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Figure 1. We propose Vid2Avatar, a method to reconstruct detailed 3D avatars from monocular videos in the wild via self-supervised scene
decomposition. Our method does not require any groundtruth supervision or priors extracted from large datasets of clothed human scans,
nor do we rely on any external segmentation modules. Project page: https://ait.ethz.ch/vid2avatar.

Abstract
We present Vid2Avatar, a method to learn human avatars

from monocular in-the-wild videos. Reconstructing humans
that move naturally from monocular in-the-wild videos is
difficult. Solving it requires accurately separating humans
from arbitrary backgrounds. Moreover, it requires recon-
structing detailed 3D surface from short video sequences,
making it even more challenging. Despite these challenges,
our method does not require any groundtruth supervision
or priors extracted from large datasets of clothed human
scans, nor do we rely on any external segmentation mod-
ules. Instead, it solves the tasks of scene decomposition and
surface reconstruction directly in 3D by modeling both the
human and the background in the scene jointly, parameter-
ized via two separate neural fields. Specifically, we define
a temporally consistent human representation in canonical
space and formulate a global optimization over the back-
ground model, the canonical human shape and texture, and
per-frame human pose parameters. A coarse-to-fine sam-
pling strategy for volume rendering and novel objectives
are introduced for a clean separation of dynamic human
and static background, yielding detailed and robust 3D hu-
man reconstructions. The evaluation of our method shows
improvements over prior art on publicly available datasets.

†Corresponding author

1. Introduction

Being able to reconstruct detailed avatars from readily
available “in-the-wild” videos, for example recorded with
a phone, would enable many applications in AR/VR, in
human-computer interaction, robotics and in the movie and
sports industry. Traditionally, high-fidelity 3D reconstruc-
tion of dynamic humans has required calibrated multi-view
systems [9, 10, 19, 28, 32, 48, 52], which are expensive and
require highly-specialized expertise to operate. In contrast,
emerging applications such as the Metaverse require more
light-weight and practical solutions in order to make the
digitization of humans a widely available technology. Re-
constructing humans that move naturally from monocular
in-the-wild videos is clearly a difficult problem. Solving it
requires accurately separating humans from arbitrary back-
grounds, without any prior knowledge about the scene or
the subject. Moreover it requires reconstructing detailed 3D
surface from short video sequences, made even more chal-
lenging due to depth ambiguities, the complex dynamics of
human motion and the high-frequency surface details.

Traditional template-based approaches [15, 16, 61] can-
not generalize to in-the-wild settings due to the requirement
for a pre-scanned template and manual rigging. Methods
that are based on explicit mesh representations are limited
to a fixed topology and resolution [3, 8, 14, 36]. Fully-
supervised methods that directly regress 3D surfaces from
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images [17,18,21,43,44,58,72] struggle with difficult out-
of-distribution poses and shapes, and do not always pre-
dict temporally consistent reconstructions. Fitting neural
implicit surfaces to videos has recently been demonstrated
[23, 25, 42, 49, 50, 55, 71]. However, these methods depend
on pre-segmented inputs and are therefore not robust to un-
controlled visual complexity and are upper-bounded in their
reconstruction quality by the segmentation method.

In this paper, we introduce Vid2Avatar, a method to learn
human avatars from monocular in-the-wild videos without
requiring any groundtruth supervision or priors extracted
from large datasets of clothed human scans, nor do we rely
on any external segmentation modules. We solve the tasks
of scene separation and surface reconstruction directly in
3D. To achieve this, we model both the foreground (i.e.,
human) and the background in the scene implicitly, param-
eterized via two separate neural fields. A key challenge is
to associate 3D points to either of these fields without re-
verting to 2D segmentation. To tackle this challenge, our
method builds-upon the following core concepts: i) We de-
fine a single temporally consistent representation of the hu-
man shape and texture in canonical space and leverage the
inverse mapping of a parametric body model to learn from
deformed observations. ii) A global optimization formu-
lation jointly optimizes the parameters of the background
model, the canonical human shape and its appearance, and
the pose estimates of the human subject over the entire se-
quence. iii) A coarse-to-fine sampling strategy for volume
rendering that naturally leads to a separation of dynamic
foreground and static background. iv) Novel objectives that
further improve the scene decomposition and lead to sharp
boundaries between the human and the background, even
when both are in contact (e.g., around the feet), yielding
better geometry and appearance reconstructions.

