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Abstract

Most recent 6D object pose methods use 2D optical flow
to refine their results. However, the general optical flow
methods typically do not consider the target’s 3D shape in-
formation during matching, making them less effective in
6D object pose estimation. In this work, we propose a
shape-constraint recurrent matching framework for 6D ob-
ject pose estimation. We first compute a pose-induced flow
based on the displacement of 2D reprojection between the
initial pose and the currently estimated pose, which em-
beds the target’s 3D shape implicitly. Then we use this
pose-induced flow to construct the correlation map for the
following matching iterations, which reduces the matching
space significantly and is much easier to learn. Further-
more, we use networks to learn the object pose based on the
current estimated flow, which facilitates the computation of
the pose-induced flow for the next iteration and yields an
end-to-end system for object pose. Finally, we optimize the
optical flow and object pose simultaneously in a recurrent
manner. We evaluate our method on three challenging 6D
object pose datasets and show that it outperforms the state
of the art significantly in both accuracy and efficiency.

1. Introduction

6D object pose estimation, i.e., estimating the 3D rota-
tion and 3D translation of a target object with respect to the
camera, is a fundamental problem in 3D computer vision
and also a crucial component in many applications, includ-
ing robotic manipulation [8] and augmented reality [34].
Most recent methods rely on pose refinement to obtain ac-
curate pose results [16, 31, 52]. Typically, they first syn-
thesize an image based on the rendering techniques [9, 38]
according to the initial pose, then estimate dense 2D-to-2D
correspondence between the rendered image and the input
based on optical flow networks [46]. After lifting the esti-
mated 2D optical flow to 3D-to-2D correspondence based
on the target’s 3D shape, they can obtain a new refined pose
using Perspective-n-Points (PnP) solvers [27].

Although this paradigm works well in general, it suffers
from several weaknesses. First, the general optical flow
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Figure 1. The problem of optical flow in 6D pose estimation.
Given an initial pose, one can estimate the dense 2D-to-2D cor-
respondence (optical flow) between the input and the synthetic
image rendered from the initial pose, and then lift the dense 2D
matching to 3D-to-2D correspondence to obtain a new refined pose
by PnP solvers (PFA-Pose [16]). However, the flow estimation
does not take the target’s 3D shape into account, as illustrated by
the warped image based on the estimated flow in the last figure,
which introduces significant matching noise to pose solvers and is
suboptimal for 6D object pose estimation.

networks they use are mainly built on top of two assump-
tions, i.e., the brightness consistency between two poten-
tial matches and the smoothness of matches within a local
neighbor [1]. These assumptions, however, are too general
and do not have any clue about the target’s 3D shape in the
context of 6D object pose estimation, making the potential
matching space of every pixel unnecessarily large in the tar-
get image. Second, the missing shape information during
matching often results in flow results that do not respect the
target shape, which introduces significant matching noise,
as shown in Fig. 1. Third, this multi-stage paradigm trains
a network that relies on a surrogate matching loss that does
not directly reflect the final 6D pose estimation task [17],
which is not end-to-end trainable and suboptimal.

To address these problems, we propose a shape-
constraint recurrent matching framework for 6D object pose
estimation. It is built on top of the intuition that, in addition
to the brightness consistency and smoothness constraint in
classical optical flow solutions [2,35], the dense 2D match-
ing should comply with the 3D shape of the target. We first
build a 4D correlation volume between every pixel of the
source image and every pixel of the target image, similar to
RAFT [46]. While, instead of indexing from the correla-
tion volume according to the current flow during the itera-
tion, we propose indexing the correlation volume based on
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Figure 2. Different pose refinement paradigms. (a) Most pose refinement methods [16] rely on a recurrent architecture to estimate dense
2D flow between the rendered image I1 and the real input image I2, based on a dynamically-constructed correlation map according to the
flow results of the previous iteration. After the convergence of the flow network and lifting the 2D flow to a 3D-to-2D correspondence field,
they use PnP solvers to compute a new refined pose P̂ . This strategy, however, has a large matching space for every pixel in constructing
correlation maps, and optimizes a surrogate matching loss that does not directly reflect the final 6D pose estimation task. (b) By contrast,
we propose optimizing the pose and flow simultaneously in an end-to-end recurrent framework with the guidance of the target’s 3D shape.
We impose a shape constraint on the correlation map construction by forcing the construction to comply with the target’s 3D shape, which
reduces the matching space significantly. Furthermore, we propose learning the object pose based on the current flow prediction, which, in
turn, helps the flow prediction and yields an end-to-end system for object pose.

