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Abstract

Recent attention in instance segmentation has focused on
query-based models. Despite being non-maximum suppres-
sion (NMS)-free and end-to-end, the superiority of these
models on high-accuracy real-time benchmarks has not
been well demonstrated. In this paper, we show the strong
potential of query-based models on efficient instance seg-
mentation algorithm designs. We present FastInst, a sim-
ple, effective query-based framework for real-time instance
segmentation. FastInst can execute at a real-time speed
(i.e., 32.5 FPS) while yielding an AP of more than 40 (i.e.,
40.5 AP) on COCO test-dev without bells and whis-
tles. Specifically, FastInst follows the meta-architecture
of recently introduced Mask2Former. Its key designs in-
clude instance activation-guided queries, dual-path update
strategy, and ground truth mask-guided learning, which en-
able us to use lighter pixel decoders, fewer Transformer
decoder layers, while achieving better performance. The
experiments show that FastInst outperforms most state-of-
the-art real-time counterparts, including strong fully con-
volutional baselines, in both speed and accuracy. Code can
be found at https://github.com/junjiehe96/
FastInst.

1. Introduction
Instance segmentation aims to segment all objects of in-

terest in an image. The mainstream methods like Mask
R-CNN [5, 15, 19, 28] follow the design of detection-then-
segmentation. Despite being simple and intuitive, those
methods generate a lot of duplicate region proposals that
introduce redundant computations. To improve efficiency,
many single-stage methods [2, 8, 23, 42] built upon Fully
Convolutional Networks (FCNs) [29] appear. They segment
objects end-to-end without region proposals. The inference
speed of such methods is appealing, especially in real-time
scenes. However, due to the dense predictions, the classical
single-stage methods still rely on manually-designed post-
processing steps like non-maximum suppression (NMS).
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Figure 1. Speed-performance trade-off on COCO test-dev.
All models employ ResNet-50 [16] as the backbone except Orien-
Mask with DarkNet-53 [33]. Our FastInst surpasses most state-of-
the-art real-time instance segmentation algorithms in both speed
and accuracy. To keep the speed and accuracy in a similar order,
Mask2Former here takes the pyramid pooling module-based [48]
FPN as the pixel decoder, the same as FastInst and SparseInst.

Recently, with the success of DETR [4] in object detec-
tion, query-based single-stage instance segmentation meth-
ods [9, 10, 25, 43] have emerged. Instead of convolution,
they exploit the versatile and powerful attention mecha-
nism [39] combined with a sequence of learnable queries
to infer the object class and segmentation mask. For exam-
ple, Mask2Former [9] simplifies the workflow of instance
segmentation by adding a pixel decoder and a masked-
attention Transformer decoder on top of a backbone. Un-
like previous methods [15, 42], Mask2Former does not re-
quire additional handcrafted components, such as training
target assignment and NMS post-processing. While being
simple, Mask2Former has its own issues: (1) it requires a
large number of decoder layers to decode the object queries
since its queries are learned static and need a lengthy pro-
cess to refine; (2) It relies upon a heavy pixel decoder, e.g.,
multi-scale deformable attention Transformer (MSDefor-
mAttn) [50], because its object segmentation mask straight-
forwardly depends on the output of the pixel decoder, which
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is used as a per-pixel embedding feature for distinguishing
different objects; (3) masked attention restricts the recep-
tive field of each query, which may cause the Transformer
decoder to fall into a suboptimal query update process. Al-
though Mask2Former achieves outstanding performance, its
superiority on fast, efficient instance segmentation has not
been well demonstrated, which yet is critical for many real-
world applications such as self-driving cars and robotics. In
fact, due to the lack of prior knowledge and the high com-
putational complexity of the attention mechanism, the ef-
ficiency of query-based models is generally unsatisfactory
[9, 18, 25]. The efficient real-time instance segmentation
benchmarks are still dominated by classical convolution-
based models [11, 42].

In this paper, we fill this gap by proposing FastInst, a
concise and effective query-based framework for real-time
instance segmentation. We demonstrate that the query-
based model can achieve outstanding performance on the
instance segmentation task while maintaining a fast speed,
showing great potential in efficient instance segmentation
algorithm design. As an example, our designed fastest
query-based model with ResNet-50 [16] backbone achieves
35.6 AP at 53.8 FPS (frames-per-second) on the COCO [27]
test-dev, evaluated on a single V100 GPU (see Fig-
ure 1); moreover, our best trade-off model can execute at
a real-time speed, i.e., 32.5 FPS, while yielding an AP of
more than 40, i.e., 40.5 AP, which to the best of our knowl-
edge, has not yet been achieved in previous methods.

