], sound-assisted action recog-

nition [24, 25], source sound localization/separation [13,
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49], zero-shot learning [37], question answering [28],

multi-modal video domain adaptation [42, 66], and audio-

visual video parsing/localization [52, 53].

Weakly-supervised Audio-Visual Event Perception. To

comprehensively leverage both audio and visual modali-

ties to understand video in a weakly-supervised manner,

Tian et al. firstly introduce the audio-visual event (AVE)

localization task [53]. In the AVE task, when an event is

both auditory and visible at the same time, the model de-

termines its presence and pinpoints its border in the tem-

poral dimension. Existing approaches frequently rely on

attention strategies [31, 32, 59, 60, 63] or cross-modal inter-

actions [29, 35, 46–48, 62] to acquire effective representa-

tions for AVE. Other works adopt additional regular terms

to improve the discriminative ability of models, such as

background suppression [61] and positive sample propaga-

tion [70]. Different from AVE, another task named audio-

visual video parsing (AVVP) [52] disproves the assumption

that audio and visual signals are always temporally synchro-

nized and in alignment. Based on the hybrid attention net-

work and multi-modal multiple instance learning (MMIL)

framework [52], various strategies [6, 22, 30, 38, 39, 58] are

explored, such as audio-visual track swapping and contrast-

ing [58], cross-video and cross-modality enhancement [30],

dual hierarchical hybrid network [22], and joint-modal la-

bel denoising [6]. JoMoLD [6] dynamically identifies and

removes modality-specific noisy labels in a two-stage man-

ner. Despite their significant performance, the above meth-

ods discount the complementary modality information for

explicitly enhancing and calibrating the prediction of in-

dividual modalities. Currently, most methods target at ei-

ther AVE or AVVP separately due to the different proper-

ties between the two tasks. Although a few recent meth-

ods [65, 71] attempt to conduct experiments on both tasks,

they still employ different baseline frameworks severally for

each dataset. In this paper, we propose a unified CMPAE

framework that can handle both AVE and AVVP tasks.

Evidential Deep Learning (EDL). The mainstream deep

networks essentially perform a point estimation of the clas-

sification probability distribution, which cannot quantify

the predictive uncertainty and have a tendency to be over-

confident in false predictions [16]. To this end, EDL [36,50]

targets at knowing “what they don’t know” and falling back

onto a prior belief. Based on the Dempster-Shafer theory

of evidence [64] and Subjective Logic theory [23], EDL al-

lows uncertainty estimation in a single forward pass [55] by

collecting evidence for each category and modeling the dis-

tribution of class probabilities. In recent two years, EDL

has received increasing attention and has successfully been

adopted in various computer vision tasks, including multi-

view classification [17, 33], open-set recognition and out-

of-distribution detection [3, 21], regression [1], long-tail

learning [27], meta-learning [45], etc. Some pioneering

works also explore the temporal localization and weakly-

supervised tasks in videos [5, 57]. However, the above

approaches neglect the joint-modal learning in presence-

absence evidence collection and calibration.

3. Our Approach
Our proposed CMPAE framework is shown in Figure 2,

given a video containing audio and visual tracks, we first

utilize pre-trained feature extractors to obtain cross-modal

features of each snippet (Section 3.1). Then, under the ev-

idential deep learning framework, a presence-absence ev-

idence collector (PAEC) for each modality is designed,

where the presence evidence is obtained by the uni-modal

information and the absence evidence is additionally con-

structed via a cross-modal selector (Section 3.2). The

learned evidence is further calibrated to a reliable range

by leveraging a joint-modal mutual learning (JML) process

adaptively and dynamically (Section 3.3). Finally, the uni-

fied framework is end-to-end learned (Section 3.4).

3.1. Notations and Preliminaries
The WS-AVEP task targets at localizing audible/visible

events that occur in each snippet of a video. Specifically,

for a video V , its corresponding multi-hot event category

labels are ya,yv and yav , which denote audio, visual, and

audio-visual event labels, respectively. An audio-visual

event means that the event appears in both audio and visual

tracks in a synchronized fashion. Note that ya,yv,yav ∈
{0, 1}C , where C is the event category number. However,

due to the weakly-supervised setting, we can only access

the modality-agnostic video-level label y ∈ {0, 1}C during

training. Following previous works [6,7,30,52,58], we first

divide the video V into T non-overlapping snippets, and

use pre-trained off-the-shelf networks and embedding lay-

ers, to extract audio and visual features {xa
t ,x

v
t }Tt=1, where

the feature dimension of each modality is D for further uni-

modal and cross-modal learning.