a pose-induced flow, which is forced to contain only all the
2D reprojections of the target’s 3D shape and reduces the
matching space of the correlation map construction signif-
icantly. Furthermore, we propose to use networks to learn
the object pose based on the current flow prediction, which
facilitates the computation of the pose-induced flow for the
next iteration and also removes the necessity of explicit PnP
solvers, making our system end-to-end trainable and more
efficient, as shown in Fig. 2(b).

We evaluate our method on the challenging 6D object
pose benchmarks, including LINEMOD [14], LINEMOD-
Occluded [25], and YCB-V [50], and show that our method
outperforms the state of the art significantly, and converges
much more quickly.

2. Related Work

Object pose estimation, has shown significant improve-
ment [36, 47, 50] after the utilization of deep learning tech-
niques [13, 51]. While most of them still follow the tra-
ditional paradigm, which consists of the establishment of
3D-to-2D correspondence and the PnP solvers. Most recent
methods create the correspondence either by predicting 2D
points of some predefined 3D points [18, 21, 36, 37] or pre-
dicting the corresponding 3D point for every 2D pixel loca-
tion within a segmentation mask [3, 10, 29, 42, 48, 53]. On
the other hand, some recent methods try to make the PnP
solvers differentiable [4, 5, 17]. However, the accuracy of
these methods still suffers in practice. We use pose refine-
ment to obtain more accurate results in this work.
Object pose refinement, usually relies on additional depth
images [29, 45, 47, 50], which is accurate but the depth im-
ages are hard to obtain in some scenarios and even inac-
cessible in many applications [21, 40]. Most recent refine-
ment methods use a render-and-compare strategy without

any access to depth images and achieve comparable per-
formance [16, 23, 26, 28, 31, 33, 37, 52, 53]. These meth-
ods, however, usually formulate pose refinement as a gen-
eral 2D-to-2D matching problem and do not consider the
fact that the dense 2D matching should comply with the 3D
shape of the target, which is suboptimal in 6D object pose
estimation. On the other hand, most of them rely on numer-
ical PnP solvers [27] as their post processing and optimize
a surrogate matching loss that does not directly reflect the
final 6D pose estimation task during training. By contrast,
we propose a recurrent matching framework guided by the
3D shape of the target, which transforms the constraint-free
matching problem into a shape-constraint matching prob-
lem. Furthermore, we propose to learn the object pose from
the intermediate matches iteratively, making our method
end-to-end trainable and producing more accurate results.

Optical flow estimation, whose goal is to obtain the match-
ing of every pixel from the source image to the target im-
age, has been widely studied for a long time [1]. Clas-
sically, it is formulated as an energy optimization prob-
lem, which is usually based on the assumption of bright-
ness consistency and local smoothness [1, 6, 19, 20, 39].
Recently, the learning-based methods inspired by those
traditional intuitions have shown great progress in esti-
mating flow in large-displacement and occlusion scenar-
ios [1, 11, 22, 24, 30, 43, 44]. Especially, RAFT [46], which
introduces a recurrent deep network architecture for opti-
cal flow, has shown significant improvement over the pre-
vious learning-based methods further. However, these opti-
cal flow methods are general and can not utilize the target’s
prior knowledge, making them suboptimal when used in 6D
object pose estimation. By contrast, we propose embedding
the target’s 3D shape prior knowledge into the optical flow
framework for 6D object pose estimation, which reduces the
matching space significantly and is much easier to learn.
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Figure 3. Overview of our shape-constraint recurrent framework. After building a 4D correlation volume between the rendered image
and the input target image, we use GRU [7] to predict an intermediate flow, based on the predicted flow Fk−1 and the hidden state hk−1 of
GRU from the previous iteration. We then use a pose regressor to predict the relative pose ∆Pk based on the intermediate flow, which is
used to update the previous pose estimation Pk−1. Finally, we compute a pose-induced flow based on the displacement of 2D reprojection
between the initial pose and the currently estimated pose Pk. We use this pose-induced flow to index the correlation map for the following
iterations, which reduces the matching space significantly. Here we show the flow and its corresponding warp results in the dashed boxes.
Note how the intermediate flow does not preserve the shape of the target, but the pose-induced flow does.