More specifically, we leverage an inverse-depth param-
eterization in spherical coordinates [70] to coarsely sepa-
rate the static background from the dynamic foreground.
Within the foreground sphere, we leverage a surface-guided
volume rendering approach to attain densities via the con-
version method proposed in [63]. Importantly, we warp all
sampled points into canonical space and update the human
shape field dynamically. To attain sharp boundaries be-
tween the dynamic foreground and the scene, we introduce
two optimization objectives that encourage a quasi-discrete
binary distribution of ray opacities and penalize non-zero
opacity for rays that do not intersect with the human. The
final rendering of the scene is then attained by differentiable
composited volume rendering.

We show that this optimization formulation leads to
clean scene decomposition and high-quality 3D reconstruc-
tions of the human subject. In detailed ablations, we shed
light on the key components of our method. Furthermore,
we compare to existing methods in 2D segmentation, novel

view synthesis, and reconstruction tasks, showing that our
method performs best across several datasets and settings.
To allow for quantitative comparison across methods, we
contribute a novel semi-synthetic test set that contains ac-
curate 3D geometry of human subjects. Finally, we demon-
strate the ability to reconstruct different humans in detail
from online videos and hand-held mobile phone video clips.

In summary, our contributions are:
• a method to reconstruct detailed 3D avatars from in-

the-wild monocular videos via self-supervised scene
decomposition; and

• to achieve robust and detailed 3D reconstructions of
the human even under challenging poses and environ-
ments without requiring external segmentation meth-
ods; and

• a novel semi-synthetic testing dataset that for the first
time allows comparing monocular human reconstruc-
tion methods on realistic scenes. The dataset contains
rich annotations of the 3D surface.

2. Related Work
Reconstructing Human from Monocular Video Tradi-
tional works for monocular human performance capture re-
quire personalized rigged templates as prior and track the
pre-defined human model based on 2D observations [15,
16, 61]. These works require pre-scanning of the performer
and post-processing for rigging, preventing such methods
from being deployed to real-life applications. Some meth-
ods attempt to save the need for pre-scanning and manual
rigging [3,8,14,36]. However, the explicit mesh representa-
tion is limited to a fixed resolution and cannot represent de-
tails like the face. Regression-based methods that directly
regress 3D surfaces from images have demonstrated com-
pelling results [4, 12, 17, 18, 21, 43, 44, 58, 72]. However,
they require high-quality 3D data for supervision and can-
not maintain the space-time coherence of the reconstruc-
tion over the whole sequence. Recent works fit implicit
neural fields to videos via neural rendering to obtain artic-
ulated human models [23–25, 42, 49, 50, 55, 71]. Human-
NeRF [55] extends articulated NeRF to improve novel view
synthesis. NeuMan [25] further adds a scene NeRF model.
Both methods model the human geometry with a density
field, only yielding a noisy, and often low-fidelity human
reconstruction. SelfRecon [23] deploys neural surface ren-
dering [64] to achieve consistent reconstruction over the
sequence. However, all aforementioned methods rely on
pre-segmented inputs and are therefore not robust to uncon-
trolled visual complexity and are upper-bounded in their re-
construction quality by the external segmentation method.
In contrast, our method solves the tasks of scene decompo-
sition and surface reconstruction jointly in 3D without using
external segmentation modules.

12859



Reconstructing Human from Multi-view/Depth The
high fidelity 3D reconstruction of dynamic humans has re-
quired calibrated dense multi-view systems [9, 10, 19, 28,
32, 48, 52, 66] which are expensive and laborious to oper-
ate and require highly-specialized expertise. Recent works
[20, 22, 29, 39, 41, 54, 59, 60] attempt to reconstruct hu-
mans from more sparse settings by deploying neural ren-
dering. Depth-based approaches [6, 37, 38] reconstruct the
human shape by fusing depth measurements across time.
Follow-up work [7, 11, 30, 47, 67, 68] builds upon this con-
cept by incorporating an articulated motion prior, a para-
metric body shape prior, and a more expressive body model.
While the aforementioned methods achieve compelling re-
sults, they still require a specialized capturing setup and are
hence not applicable to in-the-wild settings. In contrast, our
method recovers the dynamic human shape in the wild from
a monocular RGB video as the sole input.

