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Abstract

We propose an approach based on convex relaxations for
certifiably optimal robust multiview triangulation. To this
end, we extend existing relaxation approaches to non-robust
multiview triangulation by incorporating a least squares
cost function. We propose two formulations, one based
on epipolar constraints and one based on fractional repro-
jection constraints. The first is lower dimensional and re-
mains tight under moderate noise and outlier levels, while
the second is higher dimensional and therefore slower but
remains tight even under extreme noise and outlier levels.
We demonstrate through extensive experiments that the pro-
posed approaches allow us to compute provably optimal re-
constructions even under significant noise and a large per-
centage of outliers.

1. Introduction

Multiview triangulation is the problem of estimating the
location of a point in 3D given two or more 2D observa-
tions in images taken from cameras with known poses and
intrinsics. The 2D observations are typically estimated by
some form of feature matching pipeline, so they are always
corrupted by noise and outliers. As a result the 3D point
cannot be exactly recovered, and instead the solution has to
be phrased as a nonconvex optimization problem.

While solutions are typically computed using faster but
sub-optimal local optimization methods, there have also
been efforts to compute globally optimal triangulations us-
ing semidefinite relaxations [1,4,13]. These relaxations can
work well even in high-noise scenarios, but their practical
use remains limited as they are not robust and even a single
outlier can deteriorate the result significantly. In this work,
inspired by recent advances in semidefinite relaxations for
outlier-robust perception [28], we will show that [1, 4] can
be extended to also handle significant amounts of outliers.

Implementation: github.com/linusnie/robust-triangulation-relaxations

(a) 22 views, no outliers

(b) 22 views, 19 outliers
Figure 1. Example of a triangulated point from the Reichstag
dataset. Blue point: ground truth from [12]. Red point: non-robust
global optimum found by the relaxation from [1] (see Eq. (T)).
Green point: robust global optimum found by our proposed relax-
ation in Eq. (RT).

Semidefinite relaxations have the advantage of being
globally solvable in polynomial time, meaning that they can
be used to enable practical certifiably optimal algorithms.
After solving the relaxed problem we either have that 1) the
relaxation is tight and we provably recover the global opti-
mum of the original problem, or 2) the relaxation is prov-
ably not tight and we can report failure to find the global
optimum. The key metric for the usefulness of a certifiably
optimal algorithm is then the percentage of problem cases
where the underlying relaxation is tight.

Despite their often slower runtime, certifiably optimal
methods offer several advantages: Firstly, in safety-critical
systems it may be required or desirable to complement the
computed solution with some guarantee that the solver is
not stuck in a local optima. Secondly, in many offline appli-
cations runtime is actually not as critical and then one may
want to trade off better accuracy for extra runtime. Thirdly,
globally optimal solutions of real-world problems can serve
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as ground truth for assessing the performance of local opti-
mization methods.

In this work, we demonstrate a certifiably optimal ap-
proach to robust triangulation by developing two convex re-
laxations for the truncated least squares cost function. En-
abling the combination of robustness with the capacity to
compute certifiably optimal solutions. Our main contribu-
tions can be summarized as follows:

• We extend the convex triangulation methods from [1]
and [4] with a truncated least squares cost function and
propose two corresponding convex relaxations.

• We validate empirically that both relaxations remain
tight even under large amounts of noise and high out-
lier ratios.

• We show that the relaxations are tight in the noise-free
and outlier-free case by explicitly constructing the dual
solution.

To the best of our knowledge, this is the first example of
a successful semidefinite relaxation of a robust estimation
problem with reprojection errors.

2. Related work
Triangulation is a core subroutine for structure from mo-

tion and therefore has been studied extensively. For two
views, there are many globally optimal solution variants,
including computing the roots of a degree 6 polynomial [9]
for the reprojection error or a 3×3 singular value decompo-
sition for the angular error (up to a second order approxima-
tion) [16]. Outlier-free multiview triangulation is arguably
most commonly solved based on the linear-eigen method
from [9]. Robust triangulation is typically tackled using
RANSAC [14, 17, 21] where a 2-view solver is repeatedly
applied to randomly sampled pairs of views until an inlier
set can be established.

