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Abstract

In the fashion domain, there exists a variety of vision-
and-language (V+L) tasks, including cross-modal retrieval,
text-guided image retrieval, multi-modal classification, and
image captioning. They differ drastically in each individ-
ual input/output format and dataset size. It has been com-
mon to design a task-specific model and fine-tune it in-
dependently from a pre-trained V+L model (e.g., CLIP).
This results in parameter inefficiency and inability to ex-
ploit inter-task relatedness. To address such issues, we pro-
pose a novel FAshion-focused Multi-task Efficient learn-
ing method for Vision-and-Language tasks (FAME-ViL) in
this work. Compared with existing approaches, FAME-ViL
applies a single model for multiple heterogeneous fashion
tasks, therefore being much more parameter-efficient. It
is enabled by two novel components: (1) a task-versatile
architecture with cross-attention adapters and task-specific
adapters integrated into a unified V+L model, and (2) a sta-
ble and effective multi-task training strategy that supports
learning from heterogeneous data and prevents negative
transfer. Extensive experiments on four fashion tasks show
that our FAME-ViL can save 61.5% of parameters over
alternatives, while significantly outperforming the conven-
tional independently trained single-task models. Code is
available at https://github.com/BrandonHanx/FAME-ViL.

1. Introduction

A variety of real-world multi-modal, particularly Vision-

and-Language (V+L) tasks exist in the fashion domain, in-

cluding multi-modal recognition [44, 53, 61], multi-modal

retrieval [21, 83] and image captioning [85]. The models

developed for these tasks have been applied in diverse e-

commerce applications, improving product discoverability,

seller-buyer engagement, and customer conversion rate af-

ter catalogue browsing. Intrinsically, those V+L tasks are

Figure 1. By multi-task learning a single model for heterogeneous

fashion tasks, our FAME-ViL can significantly improve parameter

efficiency, while boosting the model performance per task over

existing independently fine-tuned single-task models. Note, each

axis is normalized according to the respective maximum value for

easier visualization.

heterogeneous in terms of (1) different input and output

formats (e.g., text-guided garment retrieval [83] and image

captioning [85] have completely different inputs and out-

puts); (2) different dataset sizes as the annotation difficulty

of each task differ (e.g., the labeling effort for text-guided

image retrieval is much harder than that for text-to-image

retrieval [48, 83]).

Due to the heterogeneous nature of the V+L fashion

tasks, existing methods [21, 24, 33, 87, 94] typically take

a pre-trained generic V+L model [7, 38, 41–43, 49, 60, 67,

72, 79] and fine-tune it on every single task independently.

Such an approach suffers from two limitations. (1) Low pa-
rameter efficiency: Each real-world application requires the

deployment of its dedicated fine-tuned model, where there

is no parameter or inference computation sharing. This

leads to a linearly increasing storage and inference com-

pute redundancy in the long run. (2) Lack of inter-task
relatedness: Though the fashion tasks are heterogeneous
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in nature, the fundamental components of the models are

closely related in that all tasks require a deep content (im-

age/sentence) understanding. Exploiting the shared infor-

mation across tasks thus has the potential to improve model

generalization capability leading to a performance boost.

Perhaps a natural solution would be applying Multi-Task

Learning (MTL) [13]. However, most existing multi-task

training methods [8, 36, 46, 56, 63] are designed for homo-

geneous tasks (i.e., one dataset with multi-task labels) and

thus cannot be directly applied to the heterogeneous fashion

tasks. In our case, we are facing two challenges in build-

ing the fashion-domain MTL model: (1) Architecturally, it

is non-trivial to model the diverse tasks in one unified ar-

chitecture. Taking the popular CLIP [60] as an example,

its two-stream architecture is designed for image-text align-

ment [52] and thus lacks the modality fusion mechanism as

required by many V+L fashion tasks (e.g., text-guided im-

age retrieval [2,83] and image captioning [85]). (2) In terms

of optimization, a fashion-domain MTL model is prone to

the notorious negative transfer problem [8,13,36,46,56,63]

due to both task input/output format differences and imbal-

anced dataset sizes. To the best of our knowledge, there has

been no attempt at V+L MTL for the fashion domain.

In this work, we introduce a novel FAshion-focused

Multi-task Efficient learning method for various Vision-

and-Language based fashion tasks, dubbed as FAME-ViL.

It achieves superior performance across a set of diverse

fashion tasks with much fewer parameters as in Fig. 1.

Specifically, we design a task-versatile architecture on top

of a pre-trained generic V+L model (i.e., CLIP [60]). To

adapt the simple two-stream architecture of CLIP to various

fashion tasks, we introduce a lightweight Cross-Attention
Adapter (XAA) to enable the cross-modality interaction be-

tween the two streams. It makes the model flexible to

support multiple task modes (e.g., contrastive mode for

retrieval, fusion mode for understanding, and generative

mode for generation). To address the negative transfer chal-

lenge, we introduce a Task-Specific Adapter (TSA) to ab-

sorb inter-task input/output format incompatibilities by in-

troducing lightweight additional per-task parameters. For

further handling the dataset imbalance problem, a multi-
teacher distillation scheme [12] is formulated for our het-

erogeneous MTL problem. It leverages the pre-trained per-

task teachers to guide the optimization of our multi-task

model, mitigating the overfitting risks of those tasks with

smaller training dataset sizes.

