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Figure 1. We propose the first 3D morphable face reflectance model with spatially varying BRDF and a technique to train the model with
low-cost publicly-available data. We represent face reflectance as a Lambertian BRDF combined with the linear combination of Blinn-
Phong BRDFs with different predefined specular exponents. The reflectance parameters for each face vertex are the diffuse albedo and a
set of weights. We show the first 3 principal components of diffuse albedo and spatially varying weights here in nonlinear sRGB space.

Abstract

Modeling non-Lambertian effects such as facial specu-
larity leads to a more realistic 3D Morphable Face Model.
Existing works build parametric models for diffuse and
specular albedo using Light Stage data. However, only dif-
fuse and specular albedo cannot determine the full BRDF.
In addition, the requirement of Light Stage data is hard to
fulfill for the research communities. This paper proposes
the first 3D morphable face reflectance model with spa-
tially varying BRDF using only low-cost publicly-available
data. We apply linear shiness weighting into parametric
modeling to represent spatially varying specular intensity
and shiness. Then an inverse rendering algorithm is devel-
oped to reconstruct the reflectance parameters from non-
Light Stage data, which are used to train an initial mor-
phable reflectance model. To enhance the model’s gener-
alization capability and expressive power, we further pro-
pose an update-by-reconstruction strategy to finetune it on
an in-the-wild dataset. Experimental results show that our
method obtains decent rendering results with plausible fa-
cial specularities. Our code is released here.

1. Introduction
3D Morphable Face Models (3DMM) [4, 19] have at-

tracted much attention in the past two decades, as it pro-

vides a powerful and compact statistical prior of 3D face
geometry and appearance with dense point-to-point corre-
spondence to various downstream applications like face re-
construction [14,22,52,55,56], rendering [13,53,57,58,70],
and animation [3,7,9,20,21,68]. Existing works [52,54,55]
have demonstrated promising results for improving the gen-
eralization capability and expressive power of 3DMM under
the assumption that faces are Lambertian surfaces. How-
ever, it is still challenging to model non-Lambertian effects
such as facial specularity in 3DMM, which can lead to a
more realistic face model.

A few recent works [37, 50] involve non-Lambertian fa-
cial reflectance in the morphable face model. Using a Light
Stage [11, 24, 39], they capture diffuse and specular albedo
maps of tens of participants. Then, they model the dif-
fuse and specular albedo by training a PCA model [50]
or a deep generative network [37] on the acquired data.
However, only the diffuse and specular albedo cannot de-
termine the complete Bidirectional Reflectance Distribution
Function (BRDF). Thus, other works [15–17] set the re-
maining reflectance parameters (e.g. specular exponent for
the Blinn-Phong BRDF [5], roughness for the Torrance-
Sparrow BRDF [59]) of all face vertices to a reasonable
value to characterize specular shiness and obtain the com-
plete BRDF. As shown in Figure 7, these spatially uniform
parameters lead to unpleasing rendering results since face
reflectance is inherently spatially varying [65]. Besides, the
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requirement of Light Stage data is hard to fulfill since build-
ing a Light Stage is quite difficult, and no publicly available
Light Stage dataset is sufficient to construct a 3DMM.

To overcome these limitations, we propose and train the
first morphable face reflectance model with spatially vary-
ing BRDF from low-cost publicly-available data. Inspired
by previous works [41,42], we represent face reflectance as
a Lambertian BRDF combined with the linear combination
of several Blinn-Phong BRDFs corresponding to different
predefined specular exponents. Thus, the reflectance pa-
rameters of each face vertex include an RGB color for the
Lambertian BRDF and a set of weights for the Blinn-Phong
BRDFs. As illustrated in Figure 2, our representation can
naturally modulate specular intensity and shiness by adjust-
ing the absolute and relative scales of the linear combination
weights, respectively. Compared to previous works [37,50]
not modeling specular shiness, we define a complete BRDF
by this representation in 3DMM. Compared to the tradi-
tional Blinn-Phong BRDF that models specular intensity
and shiness in a nonlinear formulation [5], our linear rep-
resentation (Equation (2)) is much easier to reconstruct the
reflectance parameters from recorded images. With this lin-
ear reflectance representation, we develop an inverse ren-
dering approach to estimate the spatially varying reflectance
parameters for the 128 selected identities in Multi-PIE [25],
a public dataset with face images captured under controlled
camera views and light directions. Then, we learn a PCA
model for the estimated reflectance parameters as our initial
morphable face reflectance model.