Currently, existing dominant approaches mainly em-

brace a video-level classification framework, which learns

importance scores for aggregating snippet-level predictions

into a video-level one and then performs optimization by

using the standard binary cross-entropy (BCE) loss:

Lbce = −
∑

m∈M

C∑
c=1

ymc log pmvid,c (1)

where M = {a, v, av} denotes the set of different tracks.

pmvid,c is the aggregated video-level prediction, which is

learned by using the attention mechanism [53,61] or MMIL

formulation [6, 52]. Note that since only video-level an-

notations are available, some methods [30, 52, 53] treat the

labels of the audio, visual, and audio-visual tracks as the

same, i.e., ya = yv = yav = y, which may hinder the op-

timization of specific modalities. To improve the learning
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Figure 2. Overall framework of the proposed cross-modal presence-absence evidence learning (CMPAE). Given a video containing audio

and visual tracks, we first extract snippet-level visual and audio features. Then, a presence-absence evidence collector (PAEC) for each

modality is designed, which collects the presence evidence from the uni-modal information and additionally constructs the absence evi-

dence via cross-modal selectors. In the process of obtaining video-level evidence, an attention module is adopted to generate aggregation

weights. Finally, the learned evidence is adaptively and dynamically calibrated by a joint-modal mutual learning (JML) strategy.

quality of different tracks, some methods [6, 58] attempt to

mine modality-specific labels for denoising ya and yv .

3.2. Presence-Absence Evidence Collector
We design a novel cross-modal presence-absence evi-

dence collector for the WS-AVEP task by leveraging the

formalism of evidential deep learning (EDL) [36, 50] based

on Subjective Logic theory [23]. Different from standard

classifier learning where the resultant model is ignorant of

the confidence of its prediction, EDL proposes to explicitly

collect evidence in an uncertainty-aware manner by treat-

ing classification output as the pointwise estimation of the

categorical distribution and placing a prior over the distribu-

tion of all possible classification outputs. It is obvious that,

for WS-AVEP, collecting explicit evidence and building an

uncertainty-aware framework is even more crucial than it in

the traditional single-modality perception tasks [3,5,17,27]:

(1) The lack of modality-specific labels leads to significant

noise and uncertainty in model optimization. It is difficult

to determine the contribution of an individual modality to

the final prediction. (2) Due to the lack of fine-grained tem-

poral annotation, the temporally accumulated classification

probability could be unreliable thus hinders the uni-modal

and cross-modal feature learning.

Based on the above analysis, the traditional BCE loss

is incapable of explicitly collecting presence/absence evi-

dence in an uncertainty-aware manner. To this end, some pi-

oneering EDL-based models [50, 68] jointly generate pres-

ence and absence evidence from the same single-modality

features. However, these approaches do not take advantage

of the other complementary modality to improve the predic-

tion of the current one. We argue that, for an event residing

in one modality, the modality itself should provide ample

presence evidence of this event, while the other complemen-

tary modality is encouraged to afford the absence evidence

as a reference signal. As shown in Figure 2, for the features

of modality m ∈ {a, v}, {xm
t }Tt=1, the presence evidence

of the c-th event category is a scalar and can be obtained by:

emt,c = g (fc(x
m
t ;θ1)) , (2)

where fc is a DNN parameterized by θ1 to collect evidence

for the c-th event category, g denotes the evidence func-

tion, e.g., SoftPlus or Exp, to keep the obtained evidence

emt,c non-negative. As for the absence evidence, since the

complementary modality can provide useful information,

we design a cross-modal selector to mine absence-relevant

context for improving evidence learning:

êmt,c = g
(
f̂c(x̂

m
t ;θ2)