Our contributions are summarized as follows: (I) For the

first time, we investigate the problem of multi-task learning

on heterogeneous fashion tasks, eliminating the parameter

redundancy and exploiting the inter-task relatedness. (II)
We propose FAME-ViL with two novel adapters, adapting

a pre-trained CLIP model to all tasks. (III) We introduce

an efficient and effective multi-task training strategy sup-

Text Query: Long sleeve relaxed-fit silk blazer in light peach. Shawl collar. Single-button 
closure and patch pockets at front. Breast pocket. Slits at sleeve cuffs. Vented at back. 

Cross-Modal Retrieval (XMR)

Reference Image                    Modifying Text: is a black and white dress, is strapless

Text-Guided Image Retrieval (TGIR)

Generated Caption: Grey & brown 
camo print tank top. Relaxed-fit 
tank top in tones of  grey, brown, 
and black. Signature snake 
graphic print throughout. Ribbed 
crewneck collar. Tonal stitching.

Fashion Image Captioning (FIC)

Slouchy lamb nubuck patrol 
hat in black. Wrinkling and 
light distressing throughout. 
Fully lined.

Predicted Class: [FLAT CAPS]

Sub-Category Recognition (SCR)

Figure 2. An illustration of four diverse fashion V+L Tasks studied

in this work: cross-modal retrieval, text-guided image retrieval,

sub-category recognition, and fashion image captioning. Note,

all predictions shown in this figure are made by our FAME-ViL.

Green box indicates the ground truth matches of retrieval tasks.

porting heterogeneous task modes in one unified model.

(IV) Comprehensive experiments on four diverse fashion

tasks (i.e., cross-modal retrieval [52, 61], text-guided im-

age retrieval [75, 83], multi-modal classification [61, 94],

and image captioning [85]) show that our method signifi-

cantly outperforms the previous single-task state-of-the-art

with 61.5% parameter saving (see Fig. 1).

2. Related work
Vision-Language Pre-training (VLP). With the advent of

Transformers [15, 17, 73], many pioneer studies [7, 31, 38,

41–43, 49, 67, 88] have demonstrated that VLP is effective

in boosting various downstream V+L tasks in the generic

domain. Since then, we have witnessed further develop-

ments of VLP methods, being bigger [19,34,60], more uni-

fied [50, 66, 77–79, 86] and more flexible [18, 76, 84].

Fashion V+L tasks. There exist a variety of heteroge-

neous tasks in the fashion domain. As depicted in Fig. 2,

we consider four popular fashion tasks in this work: (1)

Cross-Modal Retrieval (XMR) requests to efficiently re-

trieve the most matched image/sentence from a large can-

didate pool given a text/image query [52, 61]. (2) Text-
Guided Image Retrieval (TGIR) is a special type of im-

age retrieval with a multi-modal query (a combination of

a reference image and a modifying text) matched against

a set of images [6, 14, 23, 37, 39, 64]. It not only re-

quires a strong fusion of the reference image and modify-

ing text, but also an efficient matching between the fused

representation and all candidate images [24, 83]. (3) Sub-
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Category Recognition (SCR) requires an accurate class pre-

diction made upon the fusion of an image-text pair [61,94].

(4) Fashion Image Captioning (FIC) generates a caption

to describe the given image with semantically meaningful,

fine-grained, and accurate words [85]. Many recent works

have been trying to address these fashion tasks through

VLP [21, 22, 24, 33, 55, 87, 94]. Most of them focus on the

pre-training, then simply fine-tune the pre-trained model on

each downstream task independently. In contrast, we inte-

grate all these tasks into a unified architecture and thus no

separate fine-tuning is needed. Since our fashion data is also

abundant, most early works pre-train on the fashion domain

directly. However, a number of recent works [2,3,10,16,52]

suggest that a generic-domain pre-trained CLIP [60] gener-

alizes even better on the fashion tasks. In this work, we also

exploit a pre-trained CLIP model. Different from the exist-

ing methods, we use a single multi-task learned model for

all mentioned fashion tasks during fine-tuning.

Parameter-efficient tuning. Due to the increase in the size

of V+L models, there is a growing interest in developing

parameter-efficient methods to quickly adapt a large pre-

trained model to specific tasks by using as few extra pa-

rameters as possible. The most representative methods are

adapters [5, 9, 28, 70], prompt tuning [35, 47, 91, 92], low-

rank adaptation [29] and their unified variants [25, 54, 89].

Interestingly, whilst MTL can save much larger parameters,

it is under-studied in V+L modeling. In this work, we pro-

pose two kinds of adapters (XAA and TSA in Sec. 3.1) to

adapt CLIP specifically designed for MTL in the fashion

domain. Besides parameter-efficiently adapting CLIP, our

proposed adapters also serve as the key component for task-

versatile architecture design and enabling stable MTL.

Multi-task learning. Although MTL offers many advan-

tages like improved data efficiency and reduced over-fitting,

how to avoid negative transfer and cope with severely im-

balanced dataset sizes is still an open question. One com-

mon solution is to weight per-task losses or combine per-

task gradients into a joint update direction using various

heuristics [8, 36, 46, 56, 63]. These works require the MTL

model to have at least one forward propagation on each task

so that they can manipulate the overall losses or gradients.