Semidefinite relaxations have been used to obtain cer-
tifiably optimal algorithms for many problems in geomet-
ric computer vision. Examples include semidefinite relax-
ations for partitioning, grouping and restoration [15], for
minimizing reprojection errors [13], for multiview triangu-
lation [1, 4], for essential matrix estimation [30], for hand-
eye calibration [7, 24, 25], for robust point cloud registra-
tion [26,28,29], and for 3D shape from 2D landmarks [27].

Notably [28], which is one of the main inpirations for
this work, demonstrates that semidefinite relaxations can
also be used for outlier-robust estimation. In particular, they
provide relaxations for various outliers models in the con-
text of robust rotation averaging, mesh registration, absolute
pose registration and category-level object pose+shape esti-
mation.

Solving semidefinite relaxations is typically slow and
memory intensive, stemming from the fact that the number

of variables is the square of the number of variables in the
original problem. To tackle this issue, there has been recent
interest in developing solvers that can scale to larger prob-
lems. Including [6] which uses a reformulation in terms of
eigenvalue optimization based on [10] which can take ad-
vantage of GPUs, and [28] which uses efficient non-global
solvers for speeding up the convergence of the global solver.
Notably, in both cases the main memory saving comes from
applying a dual-only solver.

In a limited number of cases, semidefinite relaxations
can be shown to always find a globally optimal solution
to the original problem. This includes the dual quaternion
formulation of hand-eye calibration [7] and 2-view trian-
gulation using epipolar constraints [1], in both cases with
some assumption of non-degenerate measurements. An-
other example is the rotation alignment problem which has
a closed form solution in terms of an eigenvalue decompo-
sition (quaternion formulation) or singular value decompo-
sition (rotation matrix formulation).

However, outlier-robust estimation is inapproximable in
general [2], meaning there will always be some subset of
possible measurements for which any semidefinite relax-
ation of practical size is non-tight. In terms of theoreti-
cal guarantees, [5] introduces the concept of local stability
which, under certain conditions on the problem structure for
noise-free measurements, can guarantee that a relaxation re-
mains tight for bounded measurement noise. In some cases
it is also possible to find conditions on measurements which
guarantee that the relaxation is tight or non-tight, as demon-
strated in [20] for robust rotation alignment of point clouds,
but typically algorithm developers will have to rely on ex-
periments in order to determine to what extent a given re-
laxation remains tight in a particular problem scenario.

3. Notation and preliminaries

For t, s ∈ R3 we write [t]× for the 3×3 skew-symmetric
matrix such that t × s = [t]×s. (a; b) denotes the verti-
cal concatenation of vectors a and b and for a collection
of vectors a1, . . . , an the subscript-free version denotes the
corresponding stacked vector a = (a1; . . . ; an). We use a
bar to denote the homogeneous version of a vector, that is
ā := (a; 1). When dimensionality is understood we define
ei to be the ith unit vector and Ei = eie

T
i . For a vector of

monomials m = (m1; . . . ;md) we define emmi
as the unit

vector whose only non-zero entry corresponds to the index
of mi in m, meaning emmi

= ei ∈ Rd. For a vector x ∈ Rk

we define:

Mx :=

(
I −x

−xT ∥x∥2
)

∈ Sk+1 (1)

such that for y ∈ Rk we have ȳTMxȳ = ∥x − y∥2. The
operator ⊗ denotes the Kronecker product, and ⊕ denotes
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the tensor sum. For example, for 2× 2 matrices A and B:

A⊕B =

(
A 0
0 B

)
, A⊗B =

(
a11B a12B
a21B a22B

)
. (2)

3.1. Semidefinite relaxations

As a general strategy, we aim to solve the triangu-
lation problem by relaxing a Quadratically Constrained
Quadratic Program (QCQP) which has the following form:

min
z∈Rd

zTMz

s.t. zTEz = 1

zTAiz = 0, i = 1, . . . , k

zTBjz ≤ 0, j = 1, . . . , l.

