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Abstract

Encoding videos as neural networks is a recently pro-
posed approach that allows new forms of video processing.
However, traditional techniques still outperform such neu-
ral video representation (NVR) methods for the task of video
compression. This performance gap can be explained by
the fact that current NVR methods: i) use architectures that
do not efficiently obtain a compact representation of tem-
poral and spatial information; and ii) minimize rate and
distortion disjointly (first overfitting a network on a video
and then using heuristic techniques such as post-training
quantization or weight pruning to compress the model). We
propose a novel convolutional architecture for video repre-
sentation that better represents spatio-temporal information
and a training strategy capable of jointly optimizing rate
and distortion. All network and quantization parameters
are jointly learned end-to-end, and the post-training opera-
tions used in previous works are unnecessary. We evaluate
our method on the UVG dataset, achieving new state-of-
the-art results for video compression with NVRs. Moreover,
we deliver the first NVR-based video compression method
that improves over the typically adopted HEVC benchmark
(x265, disabled b-frames, “medium” preset), closing the
gap to autoencoder-based video compression techniques.

1. Introduction
Lossy video compression is a Rate-Distortion (R-D) op-

timization problem of the form minD+λR. Given a video,
the encoder’s task is to minimize the number of bits required
to represent it, R (Rate), while also minimizing any dis-
tortion brought about by the compression, D (Distortion).
λ controls the trade-off between both and defines a Pareto
frontier, where improvements in the distortion term come at

Figure 1. Compared to the previous state-of-the-art method, our
approach produces sharper frames at lower bpp. Images are la-
beled with PSNR @ bpp.

an increased cost in the rate term. Traditionally, heuristic-
based engineered video codecs are used to encode videos
in efficient representations. Such codecs have gradually de-
veloped into complex pipelines and have been established
as powerful standards such as H.264 [26] and HEVC [30].

Inspired by the success of deep learning in many im-
age processing tasks, over the past few years, video com-
pression using neural networks has been the target of much
research [8, 18]. Most of the proposed methods are based
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on Encoder-Decoder neural network pairs, capable of trans-
forming Groups of Frames (GoF) into latent representations
and subsequently recovering them. These representations
are quantized, entropy coded, and then stored/transmitted.
Commonly, the loss function optimized by these methods is
theoretically grounded in information theory and structured
as an R-D problem. D is some measure of the difference be-
tween the original and decoded frames, and R is given by an
estimate of the lower bound of the length of a bit sequence
representing the latent vector.

More recently, Implicit Neural Representations (INRs)
have emerged as alternatives to dense grids for repre-
senting continuous signals. They have seen remarkable
success in 3D scene reconstruction and shape represen-
tation [22, 24], and have also been used for video rep-
resentation [3, 7, 33]. In such a case, a video is inter-
preted as a function f(x, y, t) = (R,G,B) which is ap-
proximated by fitting a neural network to a set of samples
S = {(x, y, t), (R,G,B)}. The video is then effectively
stored in the neural network’s parameters and can be recov-
ered by performing forward passes. Interestingly, by using
INRs, video compression can be framed as a neural network
compression problem.

Previous efforts in using INRs for video compression,
however, have mostly treated the problems of representing
the input signal with high fidelity and compressing it as
mostly disjoint tasks. A network is first trained to minimize
a distortion loss and is then put through some procedure to
reduce its size, e.g., storing its weights in a 16-bit floating
point format, quantization, or pruning [7, 10, 29]. Further-
more, current architectures are not designed with parameter
efficiency as a priority, suffering from an inefficient alloca-
tion of parameters, which can be prohibitive for the task of
video compression [7, 16].

Tackling the above issues, we propose a new compact
convolutional architecture for video representation that pro-
vides better R-D performance than previous works (see Fig-
ure 1). In addition, drawing on information theory, we pro-
pose a theoretically motivated R-D formulation for video
compression with INRs that jointly minimizes rate and dis-
tortion. We build on the work of Oktay et al. [23] and
model the entropy of the neural network weights, allow-
ing us to minimize it jointly with the distortion. Thus, our
method learns weights that simultaneously provide high-
fidelity representations of the original video and have low
entropy. Applying entropy coding methods to the final
weights produces a compressed video representation.