However, since V+L tasks are typically heterogeneous (es-

pecially in the fashion domain), this requirement cannot be

easily satisfied, making these methods not directly applica-

ble. In contrast, Task Sampling-based MTL (TS-MTL) is

without such a requirement and thus being widely adopted

in V+L models [7, 30, 51, 57, 66]. In TS-MTL, only one

task along with its data point is sampled per iteration. Since

then, the heuristic task-sampling strategies [30,32,51] have

been proposed, aiming to balance different tasks, avoiding

the over-fitting on easier (or data-poor) tasks or catastrophic
forgetting [20] on harder (or data-rich) tasks. However, it is

found that TS-MTL on its own often underperforms single-

Self-Attention

Layer Norm

MLP

Layer Norm

Cross-Attention

Adapt-MLP

Layer Norm

Q K V

Q K V

S

Task-Specific 
Adapter (TSA)

(One for each task)
Cross-Attention 
Adapter (XAA)

(Shared by all tasks)

Adapt-MLP

Layer Norm

S

Figure 3. An illustration of a task-versatile Transformer layer

equipped with two newly-introduced adapters: cross-attention

adapter (XAA) and task-specific adapter (TSA).

task trained models; it is thus typically followed by an ad-

ditional per-task fine-tuning step [30, 51]. In this work, we

formulate an effective knowledge distillation with multiple

single-task teachers [12] to alleviate the negative transfer

without further fine-tuning on each task.

3. Methodology
We aim to address the most popular fashion tasks (shown

in Fig. 2) using one single unified model. We introduce the

details of our proposed FAME-ViL as follows.

3.1. Model architecture

FAME-ViL consists of a language encoder and a vision

encoder initialized from the pre-trained CLIP (ViT-B/16

version) [60], as well as a set of newly introduced adapters.

Transformer layers. The key component in CLIP is the

transformer backbone [17, 73]. A vanilla Transformer en-

coder consists of an input embedding layer (word embed-

ding for language input and patch embedding for vision in-

put) and several alternating layers made of Multi-Head Self-

Attention (MHSA) and MLP blocks. Layer Normalization

(LN) [1] is applied before every block, and residual connec-

tions after every block [17, 60]. As shown in the middle of

Fig. 3, this process can be formulated as follows:

z0 = Embedding(x), z0 ∈ R
N×D, (1)

z′� = MHSA(LN(z�−1)) + z�−1, � = 1 . . . L, (2)

z� = MLP(LN(z′�)) + z′�, � = 1 . . . L, (3)

where N,D,L denotes the number of input tokens, trans-

former dimension, and the number of layers, respectively.

Proposed adapters. To adapt the original Transformer

layers in CLIP to different fashion downstream tasks, we

design two kinds of adapters in architecture design: (1)
Task-Specific Adapter (TSA) for accommodating the non-

shareable characteristics of each individual task (Fig. 3 left);
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(2) Cross-Attention Adapter (XAA) for enabling the inter-

action between different modalities (Fig. 3 right).

For TSA we adopt the scaled parallel adapter [5,25] that

adds another bottleneck MLP (AdaptMLP) in parallel with

the original MLP of each transformer layer. Given an im-

mediate input z′�, it produces the adapted features, ztsa� , via:

ztsa� = s ·AdaptMLP(LN(z′�)), (4)

where s represents a learnable scale.

We construct an XAA module by further adding another

Multi-Head Cross Attention (MHXA) layer [18, 49, 72] at

the bottom of a TSA. Specifically, this MHXA uses the hid-

den state of the current stream z′� as the queries and the out-

put y� (e.g., hidden state after MHSA or MLP) of another

stream as the keys and values. The attended cross-modality

features zxaa� are computed via:

zxaa� = s ·AdaptMLP(LN(MHXA(z′�,y�))). (5)

Within this mechanism, our XAA can exchange the infor-

mation between different modalities.

Finally, both ztsa� and zxaa� are added up to the original

output via residual connections. We thus rewrite Eq. (3) as:

z� = MLP(LN(z′�))+z′�+ztsa� +ε ·zxaa� , ε ∈ {0, 1} , (6)

where ε represents a gate that can turn on/off XAA accord-

ing to the task need.

Operational modes and fashion tasks. Our FAME-ViL

can switch among three operational modes to flexibly sup-

port various fashion tasks (see Fig. 4).

� Contrastive mode: This mode supports Cross-Modal
Retrieval (XMR) tasks, including both text-to-image and

image-to-text retrieval [24, 52]. All XAA modules are

turned off as no need for inter-modal interaction, whereas

only TSA modules are applied as in Fig. 4(a). During

training, given a batch of B image-text pairs (I, T) =

{(I1, T1), . . . , (IB , TB)}, we first compute their unimodal

representations by the TSA-equipped vision and language

encoders independently. Then, we maximize their similari-

ties via symmetrical contrastive loss:

LXMR =
1

2
[LInfoNCE(T, I) + LInfoNCE(I,T)] , (7)

LInfoNCE(X,Y) = − 1

B

B∑

i=1

log
exp(s(Xi, Yi)/τ)∑B

j=1 exp(s(Xi, Yj)/τ)
, (8)

where τ is a learnable temperature. The similarity is mea-

sured by the dot product of their pooled then normalized

features: s(Ii, Tj) = f
[c]
θ (Ii)

T · f [c]
θ (Tj).