(3)

This is a very general formulation with applications in com-
puter vision but it is NP-hard to solve in most cases, so an
imperfect method is typically necessary. One such strategy
is to lift the problem from Rd to the set of d × d positive
semidefinite matrices, Sd, by introducing a new variable
Z = zzT and using the fact that zTMz = tr(MzzT ) =
tr(MZ) to arrive at:

min
Z∈Sd

tr(MZ)

s.t. tr(EZ) = 1

tr(AiZ) = 0, i = 1, . . . , k

tr(BjZ) ≤ 0 j = 1, . . . , l

Z ≽ 0.

(4)

Eq. (4) is a relaxation of Eq. (3) since if z satisfies the con-
straints of Eq. (3) we always have that Z = zzT satisfies the
constraints of Eq. (4) with the same objective value. How-
ever, the converse is not always true. In particular, if Ẑ is
optimal for Eq. (4) we can obtain a corresponding solution
ẑ for Eq. (3) with the same objective value if and only if Ẑ
is rank one. In this case we have Ẑ = ẑẑT and we then say
that the relaxation is tight.

The main advantage of working with the relaxation
Eq. (4) as opposed to the original problem Eq. (3) is that
the relaxation is a convex optimization problem, in par-
ticular it is a semidefinite program, for which a variety of
polynomial-time solvers are available, including [3, 18]. If
the relaxation is not tight we can at best expect an optimal
Ẑ to generate an approximation of the optimal ẑ. There-
fore, a key metric to consider when applying a relaxation
is the percentage of encountered problem cases in which it
remains tight.

4. Relaxations for multiview triangulation
Given n views of a point X from cameras located at Pi =
(Ri, ti) ∈ SE(3) in camera-to-world convention with in-

trinsic matrices Ki ∈ R3×3, and with, possibly noisy, ob-
servations denoted as x̃i ∈ R2, the n-view triangulation
problem with reprojection error is defined as:

min
X∈R3

n∑
i=1

∥x̃i − π(Ki, Pi, X)∥2 (5)

where π(Ki, Pi, X) is the reprojection of the point X ∈ R3

to camera i. This is a nonconvex problem but it is not yet
in QCQP form since π(Ki, Pi, X) is not quadratic in X . In
this section we will recap two ways of converting Eq. (5)
to a QCQP, from which we can generate the corresponding
semidefinite relaxations.

4.1. Triangulation with epipolar constraints

The first approach was introduced in [1]. They showed
that Eq. (5) can be formulated as a polynomial optmization
problem of degree 2 by reparametrizing X in terms of it’s n
reprojections xi, which are constrained to satisfy the epipo-
lar constraints:

min
xi∈R2

n∑
i=1

∥xi − x̃i∥2

s.t. x̄T
i Fij x̄j = 0

i, j = 1, . . . , n i ̸= j

(6)

where Fij = K−T
i [tij ]×RijK

−1
j is the fundamental ma-

trix corresponding to the relative transformation between
poses i and j. Since the estimated reprojections xi all sat-
isfy the epipolar constraints, the solution of Eq. (5) can
in most cases be recovered exactly from Eq. (6) using the
linear-eigen method from [9]. An important failure case of
this parametrization is that when the camera centers are co-
planar it is possible that the solution xi of Eq. (6) does not
correspond to a valid 3D point, see Appendix A for more
details and an example.

Using the parametrization z = (x; 1) = x̄ the semidefi-
nite relaxation of Eq. (6) is:

min
Z∈S2n+1

tr(Mx̃Z)

s.t. tr(En+1Z) = 1

tr(F̄ijZ) = 0, i = 1, . . . , k

Z ≽ 0

(T)

where F̄ij ∈ S2n+1 is defined such that x̄T F̄ij x̄ =
x̄T
i Fij x̄j . It was shown in both [1] and [5] that the relax-

ation Eq. (T) is locally stable with respect to noise as long
as the views are not co-planar.