In summary, our main contributions are:

1. we propose a novel compact convolutional architecture
for neural video representation, which results in better
representation capacity than NeRV [7] and faster en-
coding and decoding than E-NeRV [16];

2. we formally define signal compression with INRs as an
R-D problem by modeling the entropy of the weights
and using quantization-aware training (allowing end-
to-end training and eliminating the need for post-
training techniques such as pruning);

3. we show that such an entropy modeling can also im-
prove other methods, e.g., NeRV;

4. we evaluate our method on the UVG [21] dataset, im-
proving on the state-of-the-art results for video com-
pression with INRs and outperforming DVC [17], a
well-established neural video compression method.

2. Related Work
Neural Image Compression State-of-the-art approaches
to video compression can be traced back to the task of im-
age compression. Balle et al. [4] use non-linear transform
coding, where an image, represented as a vector of pixel
intensities x, is transformed through some function g and
then quantized, introducing some error. This quantized la-
tent representation is then passed through a Shannon-style
encoder that losslessly compresses it. x can then be ap-
proximately recovered using another transform g′. g and
g′ are parameterized as neural networks, and the entropy
of the latent vector is modeled, allowing for the loss to be
formulated as an R-D problem. Targeting low-bitrate com-
pression, generative adversarial networks (GANs) have also
been proposed to hallucinate details during inference [2,20].

Neural Video Compression Neural video compression
extends the ideas of neural image compression to sequences
of frames. Typically, an Encoder-Decoder pair of models
are learned over a large dataset of videos. The encoder pro-
duces latent representations of the sequence of frames that
are quantized and entropy coded. The decoder is then able
to approximately reconstruct the original sequence. Ap-
proaches of this type commonly embed temporal consis-
tency priors into the model by electing a key-frame within
a group of frames (GoP) and transmitting a latent represen-
tation of it. The information for reconstructing the remain-
ing frames in the GoP, e.g., optical flow and residuals, is
then encoded into separate vectors. Lu et al. [17] propose
DVC, an end-to-end approach to neural video compression
based on the pipeline of traditional video codecs, but lever-
aging learned neural networks instead of hand-crafted al-
gorithms. Several works build on this approach, proposing
different forms of representation for the key and predicted
frames [1,9,19]. The common pillar of these methods is the
definition of the loss to be optimized as a Rate-Distortion
problem, theoretically grounded in concepts from informa-
tion theory. As demonstrated by Mentzer et al. [19], accu-
rately modeling the entropy in this problem may even pre-
clude the need for the injection of biases and priors through
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complex encoding and decoding pipelines.

Implicit Neural Representations (INRs) INRs are
learned, parametrized functions that can be used as continu-
ous representations of signals, usually in the form of neural
networks. They can be trained directly on samples from
the signal to be fit (e.g., (x, y) → (R,G,B) pairs for im-
ages) or indirectly on outputs produced from the signal by a
known differentiable process (e.g., differentiable rendering
in the case of NeRF [22]) to fit said signal. One issue with
these networks is the spectral bias problem [25], where they
struggle to represent high-frequency details. Sitzmann et
al. [29] introduce SIREN, using periodic activation func-
tions to combat this phenomenon, and demonstrate their un-
equivocal benefits in representing images and videos when
compared to traditional activation functions. Mildenhall et
al. [22] use a different strategy to overcome the spectral
bias. Before passing the input coordinates to the network,
an extra step, called positional encoding, is applied. This
step maps the coordinates to a higher dimensional space ob-
tained by applying sinusoidal functions with a range of fre-
quencies to each coordinate and concatenating the results in
a vector. As in previous works in INR-based video com-
pression, we also adopt positional encoding.