)
,

x̂m
t = xm

t � (
hm(xm

t + xm̂
t ;θm

3 ) + 1)
)
,

(3)

where m̂ denotes the complementary modality of m, and

xm
t + xm̂

t fuses the cross-modal features. We assume that

each channel of xm
t encodes distinct context for absence

evidence collection. hm(·) is a fully-connected layer trans-

forming the fused cross-modality feature into channel-wise
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selectors, and � is the Hadamard product. 1 is an all-ones

vector for residual connection. With the snippet-level evi-

dence, the video-level evidence of each modality can be ac-

cumulated as: {emvid,c, êmvid,c} =
∑

t A
m
t,c{emt,c, êmt,c}, where

Am
t,c is the modality-aware temporal attention score, which

can be learned by standard strategies [6, 52]. Note that the

evidence collector fc and f̂c are shared between audio and

visual tracks, which can facilitate the learning of the cross-

modal common space and alleviate overfitting issues.

With the video-level presence-absence evidence, under

the Subjective Logic theory [23], we build a Beta distribu-

tions for the c-th binary classification task in modality m:

Beta(pc|αc, βc) =
1

B(αc, βc)
pαc−1
c (1− pc)

βc−1, (4)

where B(αc, βc) = Γ(αc)Γ(βc)/Γ(αc+βc) and Γ(·) is the

Gamma function. For brevity, we omit the scripts m and vid
of p, α and β. According to [23], α and β have a fixed rela-

tion with the corresponding presence/absence evidence, i.e.,

αc = evid,c + 1, βc = êvid,c + 1. Treating Beta(pc|αc, βc)
as the class probability distribution, the Bayes risk for the

cross-entropy loss for modality m can be derived as:

Lm
cls =

∫ [
C∑

c=1

−ymc log(pc)

]
Beta(pc|αc, βc)dp

=

C∑
c=1

[ψ (αc + βc)− ψ (ymc αc + (1− ymc )βc)] ,

(5)

where ψ(·) is the digamma function.

3.3. Joint-modal Mutual Learning
Although the presence-absence evidence collector lever-

ages the complementary modality for absence-event percep-

tion, it primarily focuses on performing single-track recog-

nition with uni-modal information. Nevertheless, the WS-

AVEP itself is a cross-modal learning task that involves

audio-visual collaboration. As a result, we propose to fur-

ther learn adaptive and cooperative evidence by performing

joint-modal mutual learning between cross-modal evidence

and uni-modal evidence.

To perform joint-modal mutual learning effectively and

comprehensively, as shown in Figure 2, we first generate

global joint-modal presence-absence evidence by using the

fused audio-visual features:

eavvid,c, ê
av
vid,c =

∑
t

Aav
t,c · g(fav

c (xa
t + xv

t ;θ4)), (6)

where Aav
t,c is the joint-modal temporal score, which can

be obtained by taking the average of Aa
c and Am

c , and fav
c is

a DNN parameterized by θ4 to collect the global presence-

absence evidence of the entire video by using both audio

and visual features. To learn the evidence, the EDL loss

Lav
cls is adopted as in Eq. (5) by using the annotated video-

level labels. Note that, different from the evidence collec-

tion in each single modality, the global presence and ab-

sence evidence are obtained from the same feature due to

the information completeness. The detailed analysis about

evidence collection strategies can be found in Section 4.3.

After obtaining the presence-absence evidence of the

aforementioned three branches, i.e. audio, visual, and joint-

modal, we design a mutual learning strategy between joint-

modal evidence and uni-modal evidence with uncertainty

calibration, thus generating more adaptive and comprehen-

sive evidence. According to the Subjective Logic the-

ory [23], the classification probabilities and predictive un-

certainties can be inferred as:

pmc =
emc + 1

emc + êmc + 2
, um

c =
2

emc + êmc + 2
, (7)

where m ∈ {a, v, av}, and the subscript vid is omitted for

brevity. However, since we cannot determine which single

modality the labeled event belongs to (or whether it occurs

in both modalities simultaniously), it is unreasonable to di-

rectly allow the cross-modal classification results to guide

the uni-modal learning. As a result, we use the Max oper-

ator to fuse the prediction of the target classes on the audio

and visual modalities, and the Mean operator for the non-

target categories, based on the fact that yc = 1 represents

the event c occurred in at least one modality and yc = 0
means that the event c did not occur in either modality. The

fusion process can be specifically expressed as follows:

{uuni
c , punic } = δ(c){ua

c , p
a
c}+ (1− δ(c)){uv

c , p
v
c}, (8)

where δ(c) plays the role of uni-modal selection:

δ(c) =

⎧⎨
⎩

1, pac > pvc , yc = 1,
0, pac ≤ pvc , yc = 1,
1/2, yc = 0.