4.2. Triangulation with fraction constraints

As initially proposed in [4], an alternative to Eq. (6) is
to explicitly parametrize the 3D point X in homogeneous
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(a) 3 views (b) 5 views (c) 7 views

(d) 3 views, 1 outlier (e) 5 views, 2 outliers (f) 7 views, 4 outliers

Figure 2. Examples of simulated triangulation problems from Sec. 6.1 with σ = 50px for various number of views and outliers. Blue
point: ground truth, Red point: non-robust global optimum found by the relaxation from [4] (see Eq. (TF)). Green point: robust global
optimum found by our proposed relaxation in Eq. (RTF). With no outliers the robust and non-robust methods give the same result.

coordinates. This leads to the fractional constraints xk
i =

aTikX̄/bTi X̄ , where ai1, ai2 and bi are given by the rows of
the i-th camera projection matrix Ki

(
RT

i −RT
i ti
)
. By

multiplying out the right hand side denominators we get the
following QCQP:

min
X̄∈R4,xi∈R2

n∑
i=1

∥xi − x̃i∥2

s.t. X̄T X̄ = 1

xk
i b

T
i X̄ − aTikX̄ = 0

i = 1, . . . , n k = 1, 2.

(7)

A naive approach to relaxing Eq. (7) would be to use the
parametrization z = (x; X̄), but as shown in [4] this leads
to a relaxation whose optimal value is always zero. To cir-
cumvent this issue, [4] instead proposes parametrizing the
problem in terms of all possible products between the el-
ements of x and X , i.e. x ⊗ X . They also show through
experiments that, while the resulting relaxation has more
parameters and constraints than Eq. (T), it is also tight in

a significantly wider range of cases, leading to a tradeoff
between stability and computation time.

We will use a similar relaxation, though we will skip
the initial change of variables to get a slightly different
but equivalent formulation which can be extended to the
robust case more conveniently. We start by setting z =
(x ⊗ X̄; X̄) = x̄ ⊗ X̄ and then we multiply each repro-
jection constraint in Eq. (7) with zj to get 8n+ 4 quadratic
constraints:

(xk
i b

T
i X̄ − aTikX̄)zj = zT (ex̄xk

i
⊗ bi − ex̄1 ⊗ aik)e

T
j z

= 0
(8)

where we have made use of the unit vector notation from
Sec. 3, meaning in particular ex̄

xk
i
= e2i+k and ex̄1 = e2n+1.

We also need to introduce constraints to preserve the fact
that z comes from a (2n+1)×4 Kronecker product. When
Z = zzT is rank one, it turns out that this condition is
equivalent to Z being composed of 2n+1 symmetric 4× 4
blocks, see [4] for more details. We will denote this con-
straint as Z ∈ BSym(2n+1, 4). The relaxation of can then
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be written as1:
min

Z∈S8n+4
+

tr(Z(Mx̃ ⊗ I4))

s.t. tr(Z(08n×8n ⊕ I4)) = 1

Z ∈ BSym(2n+ 1, 4)

tr(Z(ex̄xk
i
⊗ bi − ex̄1 ⊗ aik)e

T
j ) = 0

i = 1, . . . n, k = 1, 2

j = 1, . . . , 8n+ 4.

(TF)

5. The robust case
Now that we have introduced the two main relaxations

of Eq. (5) we move to the the main contribution of this pa-
per, which is to introduce the corresponding truncated least
squares (TLS) extensions. Similarly to [28] we will use the
fact that the TLS cost function can be written as a minimiza-
tion problem by introducing a binary decision variable for
each residual

ρi(r
2
i ) = min(r2i , ci) = min

θi∈{0,1}
θir

2
i + (1− θi)ci (9)

where ci > 0 is the square of the inlier threshold. In Ap-
pendix B we show that both relaxations are tight in the
noise-free and outlier-free case, and we also show part of
the criteria required for local stability.

5.1. Robust triangulation with epipolar constraints

Using Eq. (9), the TLS extension of Eq. (6) is:

min
xi∈R2,θi∈R

n∑
i=1

(
θi∥xi − x̃i∥2 + (1− θi)ci

)
s.t. x̄T

i Fij x̄j = 0,

θ2i − θi = 0,
∑n

i=1 θ
2
i ≥ 2,

i, j = 1, . . . , n i ̸= j.