Considering that the Multi-PIE dataset only contains 128
identities which is far from sufficient to capture the vari-
ability of human faces, we propose to finetune the initial
model on a large-scale in-the-wild dataset, FFHQ [29], to
improve its generalization capability and expressive power.
As the inputs are in-the-wild images with unknown lighting
information, it is not easy to reconstruct accurate reflectance
from them. Our key observation is that, on the one hand,
we already have an initial parametric reflectance model that
can better formulate the reflectance reconstruction from in-
the-wild images. On the other hand, the reconstructed re-
flectance from in-the-wild data could provide feedback to
enhance the face prior knowledge in our morphable re-
flectance model. Based on this observation, we jointly re-
construct the face reflectance coefficients and update the pa-
rameters of our morphable face reflectance model (the mean
and bases). Another challenge here is to predict high-order
spherical harmonics (SH) lighting [44] for in-the-wild im-
ages, which is crucial for updating the high-frequency in-
formation of our non-Lambertian reflectance model [45].
To solve this problem, we build another PCA model for
real-world environment lighting in SH coefficients space,
which largely reduces the searching space of the high-order
SH coefficients. During face reconstruction, we first predict

the parameters of the PCA lighting model and then retrieve
the high-order SH coefficients from it. Finally, the in-the-
wild images are well reconstructed with our parametric re-
flectance model, and the model itself is also updated gradu-
ally in this process to achieve high generalization capability
and expressive power.

In summary, our contributions include:
• We propose the first 3D morphable face reflectance

model with spatially varying BRDF and a technique to
train the model with low-cost publicly-available data.

• We apply linear shiness weighting into parametric face
modeling to represent spatially varying specular shi-
ness and intensity and ease the process of reconstruct-
ing reflectance from images.

• We propose an update-by-reconstruction strategy to
finetune our face reflectance model on an in-the-wild
dataset, improving its generalization capability and ex-
pressive power.

2. Related Work
3D Morphable Face Model The origin 3DMM, proposed
by Blanz and Vetter [4], learns a PCA model to represent
3D face shape and texture from 200 scans. This semi-
nal work has motivated substantial follow-ups in the past
two decades [19]. Paysan et al. [43] propose the Basel
Face Model (BFM), the first 3DMM available to the pub-
lic. However, BFM and the original 3DMM can only model
neutral faces. To handle expression variation, Li et al. [38]
propose the FLAME model with additive expression bases
trained from 4D scans. Cao et al. [8] build a bilinear expres-
sion model from a database with multi-expression scans of
the same person. Another class of works attempts to bet-
ter capture human face variation by scaling up the number
of scans for 3DMM training. Dai et al. [10] and Booth et
al. [6] learn large-scale 3DMM from 1.2k and 10k subjects,
respectively. However, all of these previous works approxi-
mate face as Lambertian surface and ignore the modeling of
non-Lambertian reflectance. Recently, some works [37, 50]
build morphable models for diffuse and specular albedo us-
ing Light Stage scans [24, 39, 51]. However, specular shi-
ness is ignored in their model. In addition, their require-
ment on Light Stage scans is hard to fulfill for the research
community. Our method can represent both spatially vary-
ing specular intensity and shiness while only using low-cost
publicly-available data as the training set.

More recently, some works [52, 54, 55, 60, 61] propose
to learn 3DMM from large-scale 2D datasets by jointly per-
forming face reconstruction and face model learning. These
methods can learn a 3DMM that generalizes well across the
population. Tewari et al. [52] learn linear face shape and
texture models from videos by designing novel loss func-
tions to handle depth ambiguity. A follow-up work [54]
learns a complete 3DMM, including shape, expression, and
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texture, from videos and neutral face images. Tran et
al. [60,61] learn a non-linear 3DMM from 2D image collec-
tions, using deep neural networks to model face shape and
texture. Inspired by these works, we finetune our initial face
reflectance model on an in-the-wild face image dataset to
improve its generalization capability and expressive power.

Face Appearance Capture Existing methods for face ap-
pearance capture [32] fall into two categories: the image-
based method and the model-based method. The key idea
of the image-based method is to capture a set of images to
sample the light transport function, and then novel appear-
ances can be obtained by linearly recombining these im-
ages. To fulfill this, Debevec et al. [11] construct the Light
Stage to capture the light transport function by program-
matically activating One-Light-At-a-Time (OLAT). Using
the captured OLAT data as the training set, Mallikarjun et
al. [40] propose a learning-based method to infer the whole
light transport function from a monocular input face image,
and Kumar et al. [33] build a statistical model for the light
transport function at a fixed frontal viewpoint. By directly
modeling the light transport function, these image-based
methods can represent specularities, sub-surface scattering,
and other high-order effects caused by the complex interac-
tion between light and face surface. However, they cannot
export geometry or material assets for further usages like
material editing or animation.