Moving Object Segmentation Traditional research in
moving object segmentation has been extensively con-
ducted at the image level (i.e. 2D). One line of research
relies on motion clues to segment objects with different op-
tical flow patterns [5, 40, 57, 62, 65], while another line of
work, termed video matting [26,31,45] is trained on videos
with human-annotated masks to directly regress the alpha-
channel values during inference. Those approaches are not
without limitations, as they focus on image-level segmen-
tation and incorporate no 3D knowledge. Thus, they can-
not handle complicated backgrounds without enough color
contrast between the human and the background. Recent
works learn to decompose dynamic objects and the static
background simultaneously in 3D by optimizing multiple
NeRFs [46,51,56,69]. Such methods perform well for non-
complicated dynamic objects but are not directly applicable
to articulated humans with intricate motions.

3. Method
We introduce Vid2Avatar, a method for detailed geome-

try and appearance reconstruction of implicit neural avatars
from monocular videos in the wild. Our method is schemat-
ically illustrated in Fig. 2. Reconstructing humans from in-
the-wild videos is clearly challenging. Solving it requires
accurately segmenting humans from arbitrary backgrounds
without any prior knowledge about the appearance of the
scene or the subject and requires reconstructing detailed 3D
surface and appearance from short video sequences. In con-
trast to prior works that utilize off-the-shelf 2D segmenta-
tion tools or manually labeled masks, we solve the tasks of
scene decomposition and surface reconstruction directly in
3D. To achieve this, we model both the human and back-
ground in the scene implicitly, parameterized via two sep-
arate neural fields which are learned jointly from images
to composite the whole scene. To alleviate the ambiguity

of in-contact body and scene parts and to better delineate
the surfaces, we contribute novel objectives that leverage
the dynamically updated human shape in canonical space to
regularize the ray opacity.

We parameterize the 3D geometry and texture of clothed
humans as a pose-conditioned implicit signed-distance field
(SDF) and texture field in canonical space (Sec. 3.1). We
then model the background using a separate neural radi-
ance field (NeRF). The human shape and appearance fields
alongside the background field are learned from images
jointly via differentiable composited neural volume render-
ing (Sec. 3.2). Finally, we leverage the dynamically up-
dated canonical human shape to regularize the ray opacities
(Sec. 3.3). The training is formulated as global optimization
to jointly optimize the dynamic foreground and static back-
ground fields, and the per-frame pose parameters (Sec. 3.4).

3.1. Implicit Neural Avatar Representation

Canonical Shape Representation. We model the human
shape in canonical space to form a single, temporally con-
sistent representation and use a neural network fH

sdf to pre-
dict the signed distance value for any 3D point xc in this
space. To model pose-dependent local non-rigid deforma-
tions such as dynamically changing wrinkles on clothes, we
concatenate the human pose θ as an additional input and
model fH

sdf as:

fH
sdf : R3+nθ → R1+256. (1)

The pose parameters θ are defined analogously to
SMPL [34], with dimensionality nθ. Furthermore, fH

sdf out-
puts global geometry features z of dimension 256. With
slight abuse of notation, we also use fH

sdf to refer to the SDF
value only. The canonical shape S is given by the zero-level
set of fH

sdf:

S = { xc | fH
sdf(xc,θ) = 0 }. (2)

Skeletal Deformation. Given the bone transformation
matrix Bi for joint i ∈ {1, ..., nb} which are derived from
the body pose θ, a canonical point xc is mapped to the de-
formed point xd via linear-blend skinning:

xd =

nb∑
i=1

wi
cBi xc. (3)

The canonical correspondence xc for points xd in deformed
space is defined by the inverse of Eq. 3:

xc = (

nb∑
i=1

wi
dBi)

−1 xd (4)

Here, nb denotes the number of bones in the transformation,
and w(·) = {w1

(·), ..., w
nb

(·)} represents the skinning weights
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Figure 2. Method Overview. Given a ray r with camera center o and ray direction v, we sample points densely (xd) and coarsely (xb)
along the ray for the spherical inner volume and outer volume respectively. Within the foreground sphere, we warp all sampled points
into canonical space via inverse warping and evaluate the SDF of the canonical correspondences xc via the canonical shape network fH

sdf.
We calculate the spatial gradient of the sampled points in deformed space and concatenate them with the canonical points xc, the pose
parameters θ, and the extracted geometry feature vectors z to form the input to canonical texture network fH

rgb which predicts color values
for xc. We apply surface-based volume rendering for the dynamic foreground and standard volume rendering for the background, and
then composite the foreground and background components to attain the final pixel color. We minimize the loss L that compares the color
predictions with the image observations along with novel scene decomposition objectives.

for x(·). Here, deformed points xd are associated with the
average of the nearest SMPL vertices’ skinning weights,
weighted by the point-to-point distances in deformed space.
Canonical points xc are treated analogously.