INRs for compression Dupont et al. [10] suggest using
INRs for image compression by fitting a network on the im-
age and storing its weights in a 16-bit floating point for-
mat. They show superior results compared to JPEG in low
bit-rate regimes, encouraging more investigation into INRs
as an alternative to traditional neural image compression.
Further approaches [11, 29] introduce explicit quantization
methods and meta-learning. In these works, a single INR
is learned over a dataset of images. To encode an image,
only small modulations to this network must be learned and
transmitted. Strümpler et al. [29] achieve state-of-the-art
results for image compression using INRs by then quantiz-
ing these modulations and fine-tuning them to recover per-
formance. They additionally introduce the use of L1 regu-
larization, arguing that it approximately induces lower en-
tropy in the weights. When varying the strength of this reg-
ularization, however, their results reveal only a minor effect
in the compressed representation, suggesting L1 regulariza-
tion may not be a good surrogate for entropy minimization.

Video compression with INRs NeRV [7] proposes to
represent video by learning an INR for all pixel values
jointly. They depart from traditional INRs by making use
of convolutional layers, learning a mapping from a time co-
ordinate, representing the frame number, to a full frame,
decoded from this frame number: f : R → Rx×y . Al-
though continuity is lost in the spatial domain, it allows
the network to leverage convolutional layers, more com-
monly used in image processing applications than fully con-
nected layers. Their results show that image-based neu-

ral video representations can provide superior performance
than (continuous) pixel-based representations for the task
of video compression. Additionally, training and inference
are significantly faster. Li et al. [16] propose E-NeRV, an
optimization to the NeRV architecture, by disentangling the
spatial and temporal components of the input. This allows
them to eliminate the large fully connected layers required
by NeRV, resulting in a more efficient allocation of network
parameters. Both NeRV and E-NeRV require the training
of networks with different architectures to achieve differ-
ent R-D tradeoffs and applies post-training quantization and
weight pruning to achieve compression. While this process
achieves smaller networks, the compression and represen-
tation components are essentially disjoint. Our proposed
architecture is more streamlined while achieving compara-
ble quality to E-NeRV and resulting in faster encoding and
decoding times. Moreover, while E-NeRV focuses mainly
on the representation capacity of the network, we propose
to use an end-to-end training method based on entropy min-
imization for lossy video compression, which removes the
need for post-training quantization and pruning.

Entropy Minimization for Model Compression Ok-
tay et al. [23] adapted entropy minimization techniques
[4, 5] for neural network compression. They introduce a
reparametrization for neural network weights, which can
be seen as performing a similar role to the transforms in
Balle et al. [4] and model these reparameterized weights in
a similar way as Balle et al. [5] models image latents. Any
neural network can then be trained on its original loss func-
tion with an additional entropy penalty term. They perform
comparisons with state-of-the-art neural network compres-
sion techniques, demonstrating that entropy minimization
can offer a simpler and more elegant solution while achiev-
ing similar or better results. Part of our work is an exten-
sion of this idea, adapting entropy minimization techniques
to INRs for video compression.

3. Method
Our work consists of two proposals for the improvement

of neural representations for video compression: a more ef-
ficient neural network architecture for video compression
(Section 3.1) and the formalization of the task as an R-D
problem (Section 3.2).

3.1. Architecture

Frame-based INRs, introduced by Chen et al. [7], have
significant advantages over pixel-based representations in
terms of computational efficiency and R-D performance
for video compression. However, the initially proposed
NeRV architecture suffers from inefficient use of parame-
ters, mainly due to its reliance on fully connected layers to
produce a tensor of spatio-temporal features from the scalar
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Figure 2. Illustration of our proposed method. We use an INR to fit a sequence of frames. During the training process, we minimize some
distortion metric together with the entropy of the weights. After the training process, any entropy coding method can be used to obtain a
compressed representation of the video sequence.

time input. [16] These layers require a very large number of
weights to produce outputs whose size is suitable for being
reshaped and fed into convolutional layers.

Motivated by such issues, we propose a fully convolu-
tional design. The single input to the network is the frame
number normalized to be in the range [0, 1). Using this
input, we build a matrix T ∈ R1×h×w, where every ele-
ment is set to t. This is concatenated with a fixed coor-
dinate grid M ∈ R2×h×w where M [0, h′, w′] = w′

W and
M [1, h′, w′] = h′

H , for a target video with a resolution of
W ×H . Positional encoding [22], as seen in Equation (1),
is then applied to each element of the resulting tensor, fol-
lowed by two convolutional layers with 3x3 kernels and 160
channels. We thus obtain a tensor of spatio-temporal fea-
tures that is passed to the upscaling portion of the network.

