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Abstract

Large language models (LLMs) have demonstrated ex-
cellent zero-shot generalization to new language tasks.
However, effective utilization of LLMs for zero-shot visual
question-answering (VQA) remains challenging, primarily
due to the modality disconnect and task disconnect be-
tween the LLM and VQA tasks. End-to-end training on
multimodal data may bridge the disconnects, but is inflex-
ible and computationally expensive. To address this is-
sue, we propose Img2LLM, a plug-and-play module that
provides LLM prompts to enable LLMs to perform zero-
shot VQA tasks without end-to-end training. We develop
LLM-agnostic models describe image content as exemplar
question-answer pairs, which prove to be effective LLM
prompts. Img2LLM offers the following benefits: 1) It
achieves comparable or better performance than methods
relying on end-to-end training. For example, we outper-
form Flamingo [3] by 5.6% on VQAv2. On the challeng-
ing A-OKVQA dataset, our method outperforms few-shot
methods by as much as 20%. 2) It flexibly interfaces with
a wide range of LLMs to perform VQA. 3) It eliminates the
need to specialize LLMs using end-to-end finetuning and
serve highly specialized LLMs to end users, thereby reduc-
ing cost. Code is available via the LAVIS [28] framework
at https://github.com/salesforce/LAVIS/
tree/main/projects/img2llm-vqa.

1. Introduction

Visual question answering (VQA) [5] is a prominent
vision-language task that finds a broad range of real-world
applications, such as assisting blind individuals in under-
standing their environments. A diverse set of VQA datasets
have been proposed, some focusing on image recognition

*Work done while Jiaxian Guo was an intern at Salesforce Research.

[5, 17] and others on logical reasoning [39]. However, hu-
man annotations are expensive to obtain and may introduce
a variety of human biases [6, 10, 63], making the VQA sys-
tem brittle towards new answer styles and question types
[1, 21]. This has led researchers to zero-shot VQA meth-
ods [6, 10, 21] that do not require ground-truth question-
answer annotations, thereby facilitating more generalizable
VQA systems.

Recently, large language models (LLMs) (e.g., [8, 66])
have demonstrated excellent capabilities to perform tasks
with zero in-domain data, conduct logical reasoning, and
apply commonsense knowledge in NLP tasks [26, 55, 57].
As a result, recent approaches [3, 52, 61] have resorted to
leverage LLMs in zero-shot VQA.

However, applying LLMs to VQA tasks is less than
straightforward, due to (1) the modality disconnect between
vision and language and (2) the task disconnect between
language modeling and question answering. A common
technique is to finetune a vision encoder jointly with the
LLM [3, 20, 52] to align the vision and language represen-
tation spaces, but this can incur prohibitive computational
and data cost. For example, Flamingo [3] finetunes on bil-
lions of image-text pairs with thousands of TPUs. Further,
the finetuning specializes and introduces strong interdepen-
dence between the vision encoder and the LLM. If we need
to upgrade the LLM as new versions emerge, the entire
model needs to undergo expensive re-training.

In contrast to the end-to-end integration of LLM into
a VQA system, this paper proposes a modular VQA sys-
tem built on top of frozen off-the-shelf LLMs. This brings
two benefits. First, it can reduce the deployment cost and
simplify the deployment. Second, upgrading the LLM is
straightforward. However, it is challenging to bridge the
modality disconnect and task disconnect without end-to-end
training. PICa [61] converts images into captions, and pro-
vides exemplar QA pairs from training data as prompt to
the LLM. However, doing so assumes the existence of an-
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notated training data and the performance is sensitive to the
selection of few-shot exemplars.

We propose Img2LLM, a plug-and-play module that en-
ables off-the-shelf LLMs to perform zero-shot VQA. The
central insight of Img2LLM is that we can utilize a vision-
language model (e.g. BLIP [30]) and a question-generation
model to translate the image content into synthetic question-
answer (QA) pairs, which are fed to the LLM as part of
the prompt. These exemplar QA pairs tackle the modal-
ity disconnect by describing the image content verbally,
and tackle the task disconnect by demonstrating the QA
task to the LLM. Notably, the exemplar QA pairs are con-
structed entirely based on the test image and question, ob-
viating the need for similar few-shot examples as required
by PICa [61], which are not always available in practical
zero-shot scenarios. When applied to the open-source OPT
language models [66], Img2LLM achieves comparable or
superior zero-shot VQA performance to methods that per-
form costly end-to-end training.