(10)

where the constraints θ2i − θi = 0 ensures θi equals 0 or
1, and the constraint

∑n
i=1 θ

2
i ≥ 2 ensures there are at

least two inliers in the final solution. This cost function
includes terms like θi∥xi∥2, which means it is a 3rd degree
polynomial, so we can’t apply the relaxation as described
in Sec. 3.1 directly. But we can obtain a 2nd order for-
mulation by noting that θ2i = θi implies θi∥xi − x̃i∥2 =
∥θixi − θix̃i∥2 and making the substitution yi = θixi:

min
yi∈R2,θi∈R

n∑
i=1

(
∥yi − θix̃i∥2 + (1− θi)ci

)
s.t. (yi; θi)

TFij(yj ; θj) = 0

θ2i − θi = 0,
∑n

i=1 θ
2
i ≥ 2,

θiyi = yi

i, j = 1, . . . , n, i ̸= j.

(11)

1The cost functions in Eq. (7) and Eq. (TF) are equivalent, since (X̄ ⊗
x̄)T (Mx̃ ⊗ I4)(X̄ ⊗ x̄) = (x̄TMx̃x̄)X̄

T X̄ = x̄TMx̃x̄.

The last set of constraints θiyi = yi are redundant but we
find that they are necessary for the relaxation to remain tight
in the presence of noise, these are referred to as moment
constraints in [28]. We can recover a solution of Eq. (10)
from a solution of Eq. (11) by triangulating the estimated
inliers (i.e. yi for which θi = 1) and setting each xi (in-
cluding outliers) to be the reprojection of the resulting point
onto view i.

Using the parametrization z = (y; θ; 1) the semidefinite
relaxation of Eq. (11) is:

min
Z∈S3n+1

+

tr(M c
x̃Z)

s.t. tr(F̄ijZ) = 0

Zθi,θi − Z1,θi = 0

Zθi,yi − Z1,yi = 0

tr(E3n+1Z) = 1

i, j = 1, . . . , n i ̸= j

(RT)

where M c
x̃ is the robust extension of Mx̃, defined as:

M c
x̃ =

 I −B(x̃) 0
−B(x̃)T diag(∥x̃i∥2) −c

0 −cT
∑n

i=0 ci

 ,

B(x̃) =


x̃1 0 . . . 0
0 x̃2 . . . 0
...

...
. . . 0

0 0 0 x̃n

 .

(12)

and Zmi,mj is the entry of Z corresponding to the index
of the monomials mi and mj in z. In Appendix B.1 we
analyze the dual of Eq. (RT) to show that the relaxation is
tight in the noise-free and outlier-free case.

5.2. Robust triangulation with fraction constraints

In this section we will introduce a higher order relaxation
which can handle higher noise and outlier levels. Since the
fractional constraints in Eq. (TF) are more stable with re-
spect to noise than the epipolar constraints in Eq. (T), we
might also expect that extending Eq. (TF) to handle out-
liers will result in a relaxation which is more stable than
Eq. (RT). In this section we will show how the robust ex-
tension can be formulated, and as we will see in Sec. 6 it is
indeed significantly more stable with respect to both noise
and outliers.

In order to extend Eq. (TF) to handle outliers we will
proceed in a similar manner as in the case with epipolar
constraints. Starting by writing the cost function in terms of
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Problem Relaxation Robust Constraints Variables
Eq. (6) Eq. (T) ✗ 1

2n
2 − 1

2n+ 1 2n+ 1
Eq. (11) Eq. (RT) ✓ 1

2n
2 + 2.5n+ 1 3n+ 1

Eq. (7) Eq. (TF) ✗ 28n2 + 14n + 1 8n+ 4
Eq. (13) Eq. (RTF) ✓ 51n2 + 65n+ 1 12n+ 4

Table 1. Summary of relaxations for the triangulation problem and
its robust extension.

the 2nd order variables yi = θixi:

min
X̄∈R4,xi∈R2

n∑
i=1

(
∥yi − θix̃i∥2 + (1− θi)ci

)
s.t. X̄T X̄ = 1

yki b
T
i X̄ − aTikX̄ = 0

θ2i − θi = 0,
∑n

i=1 θ
2
i ≥ 2

θiyi = yi

i = 1, . . . , n k = 1, 2.