3. Approach

Given a calibrated RGB input image and the 3D model
of the target, our goal is to estimate the target’s 3D rotation
and 3D translation with respect to the camera. We obtain
a pose initialization based on existing pose methods [21,
50], and refine it using a recurrent matching framework. We
focus on the refinement part in this paper. We first have an
overview of our framework and then discuss the strategy of
reducing the search space of matching by imposing a shape
constraint. Finally, we present the design of learning object
pose based on optical flow to make our matching framework
end-to-end trainable.

3.1. Overview

Given an input image and the initial pose, we synthe-
size an image by rendering the target according to the ini-
tial pose, and use a shared-weight CNN to extract features
for both the rendered image and the input image, and then
build a 4D correlation volume containing the correlations of
all pairs of feature vectors between the two images, similar
to PFA [16, 46]. However, unlike the standard strategy that
indexes the correlation volume for the next iteration without
any constraints, we use a pose-induced flow for the index-
ing, which embeds the target’s shape information implicitly.

We first predict an intermediate flow based on the con-
structed correlation map. Then we use a pose regressor
to predict an intermediate pose based on the intermediate
flow. After that, we compute the pose-induced flow based
on the displacement of 2D reprojection between the initial
pose and the currently estimated pose. We use this pose-
induced flow to index the correlation map for the next iter-
ation, which reduces the matching space significantly. On
the other hand, the pose regressor based on the intermedi-

ate flow removes the need for RANSAC-PnP and produces
an end-to-end system for object pose. Fig. 3 shows the
overview of our framework.

3.2. Shape-Constraint Correlation Space

We first obtain a 4D correlation volume C ∈
RH×W×H×W based on the dot product between all pairs
of feature vectors from image features from different pyra-
mid levels [46]. The standard lookup operation generates
a correlation feature map by indexing from the correla-
tion volume, which maps the feature vectors at location
x = (u, v) in I1 to the corresponding new location in I2:
x′ = (u, v) + f(u, v), where f(u, v) is the currently esti-
mated flow. This standard lookup operation works well in
general, but does not consider the fact that all the matches
should comply with the shape of the target in 6D object pose
estimation, making its matching space unnecessarily large.

To address this, we embed the target’s 3D shape into the
lookup operation, generating a shape-constraint location in
constructing the new correlation map:

x′ = (uk, vk)+f(uk, vk;K,S,P0,Pk), 1 ≤ k ≤ N, (1)

where N is the number of iterations, K is the intrinsic cam-
era matrix, S is the target’s 3D shape, P0 and Pk are the
initial pose and the currently estimated pose of the target,
respectively. We call the flow fields f(uk, vk;K,S,P0,Pk)
pose-induced flow.

More specifically, given a 3D point pi on the target’s
mesh, we use the perspective camera model to get its 2D
location ui0 under the initial pose P0,

λi

[
ui0

1

]
= K(R0pi + t0), (2)
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(a) Standard (b) Shape-constraint

Figure 4. Illustration of shape-constraint correlation space. (a)
The standard index operation has no constraint in constructing the
correlation map, which has unnecessarily large search space for
matching in 6D object pose estimation. (b) By contrast, we force it
to contain only all the 2D reprojections of the target’s 3D shape (il-
lustrated as rectangles), reducing the matching space significantly.

where λi is a scale factor, and R0 and t0 are the rotation
matrix and translation vector representing the initial pose
P0. Similarly, we obtain a new 2D location uik of the same
3D point pi under the currently estimated pose Pk. Then
the pose-induced flow f = uik − ui0, which represents
the displacement of 2D reprojection of the same 3D point
between the initial pose and the currently estimated pose.
We compute 2D flow only for the 3D points on the visible
surface of the mesh. Fig. 4 illustrates the advantages of this
strategy.

3.3. Learning Object Pose From Optical Flow

The pose-induced flow relies on the current pose predic-
tion. In principle, the pose can be obtained by a PnP solver
based on the current intermediate flow [16]. This strategy,
however, is not easy to be stably differentiable during train-
ing [17, 49]. Instead, we propose using networks to learn
the object pose.