With this paper, we make the following contributions.

• We propose Img2LLM, a plug-and-play module that
converts an image into synthetic question-answer pairs
based solely on the current image of the question.
Img2LLM bridges the modality disconnect between
language and vision as well as the task discon-
nect between language modeling and visual question-
answering.

• Img2LLM enables off-the-shelf LLMs to perform
zero-shot VQA without costly end-to-end training or
specialized textual QA networks [40], thereby allow-
ing low-cost and flexible model deployment and pain-
less LLM upgrades (Table 3).

• Our experimental results show that the OPT models
equipped with Img2LLM achieve zero-shot VQA per-
formance that is competitive or superior to the end-
to-end trained models. For example, we outperform
Flamingo [3] by 5.6% on VQAv2. We even outper-
form many few-shot VQA methods.

2. Related Work

2.1. Recent Advances in VQA Methods

As a multi-modal evaluation benchmark, Visual Ques-
tion Answering (VQA) that requires the model to answer
a natural language question according to the image, has
been the focus of active research [2, 4, 5, 47, 62]. The
past few years witnessed rapid performance advances with
large-scale image-text pretraining [13, 19, 20, 30–32, 34,
49, 54, 64, 65] followed byfine-tuning on VQA datasets.
To tackle knowledge-based VQA [39, 47], recent works
[16, 18, 29, 33, 36–38, 59] incorporate external knowledge,

such as ConceptNet [50] or Wikipedia, but experimental re-
sults in [47] show that these methods still struggle to answer
questions requiring complex reasoning.

2.2. LLM for Zero/Few-Shot VQA Tasks

Large language models (LLMs) [9, 12, 66] trained on
web-scale corpus are powerful in natural language un-
derstanding and reasoning [8, 67]. To infer on task
data, LLMs typically generate target tokens autoregres-
sively. In specific, given prompt C and task input x, an
LLM generates target tokens Y = {yi}ni=1, with yi =
argmax pθ(yi|y<i, C, x) and θ the model parameters. Prior
VQA methods using LLMs mainly fall into two categories:
multi-modal pretraining and language-mediated VQA.

Multi-modal pretraining. These approaches align vi-
sion and language embeddings by training additional align-
ment modules, as shown in Figure 1(a). Considering that
LLMs are too large to finetune efficiently, [52] opt to fine-
tune only the visual encoder while Flamingo [3] trains ex-
tra cross-attention layers to model cross-modality interac-
tions. However, this paradigm suffers from two drawbacks:
1) Highly compute-inefficient. Jointly aligning vision back-
bones and LLMs requires large compute resources. For ex-
ample, training Flamingo requires 1536 TPUv4 over two
weeks. Hence, it becomes prohibitively expensive to switch
to a different LLM. 2) Catastrophic forgetting. The align-
ment step may be detrimental to LLMs’ reasoning ability, if
the LLMs are jointly trained with the visual model [3].

Language-mediated VQA. Instead of vectorized rep-
resentations, this VQA paradigm directly resorts to natu-
ral language as the intermediate representation of the im-
age and no longer requires expensive pretraining. As de-
picted by Figure 1(b), it first converts the current image to
language descriptions and feeds the descriptions, possibly
accompanied by in-context exemplars, to a frozen LLM.
In a few-shot setting, PICa [61] generates captions for the
image and selects training data samples as in-context ex-
emplars, but its performance degrades substantially when
the exemplars are omitted. As a concurrent zero-shot ap-
proach, [40] generates question-relevant captions. Due to
the zero-shot requirement, it is unable to provide in-context
exemplars and does not reap the benefits of in-context learn-
ing. As a result, it has to rely on a QA-specific LLM, Uni-
fiedQAv2 [24], to achieve high performance.