(13)

For convenience we will denote the vertical concatenation
of y and θ as (y; θ) = yθ. For the relaxation we will then
use the parametrization z = (yθ ⊗ X̄; X̄) = ȳθ ⊗ X̄ and
generate redundant moment constraints from θ2i − θi = 0
and θiyi = yi by multiplying each equation by X̄sX̄t for
s, t = 1, . . . , 4. We also generate redundant inequalities
from

∑n
i=1 θ

2
i ≥ 2 by multiplying by X̄2

s for each s =
1, . . . , 4. Resulting in the following relaxation:

min
Z∈S12n+4

+

tr(Z((M c
x̃ ⊗ I4)⊕ 04×4))

s.t. tr(Z(012n×12n ⊕ I4)) = 1

Z ∈ BSym(3n+ 1, 4)

tr(Z(eȳθ

yk
i

⊗ bi − eȳθ

θi
⊗ aik)e

T
j ) = 0

ZX̄sθi,X̄tθi − ZX̄s,X̄tθi = 0

ZX̄sθi,X̄tyi
− ZX̄s,X̄tyi

= 0
n∑

i=1

ZθiX̄s,θiX̄s
≥ 2ZX̄s,X̄s

i = 1, . . . n, k = 1, 2 s, t = 1, . . . , 4

j = 1, . . . , 12n+ 4.

(RTF)

Similarly to the epipolar case we can show that this relax-
ation is tight in the noise-free and outlier-free case by ex-
plicitly constructing the globally optimal Lagrange multi-
pliers, see Appendix B.2 for details.

With this we have 4 relaxations for the triangulation
problem corresponding to the non-robust and robust case
with the epipolar and the fractional parametrization. We
summarize the relaxations and their number of variables and
constraints in Tab. 1.

5.3. Rounding in the non-tight case

For non-tight cases the optimal Ẑ will have rank of at
least 2, which means we can’t recover the optimal solution
ẑ for the original problem Eq. (3). However we can still
construct an approximate solution through a rounding pro-
cedure. We start by setting ẑ to be the eigenvector corre-
sponding to the minimal eigenvalue, normalized such that
ẑTEẑ = 1. We then apply a different procedure for each
problem depending on the constraints. For Eq. (T) we tri-
angulate the resulting x̂i (which in this case will generally
not satisfy the epipolar constraints) using the linear-eigen
method from [9]. For Eq. (RT) we do the same except
that we first determine the inlier parameters θ̂i by round-
ing the corresponding entries of ẑ to 0 or 1. For Eq. (TF)
and Eq. (RTF) we compute the best-fitting tensor product
decomposition of ẑ using a singular value decomposition as
described in [23] and then use the same method as in the
epipolar case for determining the inlier parameters.

6. Experiments
We implement all relaxations using CVXPY [8]

with the solver MOSEK [3] using the setting
MSK DPAR INTPNT CO TOL REL GAP = 10−14,
all other solver parameters are left on their defaults. We
find that working in units of pixels results in poorly con-
ditioned solutions where ẑ does not satisfy the constraints
to high accuracy even for tight relaxations. To avoid this
issue we use the change of variables xi → 1

W xi and adjust
the intrinsics accordingly. Since the scaling is the same for
each point the optimal solution remains unchanged, but we
get much closer to rank one solutions in practice due to the
improved numerical stability.

6.1. Simulated experiments

We simulate triangulation problems as initially proposed
in [19] by placing n cameras on a sphere of radius 2 and
sample a point to be triangulated from the unit cube, see
Fig. 2 for some examples. The same setup was also used
for experiments in [1, 4]. For the reprojection model we
simulate a pinhole camera with parameters from one of the
cameras in the Reichstag dataset: width W = 2108, height
H = 1162, focal length f = 1012.0027 and principal point
p = (1054, 581). We simulate noisy observations by adding
Gaussian noise with standard deviation σ to the ground truth
image coordinates. When generating an outlier we select a
view at random and replace the measurement with a random
point in the image.