We learn a residual pose ∆Pk based on the current inter-
mediate flow, which updates the estimated pose iteratively:
Pk = Pk−1 ⊗∆Pk. Note that the intermediate flow does
not preserve the target’s shape, as shown in Fig. 3.

For the supervision of the residual pose, we first encode
the residual rotation ∆R into a six-dimensional representa-
tion [54], and parameterize the residual translation ∆T as a
form of 2D offsets and scaling on the image plane [28].

After predicting the current pose Pk, we compute the
pose-induced flow based on the initial pose and Pk, as
discussed in the previous section. The pose-induced flow,
which is used to construct the correlation map for the next
iteration, preserves the targets’s shape, as shown in Fig. 5.

3.4. Implementation Details

Our method works in a render-and-compare manner [23,
28, 52] to learn the difference between the input image I1
and I2. For I1, we use Pytorch3D [38] to render the target
according to the initial pose P0, with a fixed image reso-

(a) The baseline strategy (b) Our strategy

Figure 5. Comparison of the predicted flow. From top to bottom,
we show the predicted flow, the flow error map, and the corre-
sponding warp images for both the baseline PFA and our method.
We show the results with 2 and 8 iterations from left to right for
each method. The baseline can not preserve the target’s shape dur-
ing the iterations, and our method preserves it after every iteration.

lution of 256×256. For I2, we crop the region of interest
from the raw input image based on P0 and resize it to the
same resolution as I1.

We use GRU [7, 46] for the recurrent modeling

hk = GRU(Ck, Fk−1, hk−1; Θ), (3)

where, Ck is the constructed correlation map for the current
iteration, Fk−1 is the intermediate flow from the previous
iteration, and hk and Θ are the hidden state feature and net-
work parameters of the GRU structure, respectively.

For the pose regressor, we concatenate the intermedi-
ate flow and the hidden state feature of GRU, and use two
networks to predict ∆R and ∆T, respectively. These two
small networks have the same architecture except for the di-
mension of the final output layer, and consist of three con-
volutional layers and two fully connected layers for each.

We predict both the optical flow and the object pose iter-
atively. To supervise them in each iteration, we use a simple
exponentially weighting strategy [46] in our loss

L =

N∑
k=1

γN−k(Lk
pose + αLk

flow) (4)

where γ is the exponential weighting factor, and α is the pa-
rameter balancing the object pose loss Lpose and the optical
flow loss Lflow. We use N = 8, γ = 0.8 and α = 0.1 in
this work.

To compute the object pose loss Lpose, we randomly se-
lect 1k 3D points from the surface of the object’s 3D mesh,
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Dataset PoseCNN PVNet SO-Pose DeepIM RePose RNNPose PFA Ours

LM 63.3 86.3 96.0 88.6 96.1 97.4 95.8 99.3
LM-O 24.9 40.8 62.3 55.5 51.6 60.7 65.3 66.4
YCB-V 21.3 - 56.8 53.6 62.1 66.4 62.8 70.5

Table 1. Comparison against the state of the art in ADD-0.1d. Our method outperforms the competitors by a large margin.

and then calculate the distance between these points trans-
formed by the ground truth pose and the predicted pose,
respectively. For the optical flow loss Lflow, we first com-
pute the ground truth flow based on the initial pose and the
ground truth pose, by the geometry reasoning as discussed
in Section 3.2. Then we use the L1 loss to capture the end-
point error between the ground truth flow and the interme-
diate flow. We only supervise the pixels within the mask of
the rendered target, and discard the pixels under occlusion.

We train our model using AdamW [32] optimizer with
a batch size of 16, and use an adaptive learning rate sched-
uler based on One-Cycle [41], starting from 4e-4. We typ-
ically train the model for 100k steps. During training, we
randomly generate a pseudo initial pose around the ground
truth pose of the input image, and render the reference im-
age I1 according to the pseudo initial pose on the fly.

4. Experiments

In this section, we evaluate our method systematically.
We first introduce our experiment settings and then demon-
strate the effectiveness of our method by comparing with
the state of the art. Finally, we conduct extensive ablation
studies to validate the design of our method. Our source
code is publicly available at https://github.com/
YangHai-1218/SCFlow.