3. Method
Difficulties in utilizing LLMs effectively in zero-shot

VQA stem mainly from two obstacles: (i) The modality dis-
connection: LLMs do not natively process images and en-
coding visual information into a format that LLMs can pro-
cess can be a challenge. (ii) The task disconnection: LLMs
are usually pretrained using generative [8] or denoising ob-
jectives [14] on language modeling tasks. As the LLMs are
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Figure 1. The illustrative comparison of three tyepes of methods that enable LLM to perform VQA tasks, where blue block denotes that
the the inner parameters are frozen while pink block indicates the inner parameters are trainable.

unaware of the tasks of question answering or VQA, they
often fail to fully utilize contextual information in generat-
ing the answers.

In language-mediated VQA [40, 61], the modality dis-
connection is addressed by converting the image to interme-
diate language descriptions instead of dense vectors (§2.2).
The task disconnection must be addressed using either few-
shot in-context exemplars [61] or an LLM directly finetuned
on textual QA [40]. It is not clear how to tackle the task dis-
connection on generic LLMs under zero-shot settings.

We propose a new zero-shot technique to address the task
disconnection on generic LLMs, Img2LLM (Figure 1c),
which generates image-relevant exemplar prompts for the
LLM. Given a question Q and an image, our key insight is
that we can generate synthetic question-answer pairs as in-
context exemplars from the current image. The exemplars
not only demonstrate the QA task but also communicate the
content of the image to the LLM for answering the ques-
tion Q, thereby hitting two birds with one stone. Img2LLM
is LLM-agnostic; it unlocks the knowledge and the reason-
ing capacity of off-the-shelf LLMs, offering a powerful yet
flexible solution for zero-shot VQA.

3.1. Answer Extraction

In order to incorporate the image content into the ex-
emplars for in-context learning, from the current VQA im-
age, we first seek words that could serve as answers to syn-
thetic questions. We generate a number of captions using
an off-the-shelf question-relevant caption generation mod-
ule (§3.3). Following recent papers [10,27], we extract noun
phrases (including named entities), verb phrases, adjective
phrases, numbers, and boolean-typed words like “yes” and
“no” as potential answers1. We show some extracted answer
candidates in Figure 2 and Appendix A.3.

1We use the spaCy parser at https://spacy.io/, though are not
tied to the parser in any way.

3.2. Question Generation

With the extracted answer candidate set {âj}Uj=1, we can
directly use any question generation network [2, 22, 25, 35,
60] to generate specific questions for each answer candi-
date. In this paper, we experiment with both template-based
and neural question-generation methods. Note that to avoid
violating the zero-shot requirements, our method is purely
textual-based without access to any VQA data.

Template-based Question Generation. Using an off-
the-shelf parser, we obtain the part-of-speech for each an-
swer, and design specific question templates for each POS
type. For example, for answers that are nouns, we use the
question “What object is in this image?” For verb answers,
we use the question “What action is being taken in this im-
age?” Due to space constraints, we put the complete list of
templates in Appendix A.5.

Neural Question Generation. Inspired by [10], we train
a neural question generation model on textual QA datasets.
Specifically, we finetune a pretrained T5-large model [43]
to generate questions from answers. The input to the
model contains the prompt “Answer: [answer]. Context:
[context]”, where [answer] denotes the answer text
and [context] denotes the context text from textual QA
datasets. During inference, we replace [answer] with an
extracted answer candidate and [context] with the gen-
erated caption from which the answer was extracted. The
model is finetuned on five textual QA datasets including
SQuAD2.0 [44], MultiRC [23], BookQA [41], Common-
senseQA [51] and Social IQA [45].

With the above question generation methods, we acquire
a set of synthetic question-answer pairs {q̂j , âj}Uj=1. We
use these question-answer pairs as exemplars of LLM in-
context learning [8], which guides the LLM to perform QA
task given the image content and bridges the task disconnect
between language modelling and VQA.
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Table 1. Results from mixing captions and exemplar prompts on 30B OPT [66].