Model-based methods capture the parameters of a re-
flectance model and utilize the rendering equation [27] to
synthesize novel appearances. Previous works [24, 39, 51]
use polarised illumination to directly capture the diffuse and
specular albedo of human face. Using the captured data
from [24, 39, 51], recent works train a neural network to
map a monocular face image into its diffuse and specular
albedo map [35, 67] or build a morphable model for this
maps [37, 50]. Another class of works adopts an inverse
rendering framework to estimate the face reflectance pa-
rameters from images. Weyrich et al. [65] develop a novel
reflectance model for face and estimate its parameter from
dense OLAT images captured by a Light Stage [11]. Riv-
iere et al. [47] leverage images captured by a lightweight
single-shot system for inverse rendering. In our method, we
estimate the reflectance parameters for each identity in the
Multi-PIE dataset from the provided OLAT images via an
inverse rendering framework and use these parameters to
build an initial morphable face reflectance model.

More recently, some works attempt to capture face ap-
pearance using a low-cost setup, such as a single selfie video
of the subject rotating under the sun [62], recorded video of
the subject illuminated by a desktop monitor [48], and co-
located captured sequence [2, 49]. However, all of these
previous works are person-specific. Our goal is to build a
generic morphable reflectance model using low-cost data.

(a) 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟒𝟒,𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟏𝟏 (b) 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟖𝟖,𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟐𝟐 (c) 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟏𝟏,𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟒𝟒

Figure 2. Our reflectance representation can naturally modulate
specular intensity and shiness by adjusting the absolute or rela-
tive scales of the linear combination weights. Here we show an
example using the linear combination of 2 Blinn-Phong BRDFs
with specular exponents p1 =8 and p2 =64, respectively. Note
the changes in specular intensity and shiness under different linear
combination weights w1 and w2.

3. Method
In this Section, we first introduce the representation

of our morphable face reflectance model (Section 3.1),
then propose a method to learn this model from low-cost
publicly-available data. Specifically, we first learn an initial
model from the Multi-PIE dataset (Section 3.2) and then
finetune it on the FFHQ dataset to improve its generaliza-
tion capability and expressive power (Section 3.3).

3.1. Morphable Face Reflectance Model

Our goal is to design a morphable model to represent
the spatially varying BRDF of the human face across the
population. To this end, we build our model upon the
BFM09 [43] geometry model and assign the spatially vary-
ing reflectance parameters to its vertices. We employ a lin-
ear model for the reflectance parameters of the human face:

R = R̄+MR · β (1)

Here, R̄ ∈ RkV and MR ∈ RkV×NR are the mean and
bases of face reflectance parameters, respectively; NR is
the number of bases; k is the number of reflectance model
parameters for each vertex; V is the number of vertices of
the BFM09 geometry model; β ∈ RNR is the morphable
model coefficients. Note that previous works [23, 52, 54]
represent face reflectance as the Lambertian BRDF. So in
their scenario k = 3 to represent the RGB diffuse color.

Next, we first introduce our reflectance representation.
Then, we illustrate our efficient shading technique for this
representation under directional or environmental illumina-
tion, which can accelerate the model learning process de-
tailed in later Sections.

Reflectance Representation To model non-Lambertian
effects such as facial specularity, we incorporate a diffuse
term and a specular term in our face reflectance representa-
tion fr. We instantiate them as the Lambertian BRDF and
the linear combination of several Blinn-Phong BRDFs [5]
with different predefined specular exponents, respectively:

fr(l, v,n) =
c

π
+

kbp∑
i=1

wi · fi ·
⟨h,n⟩pi

⟨l,n⟩
(2)
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Here, l, v, and n indicate the incident light direction, view-
ing direction, and normal direction, respectively; c is the
RGB diffuse color; wi are the linear combination weights;
pi are the predefined specular exponents; kbp is the number
of Blinn-Phong BRDFs; fi = pi+2

4π·(2−2−
pi
2 )

are the energy

normalization factor [1] such that the corresponding Blinn-
Phong lobe integrates to 1; ⟨·, ·⟩ is the clamped cosine func-
tion; h = v+l

||v+l||2 is the half vector [1].
In our scenario, the reflectance parameters for each face

vertex are the diffuse color c and kbp linear combination
weights wi. Thus, each face vertex has k = kbp + 3 re-
flectance parameters attached to it. Note that the specular
exponents pi are predefined and shared by each face vertex;
they are hyper-parameters in our model. Our representa-
tion can naturally modulate the specular intensity and shi-
ness. As illustrated in Figure 2, doubling all the weights
would double the specular intensity, while adjusting the as-
pect ratio between weights would change the specular shi-
ness. Moreover, our reflectance representation generalizes
to previous work [15–17] with spatially varying specular
albedo and a global specular exponent when kbp = 1.