4.1. Experiment Setup

Datasets. We evaluate our method on three challenging
datasets, including LINEMOD (“LM”) [14], LINEMOD-
Occluded (“LM-O”) [25], and YCB-V [50]. LINEMOD
contains 13 sequences, each containing a single object an-
notated with accurate ground-truth poses. LINEMOD-
Occluded has 8 objects which is a subset of the LM objects.
Its test set is one of the sequences in LM, which contains
all the annotations of the 8 objects in the scene. There is no
standard experiment setting on LM and LM-O. Some pre-
vious methods [10,48,52] use different training settings for
LM and LM-O, and some methods train a separated model
for every single object [23, 36]. For consistency and sim-
plicity, we train a single model for all the objects on both
LM and LM-O, and for each sequence, we use about 15%
of the RGB images for training, resulting in a total of 2.4k
images. YCB-V is a more challenging dataset containing 21

Method Avg. MSPD VSD MSSD

YCB-V (Real+PBR)

Ours 0.826 0.860 0.778 0.840
PFA 0.795 0.844 0.743 0.797
CIR 0.824 0.852 0.783 0.835
CosyPose 0.821 0.850 0.772 0.842
SurfEmb 0.781 - - -

YCB-V (PBR)

Ours 0.651 0.769 0.556 0.626
PFA 0.615 0.739 0.521 0.585
SurfEmb 0.647 0.773 0.548 0.620
CosyPose 0.574 0.653 0.516 0.554

LM-O (PBR)

Ours 0.682 0.842 0.532 0.674
PFA 0.674 0.818 0.531 0.673
CIR 0.655 0.831 0.501 0.633
SurfEmb 0.647 0.851 0.497 0.640
CosyPose 0.633 0.812 0.480 0.606

Table 2. Refinement comparison in BOP metrics. We compare
our method with the state-of-the-art refinement methods, and our
method achieves the best accuracy in different settings in most
metrics.

objects and 130k real images in total, which is captured in
cluttered scenes. Besides, we conduct some ablation stud-
ies with the BOP synthetic datasets [15] that include the
same objects as those in LM and YCB-V but generated with
physically-based rendering (PBR) techniques [9]. We train
our model only with the real data if not explicitly stated.
Evaluation metrics. We use the standard ADD(-S) met-
ric to report the results, which is based on the mean 3D
distance between the mesh vertices transformed by the pre-
dicted pose and the ground-truth pose, respectively. We re-
port most of our results in ADD-0.1d, which is the percent-
age of correct predictions with a distance error less than
10% of the mesh diameter. In some ablation studies, we
report ADD-0.05d, which uses a threshold of 5% of the
model diameter. Some recent methods [12, 26, 31] only re-
port their results in BOP metrics [15]. For comparing with
them, we report some of our results in BOP metrics which
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Method CIR CosyPose SurfEmb PFA Ours

Timing 11k 20 1k 37 17

Table 3. Efficiency comparison. We run all the methods on the
same workstation, and report the running time in milliseconds in
processing an image containing one object instance. Our method
is the most efficient one among all the competitors.

include the Visible Surface Discrepancy (VSD), the Maxi-
mum Symmetry-aware Surface Distance (MSSD), and the
Maximum Symmetry-aware Projection Distance (MSPD).
We refer readers to [15] for the detailed metric definition.

4.2. Comparison to the State of the Art

We compare our method with most state-of-the-art meth-
ods, including PoseCNN [50], PVNet [36], SO-Pose [10],
DeepIM [28], RePose [23], RNNPose [52], and PFA [16].
We use the results of PoseCNN as our pose initialization by
default. For PFA, we use its official code which relies on
online rendering and has only one view for correspondence
generation, producing slightly better results than that in its
paper. Nevertheless, our method outperforms most of them
by a large margin, as shown in Table 1.