Canonical Texture Representation. The appearance is
also modeled in canonical space via a neural network fH

rgb
that predicts color values for 3D points xc in this space.

fH
rgb : R3+3+nθ+256 → R3. (5)

We condition the canonical texture network on the nor-
mal nd in deformed space, facilitating better disentangle-
ment of the geometry and appearance. The normals are
given by the spatial gradient of the signed distance field
w.r.t. the 3D location in deformed space. Following [71],
the spatial gradient of the deformed shape is given by:

nd =
∂fH

sdf(xc,θ)

∂xd
=

∂fH
sdf(xc,θ)

∂xc

∂xc

∂xd

=
∂fH

sdf(xc,θ)

∂xc
(

nb∑
i=1

wi
dBi)

−1.

(6)

In practice we concatenate the canonical points xc, their
normals, the pose parameters, and the extracted 256-
dimensional geometry feature vectors z from the shape net-
work to form the input to the canonical texture network. For

the remainder of this paper, we denote this neural SDF with
fH

sdf(xc) and the RGB field as fH
rgb(xc) for brevity.

3.2. Composited Volume Rendering

We extend the inverted sphere parametrization of
NeRF++ [70] to represent the scene: an outer volume (i.e.,
the background) covers the complement of a spherical inner
volume (i.e., the space assumed to be occupied by the hu-
man) and both are modeled by separate networks. The final
pixel value is then attained via compositing.

Background. Given the origin O, each 3D point xb =
(xb, yb, zb) in the outer volume is reparametrized by the
quadruple x′

b = (x′
b, y

′
b, z

′
b,

1
r ), where ∥(x′

b, y
′
b, z

′
b)∥ = 1,

(xb, yb, zb) = r · (x′
b, y

′
b, z

′
b). Here r denotes the magnitude

of the vector from the origin O to xb. This parameterization
of background points leads to improved numerical stability
and assigns lower resolution to farther away points. For
more details, we refer to [70]. Our method is trained with
videos and the background is generally not entirely static.
To compensate for dynamic changes in e.g., lighting, we
condition the background network fB on a per-frame learn-
able latent code ti.

fB : R4+3+nt → R1+3, (7)
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where fB takes the 4D representation of the sampled back-
ground point x′

b, viewing direction v, and time encoding ti

with dimension nt as input, and outputs the density and the
view-dependent radiance.

Dynamic Foreground. We assume that the inner volume
is occupied by a dynamic foreground – the human we seek
to reconstruct. This requires different treatment compared
to [70] where a static foreground is modeled via a vanilla
NeRF. In contrast, we combine the implicit neural avatar
representation (Sec. 3.1) with surface-based volume ren-
dering [63]. Thus, we convert the SDF to a density σ
by applying the scaled Laplace distribution’s Cumulative
Distribution Function (CDF) to the negated SDF values
ξ(xc) = −fH

sdf(xc):

σ(xc) = α

(
1

2
+

1

2
sign(ξ(xc))(1− exp(−|ξ(xc)|

β
))

)
,

(8)
where α, β > 0 are learnable parameters.

Similar to [63], we sample N points on a ray r = (o,v)
with camera center o and ray direction v in two stages –
uniform and inverse CDF sampling. We then map the sam-
pled points to canonical space via skeletal deformation and
use standard numerical approximation to calculate the inte-
gral of the volume rendering equation:

CH(r) =

N∑
i=1

τif
H
rgb(x

i
c) (9)

τi = exp

−
∑
j<i

σ(xj
c)δ

j

 (1− exp(−σ(xi
c)δ

i)) (10)

where δ(i) is the distance between two adjacent samples.
Here, the accumulated alpha value of a pixel, which repre-
sents ray opacity, can be obtained by αH(r) =

∑N
i=1 τi.