(9)

Thereafter, we adopt the predictive uncertainties as cali-

bration factors to optimize the joint-modal mutual learning.

For each class, since uuni
c reflects the prediction confidence

of event c in the most representative modality, we incorpo-

rate it to the mutual learning to urge the model to prefer-

entially focus on the corresponding modality and category

which are more reliable to learn. In addition, the supervi-

sion of the joint-modal branch is error-free in comparison to

each individual modality, producing a more stable predic-

tion. Therefore, we aim to make the the joint-modal infor-

mation dominate the mutual learning when its uncertainty is

low. Finally, the optimization objectives of our joint-modal
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mutual learning strategy can be expressed as follows:

Ljml,1 =
∑
c

(1− uav)
(
1− uuni

c

) ∗ l (s(pavc ), punic

)
,

Ljml,2 =
∑
c

uav
(
1− uuni

c

) ∗ l (pavc , s(punic )
)
,

(10)

where s(·) denotes the gradient truncation operation on the

input, and l(·) is a distance metric function, e.g. L2-norm.

uav is the averaged value of all the uav
c for representing the

global uncertainty of the video.

3.4. Learning and Inference
Training. Combining all the aforementioned optimization

objectives, we obtain the final loss functions as:

Li =

m∑
M

Lm
cls + Ljml,i, i = 1, 2, (11)

where M = {a, v, av}. We alternate the loss functions

Li between iterations to implement the joint-modal mutual

learning process. Specifically, the optimization details are

summarized in the Supplementary Material.

Inference. For a test video, we first predict its video-level

classification probabilities pmvid,c and the snippet-level tem-

poral class activation sequence pmt,c, where m ∈ {a, v, av}.

According to Subjective Logic theory, pmvid,c = (emvid,c +
1)/(emvid,c + êmvid,c + 2), and pt,c can be inferred similarly

by using emt,c and êmt,c. Thereafter, following the standard

process [6, 52], we apply a threshold strategy to obtain pro-

posals for audio and visual events, and finally localize the

audio-visual events by taking the intersection of audio and

visual events belonging to the same category.

4. Experimental Results
We evaluate CMPAE on two benchmarks: AVVP [52],

and AVE [53]. To comprehensively analyze our method for

WS-AVEP, we additionally combine LLP and AVE as an

entire dataset, named AVEP, for evaluation.

4.1. Experimental Setup
AVVP. Tian et al. [52] propose the audio-visual video pars-

ing (AVVP) task and construct the Look, Listen, and Parse
(LLP) dataset. LLP contains 11,849 10-second video clips

of 25 event classes collected from AudioSet [15], and each

video contains events of 1.64 categories in average. Since

the videos do not guarantee the temporal or categorical con-

sistency of events on the visual and audio tracks, it is chal-

lenging and suitable to perform AVVP on this benchmark.

Following previous works [6, 30, 52], we split the dataset

into a training set of 10,000 videos, a validation set of 649

videos, and a testing set of 1,200 videos.

AVE. The Audio-Visual Event (AVE) dataset [53] selects

4,143 YouTube videos covering 28 categories from Au-

dioSet [15]. Different from LLP, AVE focuses on the cases

where videos keeps synchronization on both audio and vi-

sual tracks, which is the most common situation in the real

world. The sizes of the training, validation, and testing sets

are 3,339, 402 and 402, respectively.