Furthermore, we compare with the recent refinement
methods CIR [31], CosyPose [26], and SurfEmb [12],
which only have results in BOP metrics. Since all of them
use the first stage of CosyPose as their pose initialization,
we use the same initialization in this experiment for a fair
comparison. We report the results on YCB-V and LM-O,
and on LM-O we only report the results with PBR train-
ing images following the standard BOP setting. As shown
in Table 2, our method achieves the best accuracy in most
metrics.
Running time analysis. We evaluate our method on a
workstation with an NVIDIA RTX-3090 GPU and an Intel-
Xeon CPU with 12 2.1GHz cores. We run most of the re-
cent refinement methods on the same workstation. Since
different refinement methods use very different strategies
for pose initialization, we only report the running time of
pose refining, as shown in Table 3. Our method takes only
17ms on average to process an object instance and is much
more efficient than most refinement methods. Thanks to the
removal of the need for RANSAC-PnP, our method is more
than twice faster than PFA.

4.3. Ablation Study

Robustness to different pose initialization. Our pose re-
finement method is general and can be used with most
pose methods with their results as pose initialization. To
verify the generalization ability of our method, we evalu-
ate our method with pose initialization from the results of
WDR [21] and PoseCNN [50], respectively. For WDR, we

Method LM LM-O YCB-V

WDR 60.2 37.9 27.5
w/ PFA 95.8 65.3 62.8
w/ Ours 95.8 71.1 65.5

PoseCNN 63.3 24.9 21.3
w/ PFA 99.2 60.5 61.9
w/ Ours 99.3 66.4 70.5

Table 4. Comparison with different pose initialization. We
compare our refinement method with the baseline PFA with differ-
ent pose initialization, including WDR and PoseCNN. Our method
consistently outperforms PFA in each setting.
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Figure 6. Ablation study on YCB-V. (a) We compare our method
and PFA with the results of PoseCNN as pose initialization with
random pose errors in different levels. Our method is much more
robust than PFA, especially in scenarios with heavy initialization
noise. (b) We evaluate the methods with different recurrent itera-
tions during inference, and our method outperforms PFA after only
2 iterations, and improves further with more iterations.

Shape-constraint Pose ADD ADD
lookup regressor 0.05d 0.1d

- - 33.5 61.9
- ✓ 34.0 63.6
✓ - 46.1 67.6
✓ ✓ 50.4 70.5

Table 5. Ablation study of different components on YCB-
V. We evaluate the two key components of our method, includ-
ing the shape-constraint lookup operation and the pose regressor.
For the notation “-” for them, we use the standard constraint-
free lookup operation based on the intermediate flow, and the
RANSAC-PnP, respectively. The first row is the baseline PFA.
Our shape-constraint lookup boosts the performance, and the pose
regressor increases the performance further.

obtain its results trained only on the synthetic data, simi-
lar to PFA [16]. For PoseCNN, we use its pre-generated
results, which was trained on real images. As shown in Ta-
ble 4, our method improves the results of pose initialization
significantly and outperforms PFA in most settings.
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Furthermore, we study the robustness of our method
with the results of PoseCNN as pose initialization with ran-
dom pose errors in different levels, as shown in Fig. 6(a).
Our method is much more robust than PFA. Especially, the
performance drop of PFA with heavy noise can be nearly
11.9% in ADD-0.1d, and our method’s accuracy only de-
creases by about 6.2% in the same condition and is still
higher than that of PFA obtained with little initial noise.
Effect of different number of iterations. We evaluate
our method with different number of iterations during in-
ference. As shown in Fig. 6(b), our method performs on
par with PFA after the very first iteration, and outperforms
it significantly after only 2 iterations. Our method improves
further with more iterations, and outperforms PFA by over
11.5% in the end.
Evaluation of different components. We study the effect
of different components of our method, including the shape-
constraint lookup operation guided by the pose-induced
flow, and the pose regressor based on the intermediate flow,
as shown in Table 5. The first row is the baseline method
PFA, which does not have any constraints in the corre-
lation map construction and relies on RANSAC-PnP. Our
shape-constraint lookup operation boosts the performance,
demonstrating the effectiveness of embedding targets’ 3D
shape. The RANSAC-PnP, even equipped with the shape-
constraint lookup during the recurrent optimization, still
suffers in producing accurate pose results, which is caused
by the surrogate loss that does not directly reflect the final
object pose. By contrast, our pose regressor is end-to-end
trainable, which does not suffer from this problem and can
benefit from simultaneously optimizing the optical flow and
object pose.
Evaluation with different training data. To study the ef-
fect of different training data, we report the results of our
method trained with four data settings, including pure PBR
images, PBR images with additional 20 real images for
each object (“PBR+20”), pure real images, and a mixture
of all PBR images and real images. As shown in Table 6,
more data generally results in more accurate pose estimates.
While we report most results of our method trained only on
the real images to be consistent with other methods. On the
other hand, we find that, on LM, the models trained with
only real images perform even better than those trained with
a mixture of the real and PBR images, which we believe is
caused by the distribution difference between the PBR and
real data on LM. Note that the results of PFA are different
from that in Table 1 since here we use the same results of
PoseCNN as pose initialization for both methods for fair
comparison. Nevertheless, our method consistently outper-
forms PFA in all different settings.
Training analysis. We study the properties of our method
during training. We report the pose accuracy and flow loss
for both the baseline PFA and our method in different steps