Efficient Shading For directional illumination, by denot-
ing the incoming irradiance from direction l as E, we can
directly obtain the shading:

s = E · ( c
π
· ⟨l,n⟩+

kbp∑
i=1

wi · fi · ⟨h,n⟩pi) (3)

For environmental illumination, we denote the incoming
radiance from direction l as E(l). According to the render-
ing equation [27], we have:

s =

∫
l∈Ω+

E(l) · fr(l, v,n) · ⟨l,n⟩dl (4)

Here, Ω+ is the upper hemisphere centered by n. Substi-
tuting Equation (2) into Equation (4), we then separate the
shading s into a diffuse part sd and a specular part ss:

s = sd + ss,where (5)

sd =

∫
l∈Ω+

c

π
· E(l) · ⟨l,n⟩dl (6)

ss =

∫
l∈Ω+

kbp∑
i=1

wi · fi⟨h,n⟩pi · E(l)dl (7)

We can efficiently compute sd and ss in the frequency
space [45]:

sd =
c

π
·

L∑
l=0

l∑
m=−l

Al ·Klm · Ylm(n), (8)

ss =

kbp∑
i=1

L∑
l=0

l∑
m=−l

wi ·Bl ·Klm · Ylm(r). (9)

Here, L is the SH order, Al, Bi
l , and Klm are the SH

coefficients of the Lambertian BRDF, Blinn-Phong BRDF
with specular exponent pi, and the environmental illumi-
nation, respectively; Ylm(·) are the SH basis functions;
r = 2(n·v)n−v

||2(n·v)n−v||2 is the specular reflect direction [1].

3.2. Initial Model Learning

In this part, we propose a method to learn the mean
R̄ and bases MR of our morphable face reflectance model
from the publicly-available Multi-PIE dataset [25]. Specif-
ically, we first estimate the reflectance parameters for each
identity in the dataset via inverse rendering, and then train a
PCA model for them.

Dataset Preprocessing The Multi-PIE dataset contains
337 identities captured under 15 viewpoints and 19 illumi-
nations. We first exclude objects with facial accessories or
hair occlusions, resulting in 128 identities. Then, we manu-
ally select 9 viewpoints and 12 illuminations (including 11
directional flash images and 1 room light image) with well
color consistency to train our model. By removing the room
light effect in the flash images, we obtain 11 OLAT images
per viewpoint. We adopt a simple model-based approach to
reconstruct the BFM09 geometry coefficients of each iden-
tity, camera parameters of each viewpoint, and the position
of each flash simultaneously. See more implementation de-
tails in our Supplementary Material.

Refectance Parameter Estimation For a specific iden-
tity, we estimate all the reflectance parameters in UV space,
including the diffuse color map C ∈ R3×H×W and the lin-
ear combination weight map W ∈ Rkbp×H×W . We unwarp
all the OLAT images into UV space and denote the one cap-
tured under the i-th viewpoint and the j-th directional flash
illumination as Iuvij ∈ R3×H×W . From the reconstructed
face geometry and scene information, we precompute the
incident light direction luvj for each flash, view direction vuvi
for each camera, normal direction nuv for the face geome-
try, and shadow mask1 Muv

ij for each OLAT image in the
UV space. By predefining a reasonable incoming irradiance
E from the directional flash2, we obtain the reconstructed
OLAT image Îuvij using the efficient shading technique un-
der directional illumination presented in Equation (3):

Îuvij = E ·(C
π
·⟨luvj ,nuv⟩+

kbp∑
k=1

Wk ·fk ·⟨huv
ij ,nuv⟩pk) (10)