γ(x) =
(
sin

(
1.250πx

)
, cos

(
1.250πx

)
, · · · ,

sin
(
1.25L−1πx

)
, cos

(
1.25L−1πx

)) (1)

As in NeRV, this is made up of a series of upscaling
blocks, each consisting of a convolutional layer and a Pix-
elShuffle module [28]. We follow Li et al. [16] and intro-
duce an AdaIN [14] module at the beginning of each block.
For each block, there is also a single fully connected layer
that processes the temporal input coordinate to produce the
inputs for each AdaIN module. While this means our model
technically contains non-convolutional layers, these make
up a very small part of the total number of parameters of
the model (≈ 2% in our smallest model and ≈ 0.6% in our
largest). As our distortion objective, we adopt the loss used
in NeRV, shown in Equation (2). While any reasonable dis-
tortion metric can be used with our method, we make this
choice to enable a more direct comparison with NeRV in
the context of this work. This is a mixture of L1 and SSIM,
where x is the original frame and x′ is the network output.

D(x, x′) = 0.7×∥x−x′∥1+0.3×(1−SSIM(x, x′)) (2)

3.2. Entropy Minimization

We first approach the problem of video compression with
neural representations from the perspective of compressing
any signal in general. Let us consider compactly represent-
ing a signal s : RI → RO, with I the dimension of the in-
put coordinates and O the dimension of the signal, using an
INR. We do this given access only to a set of samples from
the signal S = {(x1, y1), ..., (xn, yn) | xi ∈ RI , yi ∈ RO}
consisting of input coordinates xi and target values yi. We
use an INR parametrized by θ, fθ : RI → RO, to approx-
imate s, taking as input any coordinate x and producing an
approximation to the target value y. We can then recover s
by densely sampling from fθ, with the signal s effectively
becoming stored in the parameters θ. To achieve compact-
ness, we frame this as a Rate-Distortion problem.

In such a problem, we seek to find θ that minimizes the
quantity D + λR, where R represents the cost of storing θ,
D represents the distortion between fθ and s, and λ estab-
lishes the trade-off between the two. As a surrogate for s,
we minimize this over the dataset S using gradient descent.
A larger value of λ will give more weight to R in the opti-
mization, resulting in a more compact signal representation,
potentially at the cost of some added distortion. A smaller
value of λ will have the opposite effect.

Signal Compression with Neural Representations We
build on the work of Oktay et al. [23] to train an INR fol-
lowing this framework. Concretely, D can be defined as any
reasonable metric that captures the signal’s distortion and
that we wish to optimize for. R is defined as the amount
of information encoded in the parameters θ, and is given by
Shannon’s source coding theorem [27] as − log2 p(θ), with
p being the probability over the set of all weights. This can
also be interpreted as a tight lower bound on the number of
bits occupied by the entropy-coded parameters. We mini-
mize both these quantities during training jointly. Once the
final weights are obtained, any form of entropy coding can
be used to encode them, achieving a compact representation
of the signal that approaches this lower bound. Figure 2 il-
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Figure 3. The frame index is taken as input and expanded into a matrix. It is then appended to a fixed coordinate grid, which is fed into our
network after a positional encoding step. Dotted lines show the AdaIN module, present in each upscaling block.

lustrates the full approach.
To make use of Shannon’s source coding theorem, we

must work with a discrete set of symbols. However, for
optimization, we require continuous weights. To fit this
paradigm, we define: i) a quantization function Qγ , with
learnable parameters γ, mapping continuous weights to dis-
crete symbols, and ii) a dequantization function Q−1

γ , map-
ping the symbols to the values at the center of their respec-
tive quantization bins. Q−1

γ is evidently not an exact inverse
of Qγ , and thus the operation Q−1

γ (Qγ(x)) incurs an error
in recovering x unless the value of x is precisely one of the
centers of the quantization bins.