Dataset LM LM-O YCB-V
0.05d 0.1d 0.05d 0.1d 0.05d 0.1d

65.5 95.0 27.6 50.9 8.8 28.9
PBR 72.5 96.8 28.9 52.9 10.9 36.5

PBR+20
77.3 97.7 28.2 54.5 24.0 49.6
81.5 98.5 36.2 63.3 33.2 61.9

89.5 99.2 30.6 60.5 33.5 61.9
Real 92.9 99.3 39.3 66.4 50.4 70.5

Mixed
77.3 97.7 37.7 64.5 38.0 61.6
90.9 99.3 44.6 67.0 51.2 73.2

Table 6. Comparison with different training data. We compare
our method with the baseline PFA in four different data settings.
In each setting, the first row is PFA, and the second row is ours.
Our method outperforms PFA in all settings.

20 40 60 80 100
40

50

60

70

Training Steps (k)

A
D
D
-0
.1
d

PFA
Ours

0 20 40 60 80 100

2

4

6

8

10

12

Training Steps (k)

F
lo
w
L
os
s

PFA
Ours

Figure 7. Training analysis on YCB-V. We report the pose accu-
racy and flow loss during training for both the baseline PFA and
our method. Our method performs equally well as the fully-trained
PFA after only 20k training steps, and outperforms it significantly
with more training steps.
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Figure 8. Performance with different occlusion ratios. Our
method consistently outperforms the baseline PFA in different
occlusion ratios, demonstrating the effectiveness of our shape-
constraint strategy.

during training, as shown in Fig. 7. At the beginning, our
method performs less well than PFA. However, after only
20k training steps, our method outperforms PFA with the
same training steps and performs equally well as the fully-
trained PFA. Furthermore, our method produces much bet-
ter results than PFA in both pose accuracy and flow loss
with more training steps.
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(a) Target (b) Initialization (c) PFA (d) Ours

Figure 9. Qualitative results. We visualize the initialization by rendering the target according to the initial pose. For both PFA and our
method, we show the flow wrap results with 2 and 8 iterations from left to right, respectively. PFA can not preserve the target’s shape even
after 8 iterations. By contrast, our method preserves the shape after every iteration and produces more accurate pose results by the end.

Performance with different occlusion ratios. We com-
pare our method with the baseline PFA in scenarios with
different occlusion ratios. As shown in Fig. 8, although the
performance of both methods decreases with the increase of
occlusion rations, our method is more robust than PFA and
outperforms it in every setting of different occlusion ratio,
either on LM-O or YCB-V, thanks to our shape-constraint
design, which implicitly embeds the target’s 3D shape in-
formation into our model and is more robust to occlusions.
We show some qualitative results in Fig. 9.

5. Conclusion
We have introduced a shape-constraint recurrent match-

ing framework for 6D object pose estimation. We have first
analyzed the weaknesses of the standard optical flow net-

works and introduced a new matching framework that con-
tains only all the 2D reprojections of the target’s 3D shape in
constructing the correlation map, which reduces the match-
ing space significantly. Furthermore, we have proposed
learning the object pose based on the current estimated flow
and simultaneously optimizing the object pose and optical
flow in an end-to-end recurrent manner. We have demon-
strated the advantages of our method with extensive evalua-
tion on three challenging 6D object pose datasets. It outper-
forms the state of the art significantly, and converges much
more quickly.
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