Prompt Template Caption Prompt Exemplar Prompt VQAv2 val OK-VQA
Instruction ✗ ✗ 18.1 3.3

Instruction + Captions ✓ ✗ 46.1 23.5
Instruction + Question-Answer Pairs ✗ ✓ 57.9 41.1

Instruction + Captions + Question-Answer Pairs ✓ ✓ 59.5 41.8

As a sneak preview, we show effects of exemplar QA
pairs in Table 1. The details of the instructions are ex-
plained in §3.4. We observe that exemplar QA prompts
perform considerably better than caption prompts (detailed
in §3.3) only, demonstrating their efficacy in bridging the
task disconnection between LLM pre-training and VQA
tasks. Moreover, since the exemplar prompts already de-
scribe much content of the image, which helps to bridge
the modality disconnection, adding captions on top does not
provide much new information and brings only limited per-
formance gains.

3.3. Question-relevant Caption Prompt

In addition to the synthetic exemplar QA pairs, we also
supply question-relevant image captions to the LLM. We
observe that the question may ask about specific objects or
regions in the image [58] but generic captions generated by
existing networks may not contain relevant information. In
Figure 2, the question “What items are spinning in the back-
ground which can be used to control electricity?” is rele-
vant only to the wind turbines. However, captions generated
from the whole image are likely to focus on the salient or-
ange boat, leaving LLM with no information to answer the
question. To address this issue, we generate captions about
the question-relevant portion of the image and include them
in the prompt to the LLM.

To achieve this, we first determine the regions of the im-
age that are relevant to the question, by using the Image-
grounded Text Encoder (ITE) in BLIP [30], as which as-
signs a similarity score sim(v, q) to any pair of image v

and textual question q. With ITE, we use GradCAM [48],
a feature-attribution interpretability technique, to generate
a coarse localisation map highlighting matching image re-
gions given a question [30]. Briefly, GradCam qualifies the
cross-attention scores from the Transformer network by the
gradient of ITE simlarity function sim(v, q) with respect to
the cross-attention scores. As this technique was proposed
in [40], we leave the details to Appendix A.1.

Having obtained the patch relevance r, we sample a sub-
set of image patches with probability proportional to patch
relevance r. After that, we generate captions from the sam-
pled image patches using top-k sampling [15]. To generate
semantically meaningful captions, a short prompt, “a pic-
ture of,” is also fed into the text decoder. We repeat this M
times for each image to generate M diverse captions, and
keep only captions that are not exact substrings of others.

However, due to the non-deterministic nature of top-
k sampling, the caption model may generate noisy cap-
tions that have a negative impact on performance. To re-
move noisy captions, we use ITE to calculate the similarity
score between the generated caption and sampled question-
relevant image patches, and filter captions with less than
0.5 matching scores. Overall, this process yields synthetic
captions that are question-relevant, diverse, and clean, pro-
viding a bridge between visual and language information.

3.4. Prompt Design

With synthetic question-relevant captions and question-
answer pairs, we construct complete prompts for LLM by
concantenating the instruction, captions, and QA exem-
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plars. The instruction text is “Please reason the answers of
question according to the contexts.” The caption prompt is
formatted as “Contexts: [all captions]”. Individual
QA exemplars are formatted as “Question: [question]
Answer: [answer]” and concatenated. We position the
current question as the last portion of the prompt, formatted
as “Question: [question]. Answer: ”. Finally, to get
the answer, we perform greedy decoding on the LLM and
remove meaningless tokens as in Flamingo.

Furthermore, as the input to LLMs has maximum
lengths, e.g. 2048 in OPT and GPT3, it is necessary to select
a subset of question-relevant captions and question-answer
pairs to construct the prompt. To select the most informative
prompt, we first count the frequency of the synthetic answer
candidates in 100 generated captions. We then select 30 an-
swer candidates with highest frequencies and generate one
question for each. Also, we include 30 answers with the
lowest frequency and one caption containing each answer.
See §4.5 for analysis of caption selection strategies.

4. Experiment

In this section, we first validate the efficacy of Img2LLM
by comparing it with other zero-shot and few-shot VQA
methods. Then, we perform ablation studies on important
design choices, such as prompt patterns and caption selec-
tion strategies, to understand their effect. We also show
qualitative examples and include discussion on observed
failure cases.