Scene Composition. To attain the final pixel value for a
ray r, we raycast the human and background volumes sep-
arately, followed by a scene compositing step. Using the
parameterization of the background, we sample r along the
ray r to obtain sample points in the outer volume for which
we query fB . The background component of a pixel is
then given by the integrated color value CB(r) along the
ray [35]. More details can be found in the Supp. Mat. The
final pixel color is then the composite of the foreground and
background color.

C(r) = CH(r) + (1− αH(r))CB(r). (11)

3.3. Scene Decomposition Objectives

Learning to decompose the scene into a dynamic human
and background by simply minimizing the distance between

the composited pixel value and image RGB value is still a
severely ill-posed problem. This is due to the potentially
moving scene, dynamic shadows, and general visual com-
plexity. To this end, we propose two objectives that guide
the optimization towards a clean and robust decoupling of
the human from the background.

Opacity Sparseness Regularization. One of the key
components of our method is a loss Lsparse to regularize
the ray opacity via the dynamically updated human shape
in canonical space. We first warp sampled points into the
canonical space and calculate the signed distance to the hu-
man shape. We then penalize non-zero ray opacities for rays
that do not intersect with the subject. This ray set is denoted
as Ri

off for frame i.

Li
sparse =

1

|Ri
off|

∑
r∈Ri

off

|αH(r)|. (12)

Note that we conservatively update the SDF of the human
shape throughout the whole training process which leads to
a precise association of human and background rays.

Self-supervised Ray Classification. Even with the shape
regularization from Eq. 12, we observe that the human fields
still tend to model parts of the background due to the flexi-
bility and expressive power of MLPs, especially if the sub-
ject is in contact with the scene. To further delineate dy-
namic foreground and background, inspired by [33], we in-
troduce an additional loss term to encourage ray distribu-
tions that contain either fully transparent or opaque rays:

Li
BCE =− 1

|Ri|
∑
r∈Ri

(αH(r) log(αH(r))

+ (1− αH(r)) log(1− αH(r))),

(13)

where Ri denotes the sampled rays for frame i. This
term penalizes deviations of the ray opacities from a bi-
nary {0, 1} distribution via the binary cross entropy loss.
Intuitively this encourages the opacities to be zero for rays
that hit the background and one for those that hit the human
shape. In practice, this significantly helps separation of the
subject and the background, in particular for difficult cases
with similar pixel values across discontinuities.

The final scene decomposition loss is then given by Ldec:

Ldec = λBCELBCE + λsparseLsparse. (14)

3.4. Global Optimization

To train the models that represent the background and
the dynamic foreground jointly from videos, we formulate
the training as global optimization over all frames.
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Image Ours Fullw/o Scene Dec. Loss

Figure 3. Importance of scene decomposition loss. Without the
scene decomposition loss, the segmentation includes undesirable
background parts due to similar pixel values across discontinuities.

Eikonal Loss. Following IGR [13], we leverage Li
eik to

force the shape network fH
sdf to satisfy the Eikonal equation

in canonical space:

Li
eik = Exc

(
∥∇fH

sdf(xc)∥ − 1
)2

. (15)

Reconstruction Loss. We calculate the L1-distance be-
tween the rendered color C(r) and the pixel’s RGB value
Ĉ(r) to attain the reconstruction loss Li

rgb for frame i:

Li
rgb =

1

|Ri|
∑
r∈Ri

|C(r)− Ĉ(r)|. (16)

Full Loss. Given a video sequence with F input frames,
we minimize the combined loss function:

L(Θ) =

F∑
i=1

Li
rgb(Θ

H ,ΘB) + λdecLi
dec(Θ

H) + λeikLi
eik(Θ

H)

(17)
where ΘH and ΘB are the sets of optimized parameters
for the human and background model respectively. ΘH in-
cludes the shape network weights ΘH

sdf, the texture network
weights ΘH

rgb and per-frame pose parameters θi. ΘB con-
tains the background density and radiance network weights.

4. Experiments
We first conduct ablation studies on our design choices.

Next, we compare our method with state-of-the-art ap-
proaches in 2D segmentation, novel view synthesis, and re-
construction tasks. Finally, we demonstrate human recon-
struction results on several in-the-wild monocular videos
from different sources qualitatively.