� Fusion mode: As in Fig. 4(b), both XAA and TSA

modules are enabled in this mode. Given an input image-

text pair (I, T ), the model serves as a single-stream fu-

sion encoder producing two cross-modal attended represen-

tations: f
[f ]
θ ([I;T ]) and f

[f ]
θ ([T ; I]). The final fused repre-

sentation is a simple addition: f
[f ]
θ (I, T ) = f

[f ]
θ ([I;T ]) +

f
[f ]
θ ([T ; I]) 1. This mode is useful for the Sub-Category

Recognition (SCR) [61, 94] and Text-Guided Image Re-
trieval (TGIR) [75, 83].

SCR aims to predict the subcategory of fashion products

based on both input image and text. We thus append a clas-

sifier on top of the fused representation and minimize its

cross-entropy loss:

LSCR = −E(I,T )∼D logP
(
f
[f ]
θ (I, T )

)
. (9)

Considering the unique challenges of TGIR (i.e., re-

quiring not only strong fusion but also efficient matching),

FAME-ViL operates in a hybrid mode for it. Formally,

given a batch of {reference images Ir, modifying text T,

target images It}, we first calculate the fused representation

f
[f ]
θ (Ir, T ) in the fusion mode; Then, we obtain the target

image representation f
[c]
θ (It) in the contrastive mode. Dur-

ing training, we pull them closer in a contrastive way:

LTGIR = LInfoNCE

(
(Ir,T), It

)
, (10)

where the similarity is still measured by dot product:

s((Iri , Ti), I
t
j) = f

[f ]
θ (Iri , Ti)

T · f [c]
θ (Itj).

� Generative mode: This works as a seq2seq model

performing the generative tasks auto-regressively [11, 71],

e.g., Fashion Image Captioning (FIC) [85]. As in Fig. 4(c),

we use a TSA-equipped vision encoder as the encoder, a

TSA-equipped language encoder as the decoder, and only

image-to-text XAA modules for the conditional caption

synthesis. Following a standard encoder-decoder architec-

ture, our image encoder provides layer-wise latent memory

and the text decoder learns to maximize the conditional like-

lihood of the paired text under the forward auto-regressive

factorization [40, 86]:

LFIC = −E(I,T )∼D

A∑
a=1

logP
(
Ta

∣∣∣f [g]
θ (I;T<a)

)
, (11)

where A denotes the length of each sentence, and

f
[g]
θ ([I;T ]) denotes the representation. During training, we

enforce the teacher forcing [81] to achieve parallel compu-

tation and thus maximize the learning efficiency.

3.2. Heterogeneous multi-task learning

For training T fashion tasks, we need to optimize both

task-agnostic parameters θs (i.e., CLIP backbone & XAA

modules) and a set of task-specific components {θt}Tt=1

(i.e., TSA modules & task heads). Our objective is to max-

imize the overall performance across all tasks. The hetero-

geneity nature of fashion tasks causes the discrepancy in

1More complex fusion methods (e.g., [2]) may yield better results. We

leave this for future study.
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MLP TSA
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MLP

Language Input

Head Head

TSA MLP TSAMLP

Vision Input Language Input

Head

XAA XAA

MHSA MHSA

TSA

MHSA

MLP TSA

MHSA

MLPXAA

Vision Input Language Output (shifted right)

Head

(a) Contrastive Mode (b) Fusion Mode (c) Generative Mode

L L L L L L

Figure 4. Schematic overview of three operational modes with our FAME-ViL. XAA: Cross-Attention Adapter; TSA: Task-Specific

Adapter. Layer normalization and original residual connections are not shown here for simplicity.

mini-batch construction and training dynamics (e.g., con-

verging speed, overfitting) as well as data imbalance, mak-

ing our multi-task learning particularly challenging. To ad-

dress all these issues, we exploit the idea of Multi-Teacher

Distillation (MTD) [12, 27].

Specifically, MTD consists of two stages. In the first
stage, we train a teacher model with the identical architec-

ture as our multi-task model on every task. Then in the

second stage, we apply these teachers to guide the train-

ing of the multi-task model (i.e., the student) with designed

per-task distillation objectives.

For XMR, we first compute the image-text similarity us-

ing the features of the single-task teacher gxmr: s̃(Ii, Tj) =
gxmr(Ii)

T · gxmr(Tj). Using this similarity as a pseudo-

target, we maximize its mutual information with the stu-

dent’s counterpart [41]:

LD
XMR =

1

2B

B∑

b

(KL (sb,· ‖ s̃b,·) + KL (s·,b ‖ s̃·,b)) , (12)

where KL(· ‖ ·) denotes the Kullback–Leibler divergence

loss on the softmax of the inputs.