Here, huv
ij is the half vector UV map obtained by luvj and

vuvi . We optimize the diffuse color map C and linear com-

1We obtained shadow mask via ray tracing.
2There is an inevitably global scale between the reflectance parameters

estimated by the inverse rendering method and the ground truth, if lighting
unknown. See more theoretical analysis in [45].
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Figure 3. Model finetuning pipeline overview. Given a single input face image, we apply an encoder Eθ to estimate its lighting scale z,
lighting coefficients γ, and reflectance coefficients β. Combined with the precompute geometry parameters α, δ, R, t, and Π, we can obtain
the reconstructed face image via a differentiable renderer to compute self-supervised loss and jointly update Eθ and our reflectance model.

bination weights map W with loss:

argmin
C,W

Lrecon + wregLreg (11)

Lrecon is the weighted L1 reconstruction loss:

Lrecon =
∑
i,j

⟨luvj ,nuv⟩ · ||Muv
ij · (Îuvij − Iuvij )||1, (12)

Lreg is designed to restrict the reflectance parameters to be
non-negative:

Lreg = −MC · C −MW ·W (13)

Here, MC and MW are the masks that indicate negative val-
ues in C and W , respectively. During parameter estimation,
we randomly horizontal flip C and W to introduce symmet-
ric constraints [66] to the reflectance parameter map.

Compared to the traditional way that uses specular inten-
sity and exponents to parameterize the Blinn-Phong BRDF,
our linear representation is much easier for parameter esti-
mation in practive.

Model Learning With the estimated reflectance param-
eter maps for each identity, we can build our initial mor-
phable face reflectance model. Similar to AlbedoMM [50],
we learn a PCA model only for the diffuse albedo. Then,
we transfer it to the specular weights by using the same lin-
ear combination of the training samples to form the bases.
Thus, we can use the same coefficients β for the diffuse and
specular reflectance parameters as Equation (1) while keep-
ing the orthonormality of the diffuse bases so that the user
can use our diffuse model independently.

3.3. Model Finetuning

To improve the generalization capability and expressive
power of our initial morphable face reflecatance model, we
finetune it on an in-the-wild face image dataset, FFHQ [29],
by jointly doing face reconstruction and model updating.

Dataset Preprocessing Before model finetuning, we use
an off-the-shelf [14] method to estimate the BFM09 geome-
try coefficients and head pose for each image in the dataset.
To further improve the geometry reconstruction accuracy,
we apply an offline optimization using the same loss func-
tions as [14]. Finally, we obtain the shape coefficients α,
expression coefficients δ3, and head pose R, t for each im-
age. Similar to [14], we use the perspective camera model
with a reasonable predefined focal length to represent the
3D-2D projection Π.

Network Architecture As illustrated in Figure 3, given a
single face image I as input, our face reconstruction net-
work Eθ(·) predicts the reflectance model coefficients β
and the SH lighting. Combined with the geometry parame-
ters α, δ, head pose R, t, and the projection Π, we can ob-
tain the reconstructed image Î via a differentiable raster-
izer [34,46] using the efficient shading technique presented
in Equation (8) and (9).

To update the high-frequency information in our non-
Lambertian reflectance representation, we need to predict
high-order SH lighting [45]. We adopt 8-order SH lighting
with 273 parameters in our method as [17,36]. However, if
handled naively, the network cannot predict reasonable SH
lighting due to the large searching space of high-order SH
coefficients, as shown in Figure 5. To constrain the search-
ing space, we build a PCA model for the real-world envi-
ronmental lighting in SH coefficient space inspired by [18].
Specifically, we utilize a real-world HDRI environment map
dataset [64] and apply rotation augmentation to it. For each
environment map, we compute its SH coefficients up to the
8-th order. We then divide them by the 0-th order coef-
ficient for normalization. Note that each color channel is
normalized independently. Next, we learn a PCA model for
these normalized SH coefficients. We use the first NL bases
for lighting prediction.

During finetuning, together with the reflectance model

3The expression bases are adapted from FaceWarehouse [8] since
BFM09 does not model expression. See more details in [14].
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coefficients β, our network predicts γ ∈ RNL as the light-
ing PCA model coefficients and z ∈ R3 to represent the
scale of 0-th order SH coefficient for each color channel.
From this, we first use γ to recover the SH coefficients from
the PCA lighting model and then apply the predicted scale
z to them. We adopt the ResNet-50 [26] architecture as
the reconstruction network Eθ(·) and modify the last fully-
connected layer to NR + NL + 3 neurons. We adopt the
Softplus activation for z to ensure a non-negative prediction
and linear activation for β and γ.