4.1. Datasets

MonoPerfCap Dataset [61]: This dataset contains in-
the-wild human performance sequences with ground-truth
masks. Since our method can provide human segmentation
as by-product, we use this dataset to compare our method
with other off-the-shelf 2D segmentation approaches to val-
idate the scene decomposition quality of our method.

Image PointRend Ye et al. RVM Ours

Figure 4. Qualitative mask comparison. Our method generates
more detailed and robust segmentations compared to 2D segmen-
tation methods by incorporating 3D knowledge.

GT NeuMan HumanNeRF Ours

Figure 5. Qualitative view synthesis comparison. Our method
achieves comparable and even better novel view synthesis results
compared to NeRF-based methods (see also Sec. 4.4).

NeuMan Dataset [25]: This dataset includes a collection
of videos captured by a mobile phone, in which a single
person performs walking. We use this dataset to compare
our rendering quality of humans under unseen views with
other approaches.
3DPW Dataset [53]: This dataset contains challenging
in-the-wild video sequences along with accurate 3D hu-
man poses recovered by using IMUs and a moving camera.
Moreover, it includes registered static clothed 3D human
models. By animating the human model with the ground-
truth poses, we can obtain quasi ground-truth scans to eval-
uate the surface reconstruction performance.
SynWild Dataset: We propose a new dataset called Syn-
Wild for the evaluation of monocular human surface recon-
struction method. We capture dynamic human subjects in
a multi-view system and reconstruct the detailed geometry
and texture via commercial software [9]. Then we place the
textured 4D scans into realistic 3D scenes/HDRI panoramas
and render monocular videos from virtual cameras, leverag-
ing a high-quality game engine [2]. This is the first dataset
that allows for quantitative comparison in a realistic setting
via semi-synthetic data.
Evaluation Protocol: We consider precision, F1 score, and
mask IoU for human segmentation evaluation. We report
volumetric IoU, Chamfer distance (cm) and normal con-
sistency for surface reconstruction comparison. Rendering
quality is measured via SSIM and PSNR.

4.2. Ablation Study

Jointly Pose Optimization: The initial pose estimate
from a monocular RGB video is usually inaccurate. To eval-
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Method Precision ↑ F1 ↑ IoU ↑
SMPL Tracking 0.829 0.781 0.659
PointRend [27] 0.957 0.960 0.915
Ye et al. [65] 0.945 0.947 0.890
RVM [31] 0.975 0.977 0.950

w/o Scene Dec. Loss 0.979 0.974 0.942
Ours 0.983 0.983 0.961

Table 1. Quantitative evaluation on MonoPerfCap. Our method
outperforms all 2D segmentation baselines in all metrics.

Method SSIM ↑ PSNR ↑
NeuMan [25] 0.958 23.9
HumanNeRF [55] 0.963 24.8

Ours 0.964 25.1

Table 2. Quantitative evaluation on NeuMan. We report the
quantitative results on test views. Our method achieves on-par and
even better rendering quality compared to NeRF-based methods.

uate the importance of jointly optimizing pose, shape, and
appearance, we compare our full model to a version without
jointly pose optimization. Tab. 3 shows that the joint opti-
mization significantly helps in global pose alignment and to
recover details (normal consistency), this is also confirmed
by qualitative results. Please see the Supp. Mat.

Scene Decomposition Loss: To demonstrate the effec-
tiveness of our proposed scene decomposition loss, we con-
duct an ablation experiment without this term during opti-
mization. Results in Tab. 1 indicate that without the scene
decomposition loss, the segmentation tends to be noisy and
includes parts of the background as shown in Fig. 3.

4.3. 2D Segmentation Comparisons

We generate human masks by extracting the pixels with
ray opacity αH(r) value of 1. Our produced masks are
compared with SMPL Tracking, PointRend [27], Ye et al.
[65] and RVM [31] on the MonoPerfCap dataset [61]. [27]
and [31] are trained on large datasets with human-annotated
masks, while [65] rely on optical flow as motion clues to
segment objects in an unsupervised manner. SMPL Track-
ing uses dilated projected SMPL masks as the result. Tab. 1
shows the quantitative results. Our method consistently
outperforms other baseline methods on all metrics. Fig. 4
shows that other baselines struggle on the feet since there
is no enough photometric contrast between the part of the
shoes and the stairs. In contrast, our method is able to gener-
ate plausible human segmentation via decomposition from
a 3D perspective.