For TGIR, we use a similar method as XMR to distill the

knowledge from single-task teacher gtgir:

LD
TGIR =

1

B

B∑
b

KL
(
s(b,b),· ‖ s̃(b,b),·

)
, (13)

where the soft target is calculated via: s̃((Iri , Ti), I
t
j) =

gtgir(I
r
i , Ti)

T · gtgir(Itj).
For SCR and FIC, we directly use the classification prob-

abilities predicted by the teachers as pseudo-targets:

LD
SCR = KL

(
f
[f ]
θ (I, T ) ‖ gscr(I, T )

)
, (14)

LD
FIC =

A∑
a=1

KL
(
f
[g]
θ (I;T<a)a ‖ gfic(I;T<a)a

)
. (15)

Task scheduling. For training simplicity, we randomly

sample one task per iteration. We optimize the summation

of the original loss and distillation loss as:

L = L[task] + LD
[task], [task]

P∼{XMR,TGIR,SCR,FIC}, (16)

where P denotes the sampling probability. To tackle data

imbalance, unless stated otherwise we set the sampling

probability for a particular task τ linearly proportional to

the size of its dataset |Dτ | [30, 62]. We name this strategy

as size-proportional sampling.

4. Experiments
Datasets. We evaluate our model on the datasets commonly

used in the previous methods. Specifically, we test Fash-

ionGen [61] for XMR, SCR, and FIC, and FashionIQ [83]

for TGIR. FashionGen [61] contains 68k fashion products

accompanied by text descriptions. Each product includes

1 ∼ 6 images from different angles, resulting in 260.5k
image-text pairs for training, and 35.5k for testing. Fash-

ionIQ contains 18k training triplets (i.e., reference image,

modifying text, target image) and 6k validation triplets over

three categories: Dress, Shirt, and Toptee. Each pair (refer-

ence image, target image) is manually annotated with two

modifying texts, which are concatenated [83].

Implementation details. We use MMF [65] and PyTorch

[59] to implement our FAME-ViL. We use the off-the-shelf

CLIP from HuggingFace [82] as our pre-trained model. We

use 4 RTX 3090 GPUs for the multi-task training. The de-

fault bottleneck dimension of AdaptMLP is 64. More im-

plementation details are listed in the supplementary file.

Performance metrics. Following [24, 94], we report

R@K for retrieval, Accuracy & MacroF1 for classifica-

tion and BLEU-4 [58] & METEOR [4] & ROUGE-L [45]

& CIDEr [74] for captioning. (1) For each task, we

first report the average absolute performance: μTi =
1

|M |
∑|M |

j=0 MTi,j . (2) Since there is no unified objective

among multiple tasks and the scale of per-task metrics

often varies largely, we then report the average per-task
relative performance ΔTi

w.r.t. the single-task baseline:

ΔTi
= (μTi

− μSTL) /μSTL. This can clearly indicate the

positive/negative transfer effect. (3) We also report the rela-
tive parameters saving of FAME-ViL and its variants w.r.t.

the vanilla CLIP baseline. Note, inference speed compari-

son is infeasible as this depends on the application of differ-

ent tasks (no fixed rules).
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Methods Image to Text Text to Image MeanR@1 R@5 R@10 R@1 R@5 R@10

FashionBERT [21] 23.96 46.31 52.12 26.75 46.48 55.74 41.89

OSCAR [43] 23.39 44.67 52.55 25.10 49.14 56.68 41.92

KaledioBERT [94] 27.99 60.09 68.37 33.88 60.60 68.59 53.25

EI-CLIP [52] 38.70 72.20 84.25 40.06 71.99 82.90 65.02

MVLT [33] 33.10 77.20 91.10 34.60 78.00 89.50 67.25

FashionViL [24] 65.54 91.34 96.30 61.88 87.32 93.22 82.60

FashionViL(vit) 63.74 90.02 95.98 60.76 86.18 92.96 81.61

FAME-ViL(ST) 65.02 90.96 96.20 63.56 86.84 93.06 82.61

FAME-ViL 65.94 91.92 97.22 62.86 87.38 93.52 83.14

Table 1. Cross-Modal Retrieval (XMR) results on Fashion-

Gen [61]. Test protocol: random 100 [21, 24, 94].

4.1. Comparisons with prior art methods

We compare our models with the previous state-of-the-

art methods on each task. For extensive and fair compar-

isons, all the prior competitors are based on large-scale

pre-trained models. We even implement an enhanced vari-

ant of the latest art model FashionViL [24] by replacing

ResNet50 [26] with the ViT-B/16 [17] backbone (same as

our FAME-ViL), denoted as FashionViL(vit). In de-

sign, all the previous methods adopt Single-Task Learning

(STL). We compare them with two variants of our model:

(1) single unified MTL model; (2) STL variant of our

FAME-ViL, denoted as FAME-ViL(ST), which is trained

on each task independently using the same TSA and XAA

design as FAME-ViL.

XMR evaluation. We consider both image-to-text retrieval

and text-to-image retrieval with two kinds of protocols used

by previous methods: (1) random 100: For each query,

100 candidates are randomly sampled from the same cat-

egory to construct a retrieval database; The goal is to lo-

cate the positive match depicting the same garment instance

from these 100 same-category negative matches [21,33,94].