We optimize over the continuous parameters θ, using the
symbols θ̂ = Qγ(θ) to perform calculations for the rate and
the weights with quantization error Q−1

γ (θ̂) to perform the
forward pass with the network and obtain an approxima-
tion of the signal. We further make the simplifying assump-
tion that θ̂ consists of symbols produced by a memoryless
source. The optimization problem thus becomes

min
θ

∑
(x,y)∈S

D(f(x;Q−1
γ (θ̂)), y)+λ

|θ̂|∑
i=0

− log2 p̂(θ̂i), (3)

where p̂ is the pmf of θ̂, which can be readily computed.
To optimize this loss, the process minimizes the distortion
by learning parameters θ that can appropriately represent
the signal, and γ that provide a small enough quantization
error. Simultaneously, the distribution of Qγ(θ) must also
have a sufficiently small entropy, to minimize the R.

From the above, we identify the two error sources intro-
duced in this process. The first is the error introduced in
approximating s with fθ, which can be minimized by in-
creasing the number of parameters used to model s, making
better choices in the architecture of the INR, among oth-
ers. The second is the quantization error introduced by Qγ ,
which can be minimized by shifting the centers of quantiza-
tion bins appropriately or using more bins of smaller widths
at an increased cost in the entropy of the distribution.

Quantization We now define the function Qγ . Follow-
ing [12, 23], we use scalar quantization, taking the integers
as our discrete set of symbols and defining Qγ as an affine
transform with scale and shift parameters α and β respec-
tively, followed by rounding to the nearest integer

Qγ : R → Z, Qγ(x) =

⌊
x+ β

α

⌉
, γ = {α, β}. (4)

Q−1
γ is then naturally defined as

Q−1
γ (x) = x× α− β. (5)

As in [12, 23], each layer of the neural network is quan-
tized separately and has its own parameters α and β, which
are themselves learned. This allows for some level of gran-
ularity in varying the quantization of different parameters,
while not incurring too large of an overhead in the number
of scale and shift parameters, which must also be stored.

One issue with this process is the non-differentiability of
the rounding operation. There are two main approaches to
this problem in the literature. The first is the replacement
of the rounding operation with uniform noise of the same
scale as the quantization bins. This is frequently used as a
replacement for quantization [13]. The second is the use of
the Straight Through Estimator (STE) when computing the
gradient for the rounding operation. We define these as two
functions, Qnoise and Qste. As in Balle et al. [4], we ob-
tain the best results using Qste for calculating the distortion
metric, as it avoids the introduction of random noise, and
Qnoise for calculating the entropy term.

Entropy modeling Given θ̂, we can calculate the mini-
mum bit length to encode all the weights in the network
exactly as follows: ∑

w∈θ̂

− log2 p̂(w) (6)
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where

p̂(w) =
1

|θ̂|

∑
w′∈θ̂

1w′=w. (7)

The problem with this approach lies in the non-
differentiable operator 1. To train a network with gradient
descent, we need to find a differentiable approximation to
the discrete distribution of the weights. We follow Balle et
al. [4] and replace the discrete rate term with a differen-
tial entropy by replacing Q with Qnoise. We then seek a
parametrized function pϕ that approximates the probabil-
ity density function of the parameters perturbed by uniform
noise θ̃.

We can elegantly fit the parameters of this approxima-
tion jointly with the parameters of the INR using the same
loss function presented above [4]. Additionally, we con-
volve the approximation pϕ with the standard uniform den-
sity. Balle et al. [4] argue that this enables a better approxi-
mation of the underlying distribution, which we also empir-
ically observe.

Given pϕ, our complete loss is defined as

min
θ,ϕ,γγγ

∑
(x,y)∈S

D(f(x;Q−1(Qste(θ;γγγ);γγγ)), y)

+ λ

∑
l∈layers − log2 pϕ(Qnoise(θl; γl))

frames× h× w

where γγγ collects all α and β from each layer. The left
term computes the distortion metric over the dataset us-
ing the quantized weights, which are computed using each
layer’s respective α and β. The right term approximates the
minimum bit length to encode the approximately quantized
parameters using pϕ. This rate term is divided by the total
number of pixels, making λ invariant to the video’s resolu-
tion and number of frames.