Loss Function In model finetuning, the learnable param-
eters are the morphable model parameters, including the
mean R̄ and bases MR, and face reconstruction network pa-
rameters θ. We optimize them with the combination of a
reconstruction loss Lrec and a regularization loss Lreg:

argmin
R̄,MR,θ

Lrec + Lreg (14)

Lrec is the combination of a L1 term Ll1 and a perceptual
term Lper; see more details in our Supplementary Material.
In our regularization loss Lreg , we design Lupd to constrain
the updating of our morphable reflectance model:

Lupd = ||R̄− R̄0||1 + ||MR −MR0 ||1 (15)

In addition, we adopt Llight to encourage monochromatic
environment lighting as [12] to resolve the color ambigu-
ity between albedo and lighting and Lcoef to constrain the
predicted PCA coefficients β and γ; see more details in our
Supplementary Material.

4. Experiments
4.1. Implementation Details

Initial Model Learning For reflectance parameter esti-
mation, we set wreg=100 and adopt Adam [31] optimizer to
minimize the loss function, with learning rate 5e-3. We use
3 Blinn-Phong BRDFs with specular exponents 1, 8, and 64
in our method, i.e. kbp=3. Thus, there are 6 reflectance
parameters for each face vertex. We use the first 80 PCA
bases in our initial model, i.e. NR=80.

Model Finetuning For the lighting PCA model, we also
use the first 80 PCA bases, i.e. NL=80. The weights for
Ll1,Lper,Lcoef ,Lupd,Llight are set to 2, 0.1, 0.001, 10, 10,
respectively. We finetune our model on the FFHQ
dataset [30], with 70000 high-fidelity single-view face im-
ages, and crop them to 224×224 when input to our re-
construction network Eθ. We first pretrain Eθ using
Ll1,Lper,Lcoef for 20 epochs to ensure it can output reason-
able reflectance and lighting coefficients prediction, with
learning rate 1e-4. Then, we use the full loss function to

GT Ours

Exp=8 Exp=16

Exp=32 Exp=64

GT Ours

Exp=8 Exp=16

Exp=32 Exp=64

Figure 4. Qualitative comparison of face rendering results on the
Multi-PIE dataset between our spatially varying reflectance rep-
resentation and previous works with a global specular exponent.
Here, Exp stands for the specular exponent in the Blinn-Phong
BRDF. A large global exponent (e.g. 32, 64) leads to over-shiness
artifacts around the cheek and chin, while a small one (e.g. 8, 16)
cannot represent specularities appear in the forehead and tip of
the nose. Our representation can well model the spatially varying
specular intensity and shiness on the face.

Table 1. Quantitative comparison of face rendering results on the
Multi-PIE dataset between our method and previous works with a
global specular exponent.

LPIPS ↓ SSIM ↑ PSNR ↑

Exp=8 0.097 0.937 24.56
Exp=16 0.098 0.936 24.54
Exp=32 0.097 0.937 24.72
Exp=64 0.096 0.937 24.82
Ours 0.083 0.942 25.00

simultaneously update the parameters of Eθ and our mor-
phable face reflectance model for 2 epochs, with learning
rate 1e-5. We adopt Adam optimizer [31].

4.2. Evaluations

Reflectance Parameter Estimation In our reflectance
representation, we use the linear combination of 3 Blinn-
Phong BRDFs with specular exponents 1, 8, and 64 as the
specular term. In Figure 4, we compare the face rendering
results between our reflectance representation and previous
works [15–17] with spatially varying specular albedo and
a global specular exponent. As discussed in Section 3.1,
we implement the reflectance representation of previous
work by setting kbp=1, and use the same inverse render-
ing pipeline described in Section 3.2. The results illustrate
that our representation obtains more realistic rendering re-
sults than the previous work. For example, the specular
shiness is more significant at the tip of nose while vanish-
ing around the cheek; previous works with global specular
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Table 2. Photometric face reconstruction comparison between our
method and competitors on 1000 images randomly sampled from
the CelebA-HQ dataset.

LPIPS ↓ SSIM ↑ PSNR ↑

BFM09 0.114 0.893 23.51
AlbedoMM 0.116 0.901 23.69
Ours 0.110 0.896 24.21

Ours w/o finetune 0.1256 0.886 23.26

Input Overlay Predicted Lighting
Oursw/o finetune Oursw/o Light PCA

Figure 5. Qualitative ablation study of model finetuning and the
use of our lighting PCA model.

exponent cannot capture this phenomenon. With the spa-
tially varying linear combination weights of different Blinn-
Phong BRDFs, our method can naturally represent spatially
varying specular intensity and shiness. In Table 1, we report
the SSIM [63], PSNR, and LPIPS [69] scores in the face re-
gion to quantitatively measure the discrepancy between the
re-rendered face and the ground truth. Again, our method
achieves better results than the global exponent counterpart.