(2) full database: We also adopt a more challenging

and practical protocol that conducts retrieval on the entire

product set [24, 52], which is in line with actual product re-

trieval scenarios. We use random 100 to compare with

prior art methods while using full database to do ab-

lation studies. The results of XMR on FashionGen [61] are

reported in Tab. 1. We draw several observations: (1) Our

FAME-ViL outperforms all prior art fashion models often

by a large margin, validating the performance advantages of

our method over alternatives in addition to better parameter

efficiency. (2) FAME-ViL is superior over its single-task

variant FAME-ViL(ST) in most cases and on the average

accuracy, suggesting that our multi-task learning strategy is

effective in exploiting the inter-task relatedness. (3) Our

FAME-ViL(ST) can surpass all prior models pre-trained on

large fashion domain data [21, 24, 43, 94], suggesting that

using fashion data in pre-training is not necessarily most im-

portant, and model design (e.g., our TSA and XAA) could

play a more significant role. Similarly, its large margin over

Methods Dress Shirt Toptee MeanR@10 R@50 R@10 R@50 R@10 R@50

CIRPLANT [48] 17.45 40.41 17.53 38.81 21.64 45.38 30.20

TIRG(bert) [75]† 27.17 53.25 22.28 45.58 27.84 57.11 38.87

FashionVLP [22] 26.77 53.20 22.67 46.22 28.51 57.47 39.14

FashionViL [24] 33.47 59.94 25.17 50.39 34.98 60.79 44.12

FashionViL(vit) 31.53 57.91 26.74 50.69 36.77 61.81 44.24

Baldrati et al. [2] 33.81 59.40 39.99 60.45 41.41 65.37 50.07

Zhao et al. [90] 33.60 58.90 39.45 61.78 43.96 68.33 51.00

FAME-ViL(ST) 37.78 63.86 45.63 66.78 47.22 70.88 55.36

FAME-ViL 42.19 67.38 47.64 68.79 50.69 73.07 58.29

Table 2. Text-Guided Image Retrieval (TGIR) results on Fash-

ionIQ [83]. †: The results taken from [24].

Methods SCR FIC
Acc F1 Mean B M R C Mean

FashionBERT [21]† 85.27 62.00 73.64 3.30 9.80 29.70 30.10 18.23

OSCAR [43]† 84.23 59.10 71.67 4.50 10.90 30.10 30.70 19.05

KaleidoBERT [94] 88.07 63.60 75.84 5.70 12.80 32.90 32.60 21.00

FashionViL [24] 92.23 83.02 87.63 16.71 25.97 37.82 39.08 29.90

MVLT [33] 93.57 82.90 88.24 - - - - -

FashionViL(vit) 94.01 85.77 89.89 16.18 25.60 37.23 39.30 29.58

FAME-ViL(ST) 94.33 86.21 90.27 29.97 24.83 54.79 145.1 63.67

FAME-ViL 94.67 88.21 91.44 30.73 25.04 55.83 150.4 65.50

Table 3. Results of Subcategory Recognition (SCR) and Fashion

Image Captioning (FIC) on FashionGen [61]. †: copied from [94].

the previous pre-trained CLIP-based model [52] further val-

idates the significance of model architecture design.

TGIR evaluation. We compare our FAME-ViL with

TGIR-specialist methods [2, 22, 48, 75, 90] and the art

fashion-focused V+L model FashionViL [24] under the

original protocol used by FashionIQ [83]. The results are

given in Tab. 2. We have similar observations as on XMR.

In particular, we note that our single-task variant already

achieve a new art performance. With a simple addition-

based fusion mechanism, FAME-ViL can even outperform

significantly [2] with the same CLIP pre-training and a com-

plex fusion module. We attribute this mostly to the contri-

bution of XAA-backed inter-modal interaction (See Tab. 4).

SCR evaluation. We report the performance of SCR

in the left part of Tab. 3, following the common proto-

col [21, 24, 94]. Similar to TGIR, our FAME-ViL surpasses

clearly all previous works [21,24,33,43,94] with heavier fu-

sion mechanisms (e.g., modality-agnostic self-attention im-

plemented by concatenating text tokens and image patches

at the very beginning). This validates the efficacy of our

proposed XAA, suggesting the superiority of modality in-

teraction over the conventional fusion at the input point.

FIC evaluation. The original FashionViL [24] has no de-

coder and cannot support generation tasks. For comparison,

we equip it with masked language modelling (MLM) auto-

regressively [43,93,94] enabling the image captioning. The

results of FIC are shown in the right part of Tab. 3, following

the common protocol [94]. Our FAME-ViL again achieves

state-of-the-art performance with a clear margin.
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T1: XMR T2: TGIR T3: SCR T4: FICGroups Methods #Params (%)
μ Δ μ Δ μ Δ μ Δ μ̄ Δ̄

(1) STL 0.0 66.30 0.0 51.87 0.0 90.34 0.0 - - 52.13 0.0

(2) STL + TSA +1.35 69.99 +5.56 52.59 +1.39 90.10 -0.27 - - 53.25 +1.67

(3) STL + XAA +14.70 66.30 0.0 53.83 +3.78 89.89 -0.50 63.70 0.0 68.43 +0.82

I

(Sec. 4.2)