To model the weights of the neural network, we inter-
pret weights in each layer as being generated from an in-
dependent source. Within each layer, weights are taken as
i.i.d. samples. We experiment with different modalities,
such as modeling all weights in the network jointly, but find
that we obtain better results by allowing each layer to be
modeled independently. Following Balle et al. [5], we fit a
small neural network to the distribution of weights in each
layer. The details of this process can be consulted in [5,
Appendix 6.1]. At the end of the training process, we use
the context-adaptive binary arithmetic coder (CABAC) for
entropy coding, adapting the implementation provided by
DeepCABAC [32] to perform vanilla CABAC encoding on
the weights of the neural network.

4. Experiments
Representational Capacity To validate our architecture,
we perform a comparison with NeRV [7] and E-NeRV [16]

Model Parameters PSNR Time Time ∆ FPS

NeRV 12.5M 41.1 21m — 88
E-NeRV 12.5M 42.8 53m 152% 45.3
Ours 12.5M 42.7 32m 52% 56

Table 1. Representational capacity results. For NeRV, we use the
architecture the authors employ for the UVG dataset, adapted for
the smaller resolution. Time increase is shown relative to NeRV.
For decoding, we used a batch size of 20. GPU: RTX 3090

with no compression (no entropy modeling or quantiza-
tion). We use models with a similar number of parameters
and train them on the “BigBuckBunny” sequence for 300
epochs using the Adam optimizer with a learning rate of 5e-
4 and a cosine learning rate schedule. We set the dimensions
of the spatio-temporal representation to 9 × 16 × 200 for
our model. Table 1 shows the results, in which our simpler
model is able to retain the improvements of E-NeRV over
NeRV with a significantly smaller performance penalty.

Video Compression We evaluate our results on the UVG
dataset, featuring 7 videos with a resolution of 1920×1080.
We compare our approach with: i) HEVC, a traditional
video codec; ii) NeRV; iii) NeRV-EM, NeRV extended with
our entropy minimization proposal; iv) DVC [17], a classic
neural video compression method; and v) Scale-Space [1], a
neural video compression method achieving results close to
the state-of-the-art. As our metrics for perceptual similarity,
we employ PSNR and MS-SSIM.

Entropy Minimization as Fine-Tuning To reduce train-
ing time, we leverage the flexibility of our method, treating
entropy minimization as a fine-tuning process given a pre-
trained INR for the video to be compressed. For the desired
number of total epochs e, we train the INR for 0.8×e epochs
with λ = 0, a faster process since it does not require the
calculation of the R term in the loss. The remaining epochs
are trained with the target λ. This allows us to reuse the
same model to encode videos of different quality, resulting
in large resource savings. Using this method, we observe
only a very minor degradation in performance compared to
training a model from scratch for each desired λ. We use a
learning rate of 5e-4 with the Adam [15] optimizer, adopt-
ing a cosine learning rate schedule after a linear warm-up
period of 0.2 × the number of epochs. This learning rate
schedule does not apply to the parameters of the entropy
models. Finally, we set L = 80 for the positional encoding
step.

While in theory we can achieve different compression
rates while changing only λ, we find that, as λ gets large,
it is helpful to reduce the size of the network. We use a
larger (50M params.) and a smaller (14M params.) archi-
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Figure 4. R-D performance on the UVG dataset. Our method outperforms the previous state-of-the-art using INRs. The individual
contributions of the joint R-D optimization and the novel architecture are evident in the plot.

tecture to cover different ranges of the bpp scale. Each ar-
chitecture makes use of the fine-tuning procedure defined
above separately. Thus, we compromise between a differ-
ent architecture for each bit-rate and a single architecture
for all bit-rates. Architectural details can be consulted in
the Supplementary Materials.

For each video, we train the small network on
λ ∈ {0.1, 0.5, 1} and the large network on λ ∈
{0.01, 0.05, 0.1}. We then average these points across all
videos, grouping them by architecture and λ, and concate-
nate the resulting points into a curve. Figure 4 shows the
R-D curves for our models compared to the baseline meth-
ods for the UVG dataset.