4.1. Environment Setup

Datasets. We validate our method on VQAv2 [17], OK-
VQA [39] and A-OKVQA [47] datasets, which contain
questions requiring perception, reasoning and common-
sense to answer. Specifically, VQAv2 [17] contains 214,354
questions in the validation set and 107,394 in the test-dev
dataset. OK-VQA [39] and A-OK-VQA [47] emphasize on
commonsense reasoning, among which OK-VQA contains
5,046 test questions and A-OKVQA [47] contains 1,100
validation questions and 6,700 test questions.

Implementation details. To obtain question-relevant
caption prompt, we use BLIP [30] to generate captions and
perform image-question matching. To localize the image re-
gions relevant to the question, we generate GradCam from
the cross-attention layer of BLIP image-grounded text en-
coder. We then sample K ′ = 20 image patches based on
GradCam, and use them to obtain 100 question-relevant
captions. For the LLMs, our main result uses the open-
source OPT model with multiple different sizes. Our ab-
lation study also experiments with various other LLMs to
show the generalization ability of our method. We use
LLMs to generate answers auto-regressively, without access
to either answer list or training samples, thereby facilitating

zero-shot VQA. We follow official evaluation protocols and
report VQA scores on each dataset.

Competing methods. We compare with prior VQA
methods, which rougly fall into three categories: (i) Zero-
shot methods with frozen LLMs, such as PICa [61]. Our
method also belongs to this category, yet unlike PICa,
Img2LLM requires no training samples to compose the
prompts. (ii) Zero-shot methods with extra multi-modal pre-
training, such as Flamingo [3], Frozen [52], VL-T5 [11],
FewVLM [20] and VLKD [13]. These methods require
large-scale vision-language datasets and are costly to up-
date. We also include results from VQ2A [10] and WeaQA
[6] in this category, with caveats that they assume access to
answer candidates which may not be available in practice.
Therefore, their results should be interpreted with caution.
(iii) For reference purposes, we also include available re-
sults from few-shot methods. These include few-shot results
of PICa [61], FewVLM [20] and ClipCap [42].

4.2. Main Results

Main quantitative results are shown in Table 2. We sum-
marize our findings as follows.

State-of-the-art results on zero-shot evaluation with
plug-in frozen LLMs. Img2LLM surpasses PICa, the best
prior zero-shot model with frozen LLMs, by a significant
margin (45.6 versus 17.7 on OK-VQA), thereby establish-
ing a new state-of-the-art. In addition, we remark that de-
spite PICa uses frozen LLMs, it requires training samples to
build prompts. In contrast, our method generates question-
answers with no access to VQA samples, thus fully fulfill-
ing the zero-shot requirements.

Scaling effect of LLMs and their emergent capabili-
ties on VQA. When increasing the number of parameters
of LLMs from 6.7B to 175B, we see a 3-10 points improve-
ment in VQA across datasets. This shows that stronger
language modelling capabilities help better comprehend the
question, thus giving more accurate answers. Such a trend
is more clear and consistent on OK-VQA and A-OKVQA,
whose questions demand commonsense reasoning and ex-
ternal knowledge that LLMs excel at providing. This cor-
roborates our belief that LLMs are beneficial to VQA.

Another intriguing phenomenon we observe is that the
effect of scaling LLMs becomes obvious only when the
model size becomes sufficiently large, for example, when
using 30B or larger models, while not entirely predictable
on smaller ones (6.7B and 13B). This echoes with the recent
finding on the emergent abilities when using LLMs off-the-
shelf [56] for language tasks, while confirming the same
trend for the first time when using frozen LLMs for vision(-
language) tasks.

Competitive performance with end-to-end pretrain-
ing and few-shot models. Img2LLM obtains superior per-
formance to most models with end-to-end pretraining, as
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Table 2. Performance on VQAv2, OK-VQA, and A-OKVQA. A few methods do not strictly satisfy the zero/few-shot requirements:
methods without end-to-end training but assumes access to training samples are labeled with †; methods that answer from a predefined list
of candidates are in grey. Further, ✗ annotates methods requiring no end-to-end training, which is desirable, and ✓ otherwise.