Model Visualization We visualize the first 3 principal
components of our morphable model in Figure 1, including
the diffuse albedo, and the weights for Blinn-Phong BRDF
with specular exponents 1, 8, and 64, from left to right; we
multiply the weights by 3 for better visualization. It shows
that our model learns to assign a large specular shiness to
the tip of the nose while a small value to the cheek. See
more visualizations in our Supplementary Material.

Ablation Study As shown in Figure 5 and Table 2, the
proposed finetuning strategy can improve the generalization
capability and expressive power of our initial morphable
face reflectance model, leading to better face reconstruc-
tion quality, especially around mouth and eyes. We then
verify the effectiveness of our lighting PCA model. As il-
lustrated in Figure 5, directly predicts 273 coefficients of the
8-order SH (w/o Light PCA) leads to unreasonable results;
our lighting PCA model obtains better lighting predictions
by constraining the searching space of the SH coefficients.

4.3. Comparisons

Baselines We compare our method with BFM09 [43] and
AlbedoMM [50]. BFM09 is a diffuse-only model built from
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Figure 6. Qualitative comparison of face reconstruction and shad-
ing contributions between our method and AlbedoMM.

3D scans; AlbedoMM is a morphable model for diffuse and
specular albedo built from Light Stage data. To ensure a
fair comparison, we use the same CNN-based framework
(see Section 3.3) to implement the competitors. We train
the reconstruction network for them on the FFHQ dataset,
but we do not update their morphable model parameters. As
we only focus on appearance, the reconstruction network
only predicts reflectance coefficients and lighting parame-
ters and uses fixed precomputed geometry during training.
For BFM09, we adopt the same geometry parameters as
ours. For AlbedoMM, we use the same steps as mentioned
in Section 3.3 to obtain its geometry parameters. Akin
to [50], we adopt the Blinn-Phong BRDF for AlbedoMM
and set the global shiness to 20.

Face Reconstruction We evaluate our method and the
competitors on the CelebA-HQ [28] dataset. As illustrated
in Table 2, our method obtains better photometric face re-
construction quantitative scores than the competitors since
we finetune it on an in-the-wild dataset to improve its gen-
eralization capability and expressive power while the com-
petitors are built from a limited number of scans. As shown
in Figure 6, our method can reconstruct the input image
well; compared to AlbedoMM trained from Light Stage
scans, our method trained from low-cost data can also dis-
entangle the diffuse and specular shading in a plausible way.

Face Relighting We evaluate the relighting performance
of our method and the competitors on the Multi-PIE
dataset [25]. Specifically, given an input image, we first ob-
tain its geometry parameters as described in Section 3.2 and
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Figure 7. Qualitative comparison of face relighting results under
point light source between our method and the competitors.

reconstruct its reflectance parameters using our CNN-based
face reconstruction network (columns 1 and 3 in Figure 7).
Then, we re-render the image under a new point light source
and compare it to the corresponding OLAT image with ex-
actly the same light position obtained from the preprocessed
Multi-PIE dataset in Section 3.2 (columns 2 and 4 in Fig-
ure 7). Since we do not have the ground truth light color
and intensity information of the Multi-PIE dataset, we ren-
der our method and the competitors using the same white
point light source for a fair comparison; please ignore the
color difference and only focus on the distribution of facial
specularities in Figure 7. Compared to BFM09, our method
successfully render plausible facial specularities since we
adopt a non-Lambertian reflectance representation. Com-
pared to AlbedoMM, our method achieves more realistic
results especially around the tip of the nose since we can
model both spatially varying specular intensity and shiness.
See the video comparisons on our project page for a better
demonstration.

Reflectance Reconstruction Although our goal is not to
model physically-accurate reflectance parameters, we com-
pare our method with AlbedoMM on 23 Light Stage scans
with ground truth diffuse and specular albedo captured un-
der neutral expression from the 3D-RFE database [51]. We
adopt the sum of 3 linear combination weights in our re-
flectance representation as the specular albedo; this quan-
tity shares the same meaning as the specular albedo, i.e.
the specular shading under a spatially-uniform environment
lighting with unit radiance. As shown in Figure 8, our
method can reconstruct plausible reflectance maps. How-

Table 3. Quantitative diffuse and specular albedo reconstruction
results on 23 Light Stage scans from the 3D-RFE dataset (PSNR↑).