AVEP. To further evaluate the capacity of different ap-

proaches, we additionally combine the LLP and AVE

datasets as an entire dataset named AVEP. Specifically, we

enlarge the LLP dataset by adding all the AVE samples be-

longing to categories that are semantically non-overlapping

with those in LLP. Ultimately, the AVEP dataset consists

of 11,581 training videos, 840 validation videos, and 1,391

testing videos, which cover 39 categories. Note that al-

though the goal and the evaluation metrics of AVEP are

the same as those of AVVP, the newly combined dataset

is still meaningful: In the dataset of AVVP, most event

classes have audible, visible, and audi-visible segments,

while all the event categories annotated in AVE are only

audi-visible. Therefore, adding new categories with only

synchronized information can increase the diversity and dif-

ficulty of modality-aware event perception.

Evaluation Metrics. Following previous works [6, 52], we

evaluate the predicted audio, visual, and audio-visual event

proposals under segment-level and event-level metrics, for

both AVVP and AVEP datasets. Specifically, the segment-

level metrics include (1) F-socre of audio events, (2) F-score

of visual events, (3) F-score of audio-visual events, (4) the

average of the former three metrics, and (5) F-score of all

events without considering the modality, whose abbrevia-

tions are A, V, AV, Type, and Event, respectively. The event-

level metrics are similar, while the event-level F-scores are

calculated with a mIoU (mean Intersection over Union)

threshold of 0.5. For the AVE task, we follow [53, 61] to

adopt overall accuracy as the evaluation metric.

Implementation Details. We implement CMPAE on the

JoMoLD [6] backbone. Following previous approaches [52,

53], we adopt pre-trained VGGish [19] to yield audio

features, and employ pre-trained feature extractors, i.e.

ResNet152 [18] and R(2+1)D [54] for LLP and AVEP and

VGG-19 [51] for AVE, to obtain the low-level visual feature

representations. The evidence collector fm
c , f̂m

c are part of

the backbone network with two additional fully-connected

layers, activated by LeakyReLU, and the evidence function

g is set to Exp. The feature dimension D and the number

of snippets are set to 512 and 10. For the stability of train-

ing, we select the negative logarithm of the marginal likeli-

hood as the EDL optimization objective in implementation.

Specifically, we replace the digamma function in Eq. (5)

with a logarithm function. Our model is implemented with

Python 3.10 and PyTorch 1.12.1, and we utilize Adam with

a batch size of 128 and a learning rate of 5×10−4, which de-

cays by a factor of 0.25 every 6 epochs, for model optimiza-

tion. We train the model for 25 epochs on all the datasets.

Experiments are conducted on a RTX 3090 GPU.
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Table 2. AVVP performance comparison with existing methods on the LLP dataset.

Methods
Segment-level Event-level

A V AV Type Event A V AV Type Event

AVE [53], ECCV2018 49.9 37.3 37.0 41.4 43.6 43.6 32.4 32.6 36.2 37.4

AVSDN [29], ICASSP2019 47.8 52.0 37.1 45.7 50.8 34.1 46.3 26.5 35.6 37.7

HAN [52], ECCV2020 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0

CVCMS [30], NeurIPS2021 60.8 63.5 57.0 60.5 59.5 53.8 58.9 49.5 54.0 52.1

MA [58], CVPR2021 59.8 57.5 52.6 56.6 56.6 52.1 54.4 45.8 50.8 49.4

DHHN [22], MM2022 61.4 63.4 56.8 60.5 59.5 54.6 60.8 51.1 55.5 53.3

MM-Pyramid [65], MM2022 61.1 60.3 55.8 59.7 59.1 53.8 56.7 49.4 54.1 51.2

CMBS* [61], CVPR2022 60.2 54.3 50.0 54.8 55.7 51.1 50.8 43.7 48.5 48.3

JoMoLD [6], ECCV2022 61.3 63.8 57.2 60.8 59.9 53.9 59.9 49.6 54.5 52.5

CMPAE(Ours) 64.2
(+2.9)

66.4
(+2.6)

59.2
(+2.0)

63.3
(+2.5)

62.8
(+2.9)

56.6
(+2.7)

63.7
(+3.8)

51.8
(+2.2)

57.4
(+2.9)

55.7
(+3.2)

Table 3. AVE performance comparison.