We run the experiment for each method at various dif-
ferent noise levels and number of outliers. For each noise
level we run Eq. (RT) 750 times and Eq. (RTF) 120 times
for n = 3, 5 and 7 views and in each case add up to n − 2
outliers. The percentage of tight relaxations and the estima-
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Figure 3. Average number of tight relaxation (top) and estimation error (bottom) for 3, 5 and 7 views for the robust epipolar relaxation
Eq. (RT) and the robust fractional relaxation Eq. (RTF) for experiments described in Sec. 6.1. Note that the error plot is divided by
tight/non-tight relxation since both methods give the same result whenever the relaxation is tight.
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Figure 4. Average number of tight relaxation (top) and estimation
error(bottom) for 25 and 30 views using Eq. (RT).
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Figure 5. Average computation time for each solver, averaged over
all noise levels and number of outliers.

tion error can be seen in Fig. 3. We also run Eq. (RT) 45
times each for n = 25 and 30 with 0, 10, 20 and 25 outliers,
the results of which can be seen in Fig. 4. We don’t run
Eq. (RTF) for these cases since we run into memory limita-
tions with MOSEK. We set ci = 2002 for all experiments.

From Fig. 3 we can see that in general the fractional
relaxation in Eq. (13) is significantly more stable than the
epipolar relaxation Eq. (RT). In fact, across all experiments

the fractional relaxation is tight in 99.92% of cases. How-
ever, we can also note that the epipolar relaxation remains
viable for lower noise levels, for instance in the case with
n = 7 views and 3 outliers the relaxations is tight in more
than 90% of cases when the noise is below σ ≈ 40px, after
which the percentage of tight relaxations drop drastically.

As can be seen from the average solver timings in Fig. 5
the fractional relaxations is also over one order of magni-
tude slower than the epipolar relaxation, meaning that it is
preferable to use Eq. (RT) in cases where the quality of ob-
servations is known to be high, and fall back to Eq. (RTF)
only if the epipolar relaxation is non-tight and spending ex-
tra time on reducing the error is desirable.

6.2. Reichstag dataset

We also validate our relaxations on the Reichstag dataset
from [12]. The dataset consits of 75 views of roughly 18k
3D points. We use the ground truth correspondences es-
timated by structure from motion as detailed in [12] and
generate each triangulation problem by selecting n views
which all observe a common point. We then add up to n−2
outliers by replacing the ground truth observations with a
randomly selected keypoints in the same image. See Fig. 1
for an example point with n = 22 views and 19 outliers.

For n = 3, 5 and 7 views we run Eq. (RT) 375 times and
Eq. (RTF) 60 times for each possible number of outliers
with ci = 102. And similarly we run Eq. (RT) 120 times for
n = 25 and 30 views. The results are summarized in Fig. 6.

Similarly to the simulated experiments we can note that
the percentage of tight relaxations decreases steadily as
more outliers are added, with a sharp drop when the number
of inliers gets close to 2, with the fractional method outper-
forming the epipolar method.
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Figure 6. Average number of tight relaxation for Eq. (RT) and
Eq. (RTF) (top) and estimation error for tight and non-tight relax-
ations (bottom) on the Reichstag dataset. See Sec. 6.2 for details.
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Figure 7. Color indicates the percentage of experiment trials where
our robust relaxation (Eq. (RT) for 3, 5 and 7 views and Eq. (RTF)
for 25 and 30 views) found a lower cost solution than RANSAC.
Details in Sec. 6.3.

6.3. RANSAC comparison

In many scenarios it is unrealistic to spend the compu-
tation time necessary for certifiable optimality at runtime,
yet certifiably optimal algorithms can still provide valuable
insight to algorithm developers in an offline fashion. In this
section we will provide an illustrative how this principle can
be applied to RANSAC-based triangulation.