Evaluation Our method outperforms NeRV on both eval-
uated metrics, exhibiting the advantages of the streamlined
architecture and the end-to-end training procedure, and es-
tablishing new state-of-the-art results for INR-based video
compression. Furthermore, our method is the first INR-
based video compression method to surpass the typically
employed HEVC benchmark (x265, “medium” preset, dis-
abled b-frames) [1,19,29] in R-D performance for the UVG
dataset in both SSIM and PSNR. We also close the gap to
modern autoencoder-based neural video compression meth-
ods, outperforming DVC across the whole bpp spectrum for
both metrics. The results in the plot for NeRV, DVC, and
Scale-Space Flow were gracefully provided by the authors.

A qualitative comparison can be seen in Figures 1 and 5.
Results for HEVC were produced using ffmpeg [31] using
the configurations described previously. Frames for NeRV
were obtained using the published code. The code and
trained models for Scale-Space Flow are not openly avail-
able, so frames for this model were obtained using the im-
plementation from the CompressAI library, which is trained

on the Vimeo90K dataset [6].
In all cases, our method produces visually sharper videos

than NeRV for equal or smaller bitrates. Videos such as
“ShakeNDry” often pose a problem to compression algo-
rithms that rely on motion estimation, such as HEVC or
Scale-Space Flow. In these scenarios, optical flow is a
poor way to compress the video, as a large number parti-
cles are moving independently in different directions. Mod-
els which rely on this architectural prior introduce visible
artifacts at high compression rates, and are outperformed
by INR-based methods, which avoid this problem. On
the other hand, for “YachtRide”, motion-based descriptors
compress the scene well, as most motion vectors are par-
allel. While our method clearly outperforms NeRV in this
scene, HEVC shows the best performance, while SSF intro-
duces some visible artifacts. Additional qualitative exam-
ples are provided in the supplementary material.

Encoding/Decoding time Tables 2 and 3 show the train-
ing and inference time for our method. We reinforce that
the initial training time can be amortized over all the dif-
ferent compression levels. While these training times may
seem too long, it is important to remember that most videos
transmitted over the internet are encoded once and trans-
mitted many times. For instance, in the case of large video
hosting platforms, a video must only be compressed once,
in an environment with access to high-performance com-
puting machines, so that it can be stored in a server where it
will remain for a long period of time. Given sufficient GPU
RAM, it is also possible to reduce training time significantly
by increasing the batch size.

As reported by Chen et al. [7], INR-based video com-
pression methods show great advantages in decoding time
compared to other models. Since the decoding process re-
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Figure 5. Qualitative comparison between our method, NeRV, SSF, and HEVC. Images are labeled with PSNR@bpp.

Architecture Initial Training Fine-tuning

Large 30h35m 14h09m
Small 14h55m 6h03m

Table 2. Training time for videos with 600 frames. It is important
to note that only slightly inferior results can be obtained with dras-
tically fewer training epochs. GPU: NVIDIA A6000.

Model FPS (GPU) FPS (CPU)
Ours (Large) 21.44 0.5
Ours (Small) 61.88 1.5
Scale-Space 1.25 0.15

Table 3. Decoding performance (1920x1080). Scale-Space using
quality level 5/8 (from CompressAI [6]). GPU: RTX 3090

quires only a forward pass, and each frame can be computed
independently, INR-based methods additionally offer good
opportunities for parallelization when decoding.

5. Conclusion
We present a novel convolutional architecture for video

representation capable of achieving higher fidelity encod-
ing. We couple this with an end-to-end entropy-based neu-
ral network compression method to achieve video compres-
sion, bridging the gap to Neural Video Compression by for-
malizing the loss as a rate-distortion problem. We demon-
strate the effectiveness of our method by testing on the UVG
dataset, producing state-of-the-art results in video compres-
sion with INRs. While the presented results are promising,
the adoption of neural representations for video compres-
sion as viable encoders still requires future research into
less cost-prohibitive entropy-modeling methods in order to
speed up encoding time, as well as further architecture im-
provements, seeking the optimal distribution of parameters
in a compact network.
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