Methods End-to-End Shot VQAv2 OK-VQA A-OKVQA
Training? Number val test test val test

Zero-Shot Evaluation with Frozen Large Language Model
PICa175B

† ✗ 0 - - 17.7 - -
Img2LLM6.7B ✗ 0 57.6 57.0 38.2 33.3 32.2
Img2LLM13B ✗ 0 57.1 57.3 39.9 33.3 33.0
Img2LLM30B ✗ 0 59.5 60.4 41.8 36.9 36.0
Img2LLM66B ✗ 0 59.9 60.3 43.2 38.7 38.2
Img2LLM175B ✗ 0 60.6 61.9 45.6 42.9 40.7

Zero-Shot Evaluation with Extra End-to-End Training
VL-T5no-vqa ✓ 0 13.5 - 5.8 - -
FewVLMbase ✓ 0 43.4 - 11.6 - -
FewVLMlarge ✓ 0 47.7 - 16.5 - -
VLKD ViT-B/16 ✓ 0 38.6 39.7 10.5 - -
VLKD ViT-L/14 ✓ 0 42.6 44.5 13.3 - -

Frozen7B ✓ 0 29.5 - 5.9 -
Flamingo3B ✓ 0 - 49.2 41.2 - -
Flamingo9B ✓ 0 - 51.8 44.7 - -
Flamingo80B ✓ 0 - 56.3 50.6 - -

Zero-shot Evaluation with Access to Answer Candidates
WeaQA ZSL ✓ 0 46.8 - - - -

VQ2A ✓ 0 61.1 - 19.8 - -
Few-Shot Evaluation

ClipCap→Cap→GPT175B ✗ 10 - - - 16.6 15.8
ClipCap→Rel→GPT175B ✗ 10 - - - 18.1 15.8

FewVLMbase ✓ 16 48.2 - 15.0 -
FewVLMlarge ✓ 16 51.1 - 23.1 - -

PICa175B
† ✗ 1 - - 36.4 - -

PICa175B
† ✗ 4 - - 43.3 - -

PICa175B
† ✗ 16 54.3 - 46.5 - -

PICa175B-Ensemble ✗ 80 56.1 - 48.0 - -

well as those evaluated in few-shot setups. For example,
on VQAv2 our method surpasses Flamingo80B, which cost
over 500K TPU hours and billion-scale datasets to train, by
a margin of 5.6 points. On A-OKVQA, Img2LLM more
than doubles the best reported results so far, from Clip-
Clap. The only a few exceptions are on OK-VQA, where
our method obtains better results than Flamingo9B, yet is
not able to stay on par with Flamingo80B. Considering that
Img2LLM is flexible to adapt to updated and stronger LLMs
with zero extra training cost, we consider it a more ap-
proachable solution to practical adoption of VQA systems,
than those trained end-to-end. We also include compar-
isons with supervised models in Appendix A.4. Img2LLM
achieves better performance than most supervised models,
despite the fact that it uses zero training data and is evalu-
ated in a zero-shot setup. These results once again validates
its effectiveness.

Table 3. Zero-shot VQA performance with different LLMs.

Methods VQAv2 val OK-VQA
PICa GPT-3 175B - 17.7

Frozen7B 29.5 5.9
Ours GPT-Neo 2.7B 50.1 31.5
Ours BLOOM 7.1B 52.4 32.4

Ours GPT-J 6B 56.4 37.4
Ours OPT 6.7B 57.6 38.2
Ours OPT 175B 60.6 45.6

4.3. Experimental Results of Different LLMs

In Table 3, we evaluate the performance of Img2LLM
on various open-sourced LLMs other than OPT, includ-
ing GPT-J [53], GPT-Neo [7] and BLOOM [46]. The
experimental results show that Img2LLM enables various
LLMs to perform zero-shot VQA tasks, and that all of them
achieve superior performance to zero-shot PICa [61] and
Frozen [52]. This is a strong evidence for showing our
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Table 4. Effect of question selection strategies.

OK-VQA VQAv2
PICa175B 17.7 -

Agnostic Random 35.9 52.9

Template Random 40.2 53.0
Max Freq. 41.5 55.8

Neural Random 40.5 57.0
Max Freq. 41.8 59.5

method’s generalization ability with different LLMs.