(4) STL + TSA + XAA (FAME-ViL(ST)) +15.96 69.99 +5.56 55.47 +6.94 90.27 -0.07 63.67 -0.05 69.85 +3.10

(5) MTL -70.43 57.65 -13.05 49.57 -4.43 85.95 -4.86 - - 48.29 -5.59

(6) MTL + TSA -70.11 67.97 +2.52 52.04 +0.33 90.32 -0.02 - - 52.58 +0.71

(7) MTL + XAA -67.65 65.87 -0.65 52.59 +1.39 90.93 +0.65 60.99 -4.25 67.60 -0.72

II

(Sec. 4.2)

(8) MTL + TSA + XAA (base MTL) -67.33 69.31 +4.54 55.41 +6.82 90.84 +0.55 65.17 +2.31 70.18 +3.56

(9) base MTL + MTD (FAME-ViL) -67.33 70.00 +5.56 58.29 +12.38 91.44 +1.22 65.50 +2.83 71.31 +5.50
(10) base MTL + MTD + Uniform -67.33 67.70 +2.11 57.31 +10.49 91.36 +1.13 65.12 +2.23 70.37 +3.99

(11) base MTL + MTD + Round-robin -67.33 67.79 +2.25 57.47 +10.80 91.35 +1.12 64.87 +1.84 70.37 +4.00

(12) base MTL + IAS [32] -67.33 69.13 +4.27 55.26 +6.54 90.51 +0.19 63.67 -0.05 69.64 +2.74

(13) base MTL + MTD + IAS [32] -67.33 70.11 +5.75 57.97 +11.76 90.88 +0.60 65.66 +3.08 71.16 +5.30

(14) base MTL + IMTLG [46] -67.33 64.11 -3.30 47.12 -9.16 90.21 -0.14 55.61 -12.70 64.26 -6.33

III

(Sec. 4.3)

(15) base MTL + MTD + IMTLG [46] -67.33 67.14 +1.27 57.22 +10.31 90.09 -0.28 58.14 -9.56 68.15 +0.44

(16) FAME-ViL (bottleneck dim. = 128) -65.14 70.73 +6.68 58.03 +11.88 91.54 +1.33 66.20 +3.92 71.63 +5.95

(17) FAME-ViL (bottleneck dim. = 256) -62.67 71.77 +8.25 58.45 +12.69 91.10 +0.84 66.81 +4.88 72.03 +6.67
IV

(Sec. 4.4)
(18) FAME-ViL (bottleneck dim. = 512) -57.73 72.32 +9.08 58.51 +12.80 90.96 +0.69 66.92 +5.05 72.18 +6.91

Table 4. Ablation study and further analysis of our method. Groups (I) and (II): Ablation experiments of the proposed XAA

and TSA under the single-task learning (STL) and multi-task learning (MTL) scenarios. Group (III): The comparison among our

multi-teacher distillation (MTD) and other alternatives designed for task-sampling based MTL (TS-MTL). Group (IV): The effect of

the bottleneck dimension of XAA and TSA. Yellow background: The baseline performance used per column; Red background: negative

transfer; Green background: positive transfer. Bold number: The best result in each group.

All the above comparisons show the superior generaliza-

tion capability of our method in both generative and dis-

criminative tasks.

4.2. Ablation study on architecture

Given the strong performance of our method as evaluated

in Sec. 4.1, we ablate the proposed model architecture with

a focus on two newly introduced adapters (TSA and XAA)

in both STL and MTL settings.

Single-task learning setting. For comparison on XMR,

TGIR and SCR, we design the baseline as directly fine-

tuning the vanilla CLIP without any new modules (L1).

With the two-stream design, CLIP cannot tackle FIC, and

we hence further equip it with our XAA as the baseline
for FIC (L3). From the results shown in group (I) of Tab. 4,

we find that TSA and XAA can bring in 3%-6% relative im-

provements for XMR and TGIR. In particular, XAA gives

TGIR a significant improvement, demonstrating the supe-

riority of our layer-wise modality interaction mechanism.

However, these adapters have only a marginal impact on

the performance of SCR and FIC, with a performance drop

of less than 0.5% when the model is independently trained

on a single task.

Multi-task learning setting. Similarly, we construct the

baselines for the MTL setting using the vanilla CLIP

and XAA-equipped CLIP (L5 and L7). As shown in L5 in

the group (II) of Tab. 4, a severe negative transfer occurs

with an overall 5.59% performance drop. Likewise, there is

also a negative transfer for the XAA-equipped CLIP model

(L7), albeit with a slight increase in performance. This sug-

gests the challenges of heterogeneous multi-task learning

in the fashion domain. This problem can be well solved

using our TSA, with an overall 4%∼6% improvement (L5

vs. L7 and L6 vs. L8), even though only a few extra task-

specific parameters are introduced (1.35% of the original

CLIP size). Interestingly, we also found that XAA and TSA

are reciprocal: (1) When TSA and XAA work together, the

model can achieve better relative performance than the sum

of their gains (L4 vs. L2+L3 and L8 vs. L6+L7) (2) When

TSA or XAA is applied in isolation, the multi-task model

always underperforms its single-task counterpart (L6 vs. L2

and L7 vs. L3). But the multi-task model with both TSA and

XAA exceeds the single-task counterpart (L8 vs L4), indi-

cating that TSA and XAA play complementary roles better

in the multi-task setting, as expected and designed so.