Diffuse Albedo Specular Albedo

AlbedoMM 19.31 26.51
Ours 20.13 19.14
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Figure 8. Qualitative comparison of diffuse and specular albedo
reconstruction on the 3D-RFE dataset.

ever, as shown in Table 3, our method obtains inferior quan-
titative results than AlbedoMM on specular albedo recon-
struction. We attribute this to two reasons: i) AlbedoMM
uses the 3D-RFE database to build their model [50] while
our method has never seen these scans, and ii) our method
is built from low-cost data without lighting information, so
there exists a global scale between our reflectance parame-
ters and the ground truth although we try to mitigate it by
setting a reasonable lighting color in Section 3.2.

5. Conclusion
We propose the first 3D morphable face reflectance

model with spatially varying BRDF, using only low-cost
publicly-available data. To represent spatially varying re-
flectance, we apply linear shiness weighting into parametric
face modeling. We develop an inverse rendering algorithm
to reconstruct the reflectance parameters from the Multi-PIE
dataset, from which we build an initial model. We propose
a strategy that jointly learns the face reconstruction network
and updates the morphable model parameters on the FFHQ
dataset to improve its generalization capability and expres-
sive power. Our method obtains decent rendering results
with plausible facial specularities. We discuss the limita-
tions of our method in the Supplementary Material.
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Theobalt. Self-supervised multi-level face model learning
for monocular reconstruction at over 250 hz. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2549–2559, 2018. 1, 2

[56] Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo
Garrido, Florian Bernard, Patrick Perez, and Christian
Theobalt. Mofa: Model-based deep convolutional face au-
toencoder for unsupervised monocular reconstruction. In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 1274–1283, 2017. 1

[57] Justus Thies, Mohamed Elgharib, Ayush Tewari, Christian
Theobalt, and Matthias Nießner. Neural voice puppetry:
Audio-driven facial reenactment. In European conference
on computer vision, pages 716–731. Springer, 2020. 1

[58] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Nießner. Face2face: Real-time
face capture and reenactment of rgb videos. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2387–2395, 2016. 1

[59] Kenneth E Torrance and Ephraim M Sparrow. Theory
for off-specular reflection from roughened surfaces. Josa,
57(9):1105–1114, 1967. 1

[60] Luan Tran, Feng Liu, and Xiaoming Liu. Towards high-
fidelity nonlinear 3d face morphable model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1126–1135, 2019. 2, 3

[61] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable
model. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7346–7355, 2018. 2, 3

[62] Yifan Wang, Aleksander Holynski, Xiuming Zhang, and
Xuaner Cecilia Zhang. Sunstage: Portrait reconstruction
and relighting using the sun as a light stage. ArXiv,
abs/2204.03648, 2022. 3

[63] Zhou Wang, Alan Conrad Bovik, Hamid R. Sheikh, and
Eero P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Im-
age Processing, 13:600–612, 2004. 7

[64] Zhibo Wang, Xin Yu, Ming Lu, Quan Wang, Chen Qian, and
Feng Xu. Single image portrait relighting via explicit mul-
tiple reflectance channel modeling. ACM Transactions on
Graphics (TOG), 39:1 – 13, 2020. 5

[65] Tim Weyrich, Wojciech Matusik, Hanspeter Pfister, Bernd
Bickel, Craig Donner, Chien Tu, Janet McAndless, Jinho
Lee, Addy Ngan, Henrik Wann Jensen, et al. Analysis of

human faces using a measurement-based skin reflectance
model. ACM Transactions on Graphics (ToG), 25(3):1013–
1024, 2006. 1, 3

[66] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In CVPR, 2020. 5

[67] Shugo Yamaguchi, Shunsuke Saito, Koki Nagano, Yajie
Zhao, Weikai Chen, Kyle Olszewski, Shigeo Morishima, and
Hao Li. High-fidelity facial reflectance and geometry infer-
ence from an unconstrained image. ACM Transactions on
Graphics (TOG), 37:1 – 14, 2018. 3

[68] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu
Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale
high quality 3d face dataset and detailed riggable 3d face pre-
diction. In Proceedings of the ieee/cvf conference on com-
puter vision and pattern recognition, pages 601–610, 2020.
1

[69] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
586–595, 2018. 7

[70] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C
Bühler, Xu Chen, Michael J Black, and Otmar Hilliges. Im
avatar: Implicit morphable head avatars from videos. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13545–13555, 2022. 1

8608