4.4. Analysis on Question Generation Methods

Table 4 shows the performance of different question
selection strategies described in Section 3.2. We com-
pare three question generation techniques, include image-
agnostic, which uses questions sampled from other images;
template-based, which uses template questions, and neural-
based, which uses neural generated questions. Further, we
compare two synthetic QA selection strategies. The ran-
dom strategy, which selects QA pairs for prompt randomly;
the max freq. approach, which selects answer candidates
that are most frequent in the captions, and also retrieve the
associated synthetic questions to build the prompt.

Among the three question generation techniques, Agnos-
tic perform the worst whereas Neural performs the best. We
attribute the differences to the quality of QA pairs. Agnostic
QA pairs contain information irrelevant to the current image
and may mislead the LLM. Template questions feature little
linguistic variation and hence cannot demonstrate different
QA strategies. Neural has the most relevant information
and the most linguistic diversity. QA pair with maximum
answer frequency outperform random questions. We hy-
pothesize that the most frequent answers describe the most
salient or important aspects of the image, thereby providing
more information than random questions.

In addition, we evaluate visual information quality en-
coded in the exemplar prompts using the answer hit rate
and the answer noise rate. Answer hit rate (AHR) is defined
as the proportion of QA pairs containing the ground-truth
answer. Answer noise rate (ANR) is defined as the ratio of
ground-truth answers to the total number tokens in the ex-
emplar prompts. Table 7 indicates that exemplar prompts
generated from question-relevant captions have a higher
AHR, hence enhancing the VQA performance. In addi-
tion, the caption filter procedure can remove some noisy
captions, allowing it to achieve a higher ANR than its com-
petitors. The experimental results demonstrate that improv-
ing both the AHR and the ANR can improve the quality of
prompts and VQA performance.

4.5. Ablation on Caption Selection

As Table 6 shows, we evaluate the performance differ-
ent caption selection strategies, where Max Frequency se-

Table 5. Ablations on prompts designs.

Methods OK-VQA VQAv2 val
CQA-CQA-CQA 37.8 52.1
CCC-QAQAQA 41.8 59.5

Table 6. Ablation on caption selection methods.

Caption Random Max Min
Selection Frequency Frequency

OK-VQA Acc 41.3 41.1 41.8

lects captions containing 30 answers with highest frequen-
cies and Min Frequency selects answers with the lowest
frequencies. As the exemplar prompts are produced with
answers with the highest frequencies, the Max Frequency
strategy does not provide more information than exemplar
prompts. In contrast, the Min Frequency strategy chooses
captions that can provide some information not in the QA
pairs, providing a performance boost.

4.6. Ablation Study on Prompt Design

We have two options to construct LLM’s prompt. The
first option is to append a syntheic QA pair after the cap-
tion that the QA pair is generated from. This can be de-
scribed as CQA-CQA-CQA, where C, Q, A stand for cap-
tion, synthetic question, and synthetic answer respectively.
Alternatively, we can present all captions at once, followed
by all question-answer pairs, which we denote as CCC-
QAQAQA. Experimentally (Table 5), the second design
performs significantly better than the first. We hypothesize
that the first design may induce the LLM to read only one
caption before answering, since in the prompt this caption
contains all the information needed for the question. While
it is hard to pinpoint the actual mechanism, the results high-
light the importance of QA prompts and their positions.

4.7. Examples and Failure Case Analysis

In Figure 3, we show four examples of caption and ex-
emplar prompts and the predictions, including cases of suc-
cess and failure. In Figure 3(a), the captions and the syn-
thetic QA pairs provide the information that a man is mak-
ing drinks at a bar. The LLM draws on background knowl-
edge and correctly infers that his job is bartender. In Fig-
ure 3(c), while the prediction is understandable (even if not
strictly grammatical), the LLM is unable to make inferences
based on qualitative physics and predict the right answer.
These results highlight the importance to apply appropriate
commonsense knowledge in open-ended VQA.

5. Limitation
One limitation of the proposed approach is that gener-

ating image captions and question-answer pairs incurs ex-
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Table 7. The experimental results on QA pairs generated from different captions. The results are run with OPT 30B.