4.3. Ablation study on multi-task training strategy

Following the above architecture analysis, we further ab-

late the proposed multi-teacher distillation (MTD) based

training strategy. We compare extensively with previous

sampling strategies and gradient manipulation algorithms.

Task sampling. We start by comparing two common sam-

pling strategies (uniform and round-robin) with our

size-proportional strategy. Round-robin sampling

is a special case of uniform sampling – each task is sampled

one by one. As shown in L9-L11 in the group (III) of Tab. 4,

both uniform and round-robin sampling underperform our

size-proportional sampling by a gap of 1.5%. This is due

to imbalanced dataset sizes across different tasks, which is

ignored in uniform sampling and round-robin sampling.
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Gradient manipulation. To compare with our MTD

scheme, we consider two kinds of gradient manipula-

tion algorithms: Implicit Adaptive Scheduling
(IAS) [32] and IMTLG [46]. In particular, IAS is a rep-

resentative strong method that adaptively changes the task

sampling ratio, learning rate, or gradient scale for each

task [51,80]. Specifically, it scales the gradients of each task

according to the performance on the validation set. Instead,

IMTLG is a representative of those methods manipulating

all the gradients together [8, 36, 56, 63]. It is featured by a

closed-form solution to optimize the scaling factors of each

task, such that the aggregated gradients (sum of raw gradi-

ents weighted by the scaling factors) have equal projections

onto individual tasks. Since IMTLG cannot be directly ap-

plied to task-sampling based MTL, we further adapt it by

maintaining a gradient buffer to store the gradients of each

task and update the parameters every four iterations (each

corresponding one of the four fashion tasks). As shown in

the group (III) of Tab. 4, the performance of IAS (L12) and

IMTLG (L14) are significantly lower than that of our MTD

(L9). In particular, IMTLG suffers from a severe negative

transfer (-6.33%). There are two plausible reasons: (1) Re-

lying on a heuristic strategy, IAS struggles in finding the

optimal status over all tasks, despite the access to the valida-

tion performance. (2) IMTLG may experience over-fitting

for the tasks with smaller training data (e.g., TGIR), which

cannot be addressed by the idea of ensuring the final gra-

dient direction to have the same impact on each task. On

the contrary, our MTD can implicitly regularize the gra-

dients via knowledge distillation, without a costly need of

monitoring the validation performance. Guided by the soft

ground truth of each teacher, overfitting can be well avoided

in an elegant manner. Considering the methodical orthogo-

nality, we further apply our MTD on top of IAS (L13) and

IMTLG (L15). It is shown that this can improve both by a

large margin (L13 vs. L12 and L15 vs. L14), demonstrating

the generic usability of our training method.

4.4. Further analysis

Regularizing effect of MTD. To shed more light on the

regularization effect of MTD, we plot the validation perfor-

mance curves in Fig. 5. Without MTD, the baseline MTL

model is prone to overfit on TGIR after about 20k iterations

due to much less training data than other tasks. Interest-

ingly, this overfitting is even amplified by IMTLG. This is

because IMTLG needs to pay more attention to TIRG in or-

der to achieve impartial learning. Overall, neither IAS nor

IMTLG can improve over the baseline MTL, regardless of

overfitting or not. Encouragingly, our MTD yields consis-

tent and significant performance boost per task, rendering it

a more stable and effective learning strategy.

Scaling up bottleneck dimension. We evaluate the ef-

fect of the bottleneck dimension of the AdaptMLP in XAA

Figure 5. Training dynamics of our multi-teacher distillation

(MTD) and alternative multi-task learning methods (IAS [32] and

IMTLG [46]). Metric: The validation performance curves.

and TSA (the only hyper-parameter of our architecture).

We vary this dimension from 64 to 512. As shown in the

group (IV) of Tab. 4, it is evident that the overall relative

performance is positively correlated with this bottleneck di-

mension. This indicates that FAME-ViL could be poten-

tially more performing at the cost of more parameters. Also,

we observe a trade-off between model size increase and

performance gain. For example, 10% more parameters are

needed for exchanging a relative performance gain of 1.4%

(L18 vs. L9). We also notice that further improvement is

not consistent over tasks. For instance, the performance of

SCR will gradually deteriorate with the increase of bottle-

neck dimension. An interesting direction for future works

could be exploiting adaptive algorithms [68,69] to optimize

the best bottleneck dimension per task.

Qualitative examples. To reflect the output of FAME-ViL

more intuitively, in addition to Fig. 2, we show more illus-

trative outputs from FAME-ViL in the supplementary file.

5. Conclusions
We have introduced FAME-ViL for heterogeneous fash-

ion tasks, grounded upon a generic off-the-shelf V+L

model. It addresses cross-modal retrieval, text-guided im-

age retrieval, multi-modal classification, and image cap-

tioning in a unified architecture. This is made possible by

the proposed task-versatile architecture with cross-attention

adapters and task-specific adapters, and a scalable multi-

task training pipeline with multi-teacher distillation. Exten-

sive experiments showed that our FAME-ViL achieves new

state-of-the-art performance on all tasks with significantly

fewer parameters.
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