In particular, we compare our relaxations with exhaus-
tive MLESAC [22] with TLS objective which we imple-
ment in the following way: first off, in order to eliminate
the effect of randomness, we evaluate every possible pair
of views. For each pair of views we generate a candidate
point by computing the optimal triangulation using Eq. (T),
which is always tight in the 2-view case (see [1]), and evalu-
ate the robust cost function in Eq. (10). From the candidate
point achieving the minimal robust cost we further gener-
ate an additional candidate point by locally refining Eq. (5)
on the inlier points. The final RANSAC estimate is then
whichever of the candidate points obtains the lowest robust
cost.

We run our RANSAC implementation on every triangu-
lation problem from the simulated experiments in Sec. 6.1
and compare against the results obtained by the certifiably

views tight relaxation better same solution RANSAC better
3 ✓ 69 2331 0
3 ✗ 0 0 0
5 ✓ 257 4542 0
5 ✗ 1 0 0
7 ✓ 446 6744 0
7 ✗ 1 6 3

views tight relaxation better same solution RANSAC better
25 ✓ 12 319 0
25 ✗ 32 58 29
30 ✓ 18 424 0
30 ✗ 31 84 43

Table 2. Top: Eq. (RT) vs. RANSAC for 3, 5 and 7 views. Bottom:
Eq. (RTF) vs. RANSAC for 25 and 30 views.

optimal solvers. In cases where the relaxation is not tight
we also refine the rounded solution on the inlier set. We do
this for all simulated experiments and compare against our
relaxations, see Tab. 2 for a breakdown of the number of
cases where RANSAC was certified as optimal/suboptimal.
In Fig. 7 we show the percentage of cases where the robust
relaxation finds a better solution than RANSAC. For low
noise and outlier levels RANSAC more or less always finds
the globally optimal solution, while for high noise levels
there are many failure cases.

7. Conclusion
We proposed a global optimization framework for robust

multiview triangulation. To this end we derive semidefi-
nite relaxations for triangulation losses that incorporate a
truncated quadratic cost making them robust to both noise
and outliers. On synthetic and real data we confirm that
provably optimal triangulations can be computed and relax-
ations remain empirically tight despite significant amounts
of noise and outliers.
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nite relaxations of truncated least-squares in robust rotation
search: Tight or not. In European Conference on Computer
Vision, pages 673–691. Springer, 2022. 2

[21] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 2

[22] P.H.S. Torr and A. Zisserman. Mlesac: A new robust estima-
tor with application to estimating image geometry. Computer
Vision and Image Understanding, 78(1):138–156, 2000. 8

[23] C. F. Van Loan and N. Pitsianis. Approximation with Kro-
necker Products, pages 293–314. Springer Netherlands, Dor-
drecht, 1993. 6

[24] Emmett Wise, Matthew Giamou, Soroush Khoubyarian, Ab-
hinav Grover, and Jonathan Kelly. Certifiably optimal
monocular hand-eye calibration. In 2020 IEEE International
Conference on Multisensor Fusion and Integration for Intel-
ligent Systems (MFI), pages 271–278. IEEE, 2020. 2

[25] Thomas Wodtko, Markus Horn, Michael Buchholz, and
Klaus Dietmayer. Globally optimal multi-scale monocular
hand-eye calibration using dual quaternions. In 2021 Inter-
national Conference on 3D Vision (3DV), pages 249–257.
IEEE, 2021. 2

[26] Heng Yang and Luca Carlone. A quaternion-based certifi-
ably optimal solution to the wahba problem with outliers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 2

[27] Heng Yang and Luca Carlone. In perfect shape: Certifiably
optimal 3d shape reconstruction from 2d landmarks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 2

[28] Heng Yang and Luca Carlone. Certifiably optimal outlier-
robust geometric perception: Semidefinite relaxations and
scalable global optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. 1, 2, 5

[29] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast
and certifiable point cloud registration. IEEE Transactions
on Robotics, 37(2):314–333, 2020. 2

[30] Ji Zhao. An efficient solution to non-minimal case essential
matrix estimation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020. 2

757