Exemplar Prompts
Generation Source

OK-VQA VQAv2 val
VQA Answer Answer VQA Answer Answer
Score Noise Rate Hit Rate Score Noise Rate Hit Rate

Caption from Complete Image 39.8 0.018 0.480 57.1 0.0290 0.725
Question-relevant Caption 40.6 0.022 0.581 58.1 0.0303 0.821

Question-relevant Caption with Filter 41.8 0.025 0.566 59.5 0.0313 0.804

Synthet ic Quest ion 1: who is holding on to the bearded man on the back 
of the motorcycle?  
Answer: A girl 
Synthet ic Quest ion 2: what is the size of the girl riding on the motorcycle? 
Answer: litt le
Quest ion: The girl behind the man likely is of what relation to him?
Predicted Answer:  daughter

Synthet ic Quest ion 1: who is pouring a drink at a bar?  
Answer: A man 
Synthet ic Quest ion 2: where is a man in a red shirt making 
drinks? Answer: A bar
Quest ion: What type of profession is the man in red in?
Predicted Answer:  bartender  

Capt ion 1: a cargo bike sitt ing on a tire 
wheel.
Capt ion 2: the man is riding a bike on 
sands.                                                 
Capt ion 3: a man stands on a wheel on 
some sands.

Quest ion: Why is he using knee pads?
GT Answer: Protect ion/ Safety/ Prevent  injury  

Synthet ic Quest ion 1: On what part of the body is a 
skateboarder wearing knee pads?  Answer: Knee 
Synthet ic Quest ion 2: What is the purpose of knee pads?  
Answer: Protective
Quest ion: Why is he using knee pads?  
Predicted Answer:  protect his knee    

Quest ion:what  is the purpose of the wide t ires on that  bike?                     
GT answer:balance/ t ract ion/ brake

Synthet ic quest ion 1:what are the tires on?
Answer: wheels
Synthet ic quest ion 2:what is a man doing on a bike?
Answer: riding
Quest ion: What is the purpose of the wide tires on that bike?        
Predicted answer: ride sand

Capt ion 1: a skateboarder wearing knee 
pads on and protective gear on his knee
Capt ion 2: a man on skateboard in a 
helmet and knee pads
Capt ion 3: a skateboarder skateboarding 
with knee guards on

Quest ion: What  type of profession is the man in red in?   
GT Answer: bartender  

Capt ions 1: a man in red shirt at 
a bar making drinks
Capt ions 2: a man in a red shirt 
is making a wine tasting
Capt ions 3: a man in a red shirt 
at a bar serving a bar

Quest ion: The girl behind the man likely is of what  relat ion to him?   
GT Answer: daughter  

Capt ions 1: a man is riding the back 
of a litt le girl on a motorcycle
Capt ions 2: an image of bearded 
man and a girl on a motorcycle 
riding on the motorcycle
Capt ions 3: man and child sitt ing 
on a motorcycle on the street

(a) (b)

(c) (d)

Figure 3. Example predictions made by Img2LLM. Specifically, (a) and (b) are successful cases, while (c) and (d) are failure cases. See
more examples at Appendix A.5.

tra inference overhead. On an 8×A100 machine, our cur-
rent implementation brings about 24.4% additional compu-
tational time on top of the inference time of 175B OPT. We
note that further reduction of the overhead can be obtained
by shortening the prompt, trading accuracy for speed. No-
tably, our method avoids expensive end-to-end multimodal
representation alignment, which took more than 500K TPU
hours in the case of Flamingo.

6. Conclusion
In this paper, we propose Img2LLM, a plug-and-play

module designed to exploit the knowledge and reasoning
power of large language models (LLMs) off-the-shelf for
zero-shot VQA tasks. Concretely, Img2LLM provides vi-
sual information and task guidance to LLMs in the format
of easily-digestible prompts. This eliminates the require-

ment for the expensive end-to-end vision-language align-
ment, increasing model deployment flexibility while de-
creasing model deployment cost. The experiments show
that Img2LLM enables different LLMs to achieve compa-
rable or even superior zero-shot VQA performance to other
methods that require costly end-to-end training.
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