4.4. View Synthesis Comparisons

Though not our primary goal, we also compare with Hu-
manNeRF [55] and NeuMan [25] for the task of novel view
synthesis on the NeuMan dataset. Note that both methods

Method IoU ↑ C− ℓ2 ↓ NC ↑
ICON [58] 0.718 3.32 0.731
SelfRecon [23] 0.648 3.31 0.675

w/o Joint Opt. 0.810 3.00 0.737
Ours 0.818 2.66 0.753

Table 3. Quantitative evaluation on 3DPW. Our method consis-
tently outperforms all baselines in all metrics (cf . Fig. 6).

Method IoU ↑ C− ℓ2 ↓ NC ↑
ICON [58] 0.764 2.91 0.766
SelfRecon [23] 0.805 2.50 0.776

Ours 0.813 2.35 0.796

Table 4. Quantitative evaluation on SynWild. Our method con-
sistently outperforms all baselines in all metrics (cf . Fig. 6).

require additional human segmentation as input. Overall,
we achieve comparable or even better performance quanti-
tatively (cf . Tab. 2). As shown in Fig. 5, NeuMan and Hu-
manNeRF have obvious artifacts around feet and arms. This
is because, a) off-the-shelf tools struggle to produce consis-
tent masks and b) NeRF-based methods are known to have
“hazy” floaters in the space leading to visually unpleasant
results. Our method produces more plausible renderings of
the human with a clean separation from the background.

4.5. Reconstruction Comparisons

We compare our proposed human surface reconstruction
method to several state-of-the-art approaches [23, 58] on
both 3DPW [53] and SynWild. ICON (image-based) [58]
reconstructs 3D clothed humans by learning a regression
model from a large dateset of clothed human scans [1].
SelfRecon (video-based) [23] deploys implicit surface ren-
dering to reconstruct avatars from monocular videos. Both
methods rely on additional human masks as input for their
methods. Despite this, our method outperforms [23, 58]
by a substantial margin on all metrics (cf . Tab. 3, Tab. 4).
The difference is more visible in qualitative comparison as
shown in Fig. 6, where they tend to produce physically in-
correct body reconstructions (e.g., missing arms and sunken
backs). In contrast, our method generates complete human
bodies and recovers more surface details (e.g., cloth wrin-
kles and facial features). We attribute this to the better de-
coupling of humans from the background by our proposed
modeling and learning schemes.

4.6. Qualitative Results

We demonstrate our results on several in-the-wild
monocular videos from different sources: online, datasets,
and self-captured video clips (Fig. 7). Our method is able
to reconstruct complex cloth deformations and personalized
facial features in detail. Please refer to Supp. Mat for
more qualitative results.
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Figure 6. Qualitative reconstruction comparison. Data source top to bottom: 3DPW, SynWild, Online. ICON and SelfRecon produce
less detailed and even physically implausible reconstructions (incomplete human bodies). In contrast, our method generates complete
human bodies and achieves a detailed (e.g., cloth wrinkles) and temporally consistent shape reconstruction.

Image

Geometry

Figure 7. Qualitative results. Reconstructed 3D humans can be viewed from any angle.

5. Conclusion

In this paper, we present Vid2Avatar to reconstruct de-
tailed 3D avatars from monocular in-the-wild videos via
self-supervised scene decomposition. Our method does not
require any groundtruth supervision or priors extracted from
large datasets of clothed human scans, nor do we rely on any
external segmentation modules. With carefully designed
background modeling and temporally consistent canoni-
cal human representation, a global optimization with novel
scene decomposition objectives is formulated to jointly op-

timize the parameters of the background field, the canoni-
cal human shape and appearance, and the human pose esti-
mates over the entire sequence via differentiable compos-
ited volume rendering. Our method achieves robust and
high-fidelity human reconstruction from monocular videos.
Limitations: Although readily available, Vid2Avatar relies
on reasonable pose estimates as inputs. Furthermore, loose
clothing such as skirts or free-flowing garments poses sig-
nificant challenges due to their fast dynamics. We refer to
Supp. Mat for a more detailed discussion of limitations and
societal impact.
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