Methods Accuracy(%)

AVEL [53], ECCV2018 66.7

AVRB [47], WACV2020 68.9

CMRAN [62], MM2020 72.9

PSP [70], CVPR2021 73.5

CMAN [63], AAAI2022 70.4

MM-Pyramid [65], MM2022 73.2

CMBS [61], CVPR2022 74.2

DPNet [48], ECCV2022 74.5

CMBS [61], fully-supervised 79.3

JoMoLD* [6], ECCV2022 71.8

CMPAE(Ours) 74.8

* denotes the reproduced results.

Table 4. AVEP performance comparison with existing methods.

Methods
Segment-level Event-level

A V AV Type Event A V AV Type Event

CMBS [61], CVPR2022 58.0 56.2 52.3 55.5 54.8 51.5 53.6 46.4 50.5 49.4

JoMoLD [6], ECCV2022 60.6 58.9 54.5 58.0 57.7 53.6 55.8 48.6 52.7 51.0

CMPAE(Ours) 64.1
(+3.5)

64.4
(+5.5)

58.8
(+4.3)

62.4
(+4.4)

62.2
(+4.5)

57.2
(+3.6)

61.9
(+6.1)

52.3
(+3.7)

57.1
(+4.4)

55.6
(+4.6)

Table 5. Ablation studies of our method.

EDL PAEC JML
Seg-level Type Eve-level Type

AVVP AVEP AVVP AVEP

� � � 60.8 58.0 54.5 52.7

� � � 61.0 58.9 54.9 53.8

� � � 61.9 61.5 56.1 55.9

� � � 61.4 60.8 55.3 54.6

� � � 63.3 62.4 57.4 57.1

4.2. Comparison with State-of-the-art Methods
Evaluation on AVVP. As shown in Table 2, CMPAE

outperforms previous weakly supervised methods in all

metrics on the AVVP dataset. Compared with our back-

bone JoMoLD [6], the absolute gains are also remarked.

Specifically, our approach achieves favorable performance

of 63.7% and obtains absolute gains of 9.3% and 3.8% in

terms of the event-level visual F-score when compared to

the SOTA approaches MA [58] and JoMoLD. Note that

some other methods, such as CVCMS and DHHN [22, 30]

also consider joint single-modal and cross-modal learn-

ing, however, they neglect the relation constraint between

single-modality and joint-modality for explicit cooperation

and calibration learning. As a result, our method outper-

forms them by a considerable margin.

Evaluation on AVE. CMPAE is compared against several

SOTA methods in Table 3, showing superior or comparable

performance. Notably, our approach outperforms the repre-

sentative methods PSP [70] and CMBS [61] by 1.3% and

0.6%. For the recent work DPNet [48], we also achieve a

comparable performance. From the table, we also observe

that the performance of the weakly-supervised methods is

close to that of the fully-supervised one, showing that there

is a bottleneck for further improvement on this task.

Evaluation on AVEP. After validating on AVVP and AVE

separately, we then conduct experiments on the combined

dataset, which is referred to as AVEP. In this dataset, the

metrics of the AVVP task are adopted due to the evaluation

diversity. Although combing two datasets is not a contribu-

tion, performing evaluations on two datasets with specific

properties jointly can help us investigate the capability and

generalization ability of the compared approaches. Here,

we employ the two representative and SOTA baselines from

AVVP and AVE, including CMBS and JoMoLD, for com-

parison. From Table 4 we can observe that our proposed

CMPAE approach achieves superior performance. Note that

compared with the dataset of AVVP, although 14 new cat-

egories are added, the performance of our method is still

comparable, showing favorable model capability.

4.3. Further Remarks
Effectiveness of the Presence-Absence Evidence Collec-
tor (PAEC) and Joint-modal Mutual Learning (JML).
PAEC and JML are the two essential components of our

method. To verify the effectiveness, we first design a fun-

damental baseline, which equips the backbone network with

only the vanilla EDL objective [50]. Then we progressively

add PAEC and JML to the baseline, as shown in Table 5, the

corresponding performance consistently increases, proving

the positive impact of the presence-absence evidence col-

lecting and mutual learning between uni-modality and joint-

modality. In addition, PAEC and JML can enhance and co-

operate with each other for a more significant performance.
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In-depth Analysis of PAEC. In PAEC, we utilize the fea-

tures of a single modality to learn presence evidence, while

the absence evidence is collected with the help of comple-

mentary modality features. As shown in Table 6, only using

a single track for generating the corresponding presence-

absence evidence is insufficient, which validates the effec-

tiveness of considering complementary information. In ad-

dition to this analysis, there are still another two questions:

(1) Why not leverage cross-modal information for both
presence and absence evidence learning? Similar to ab-

sence evidence learning, complementary cross-modal infor-

mation is also useful for the presence evidence learning in

the current modality. However, as shown in Table 6, if we

indiscriminately use cross-modal features for the prediction

of a single track, the modality-specific information is prone

to being overlooked, which hinders the perception of indi-

vidual audio or visual events. Moreover, the mutual learn-

ing will be disturbed due to the information homogeneity.

(2) Why not exchange the feature sources for learning
presence and absence evidence? As stated above, the cross-

modal information is also beneficial for presence evidence

learning. However, to improve the discriminative ability of

a single track, it is desirable that the modality itself can

provide sufficient presence evidence for target categories,

which can be regarded as a regularization for model learn-

ing. While for absence learning, the other modality should

provide reference signals but not dominant ones, which

are partially admitted by [66]. Therefore, our strategy for

presence-absence learning is reasonable, as it can not only

mine the potential of a single modality but also benefit from

the complementary track on a limited scale. Table 6 shows

that the exchanged setting makes the performance decrease.

In-depth Analysis of JML. Different from the traditional

mutual learning [67], in our proposed method, uncertainty

of evidence is adopted for more reliable learning. To ex-

plore its effectiveness, as shown in Table 6, we abandon the

uni-modal uncertainty term (denoted as w/o uuni) or the

joint-modal uncertainty term (denoted as w/o uav) in our

framework, which shows degraded performance. In addi-

tion, we adopt the Mean operator uniformly for the target

and non-target categories (denoted as w/o δ(c)) to validate

the effectiveness of the uni-modal selector δ(c). The results

show that our proposed JML can effectively leverage the

relations between single-modality and joint-modality.

Qualitative Analysis. To further analyze the reliability of

the learned presence-absence evidence, the qualitative re-

sults are shown in Figure 3. For the audio and visual tracks

of each video, we highlight the corresponding presence and

absence evidence values of each snippet. We can observe

that in most cases, the presence evidence of the target class

is high while the absence evidence is low, and vice versa.

Moreover, the evidence from different modalities has a clear

distinction when only a single-modality event occurs.

Table 6. In-depth analysis of our proposed PAEC and JML.

Models
Seg-level Type Eve-level Type

AVVP AVEP AVVP AVEP

both uni-modal 61.2 60.9 55.2 54.4

both cross-modal 61.7 61.3 55.7 55.9

exchange uni/cross 62.1 61.6 56.4 56.0

w/o uav 62.2 61.8 56.5 56.3

w/o uuni 62.0 61.7 56.4 56.0

w/o δ(c) 62.5 61.8 56.3 56.5

CMPAE 63.3 62.4 57.4 57.1

Speech SpeechCatCat

Cat

Visual Track

Audio Track

Audio Events

Visual Event

0

2
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8

10

0 1 2 3 4 5 6 7 8 9
V-PE-Cat V-AE-Cat A-PE-Cat A-AE-Cat A-PE-Speech A-AE-Speech

Time

Evidence 
Score

Figure 3. The presence-absence evidence strength of a test video

that contains event categories of Cat and Speech. ‘V’, ‘A’, ‘PE’,

and ‘AE’ denote the visual modality, audio modality, presence ev-

idence, and absence evidence, respectively. Note that the numbers

of evidence strength are rounded for better illustration.

5. Conclusions
This paper proposes a cross-modal presence-absence ev-

idence learning method for WS-AVEP, which jointly enjoys

the merits of uni-modal discrimination and cross-modal en-

hancement under Subject Logic theory. Specifically, the co-

operative presence-absence evidence collector and the joint-

modal mutual learning module are capable of learning and

calibrating reliable evidence. The encouraging performance

is validated in extensive experiments. In this work, although

we attempt to combine two datasets together for a more

comprehensive experiment, larger scale datasets with con-

siderable diversity are still expected to be used in the future

to evaluate the effectiveness of different approaches.
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