Specifically, our model follows the meta-architecture
of Mask2Former [9]. To achieve efficient real-time in-
stance segmentation, we have proposed three key tech-
niques. First, we use instance activation-guided queries,
which dynamically pick the pixel embeddings with high
semantics from the underlying feature map as the initial
queries for the Transformer decoder. Compared with static
zero [4] or learnable [9, 10] queries, these picked queries
contain rich embedding information about potential objects
and reduce the iteration update burden of the Transformer
decoder. Second, we adopt a dual-path architecture in the
Transformer decoder where the query features and the pixel
features are updated alternately. Such a design enhances
the representational ability of pixel features and saves us
from the heavy pixel decoder design. Moreover, it makes
a direct communication between query features and pixel
features, which speeds up the iterative update convergence
and effectively reduces the dependence on the number of
decoder layers. Third, to prevent the masked attention from
falling into a suboptimal query update process, we intro-
duce ground truth mask-guided learning. We replace the
mask used in the standard masked attention with the last-
layer bipartite matched ground truth mask to forward the
Transformer decoder again and use a fixed matching assign-
ment to supervise the outputs. This guidance allows each

query to see the whole region of its target predicted object
during training and helps masked attention attend within a
more appropriate foreground region.

We evaluate FastInst on the challenging MS COCO
dataset [27]. As shown in Figure 1, FastInst obtains strong
performance on the COCO benchmark while staying fast,
surpassing most of the previous state-of-the-art methods.
We hope FastInst can serve as a new baseline for real-
time instance segmentation and advance the development
of query-based instance segmentation models.

2. Related Work
Existing instance segmentation techniques can be

grouped into three classes, i.e., region-based methods, in-
stance activation-based methods, and query-based methods.
Region-based methods first detect object bounding boxes
and then apply RoI operations such as RoI-Pooling [34] or
RoI-Align [15] to extract region features for object classifi-
cation and mask generation. As a pioneering work, Mask R-
CNN [15] adds a mask branch on top of Faster R-CNN [34]
to predict the segmentation mask for each object. Follow-up
methods either focus on improving the precision of detected
bounding boxes [3, 5] or address the low-quality segmenta-
tion mask arising in Mask R-CNN [12, 21, 36]. Although
the performance has been advanced on several benchmarks,
these region-based methods suffer from a lot of duplicated
region proposals that hurt the model’s efficiency.
Instance activation-based methods employ some mean-
ingful pixels to represent the object and train the features of
these pixels to be activated for the segmentation during the
prediction. A typical class of such methods is based on the
center activation [2,37,42,47], which forces the center pix-
els of the object to correspond to the segmentation and clas-
sification. For example, SOLO [41, 42] exploits the center
features of the object to predict a mask kernel for the seg-
mentation. MEInst [46] and CondInst [37] build the model
upon the center-activation-based detector FCOS [38] with
an additional branch of predicting mask embedding vectors
for dynamic convolution. Recently, SparseInst [11] learns
a weighted pixel combination to represent the object. The
proposed FastInst exploits the pixels located in the object
region with the high class semantics as the representation
of the object and extracts their features as the queries.
Query-based methods have emerged with DETR [4] and
show that a convolutional backbone with an end-to-end
set prediction-based Transformer encoder-decoder [39] can
achieve good performance on the instance segmentation
task. SOLQ [13] and ISTR [18] exploit the learned object
queries to infer mask embeddings for instance segmenta-
tion. Panoptic SegFormer [25] adds a location decoder to
provide object position information. Mask2Former [9, 10]
introduces masked attention for improved performance and
faster convergence. Mask DINO [24] unifies object detec-
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tion and image segmentation tasks, obtaining great results
on instance segmentation. Despite the outstanding perfor-
mance, query-based models are usually too computationally
expensive to be applied in the real world. Compared with
convolutional networks [11, 42], their advantages on fast,
efficient instance segmentation have not been well demon-
strated. Our goal is to leverage the powerful modeling ca-
pabilities of the Transformer while designing an efficient,
concise, and real-time instance segmentation scheme to pro-
mote the application of query-based segmentation meth-
ods. In addition, many works [40, 45] also utilize the dual-
path Transformer architecture in image segmentation tasks.
However, their designs are generally complex and hard to
deploy. We build our dual-path architecture simply upon
plain Transformer layers for improved efficiency.

3. Methods
3.1. Overall architecture

As illustrated in Figure 2 , FastInst consists of three mod-
ules: backbone, pixel decoder, and Transformer decoder.

Our model feeds an input image I ∈ RH×W×3 to the
backbone and obtains three feature maps C3, C4, and C5, of
which the resolutions are 1/8, 1/16, and 1/32 of the input
image, respectively. We project these three feature maps to
the ones with 256 channels by a 1×1 convolutional layer and
feed them into the pixel decoder. The pixel decoder aggre-
gates the contextual information and outputs the enhanced
multi-scale feature maps E3, E4, and E5. After that, we pick
Na instance activation-guided queries from the feature map
E4, concatenated with Nb auxiliary learnable queries to ob-
tain the total queries Q ∈RN×256, where N = Na + Nb.
The Transformer decoder takes as input the total queries Q
as well as the flattened high-resolution pixel feature E3, de-
noted as X ∈ RL×256, where L = H/8 × W/8. Then in
the Transformer decoder, we update the pixel features X
and the queries Q in a dual-path way and predict the object
class and segmentation mask at each decoder layer.

We now discuss each component in detail.

3.2. Lightweight pixel decoder

Multi-scale contextual feature maps are essential for im-
age segmentation [6,20,42]. However, using a complicated
multi-scale feature pyramid network increases the compu-
tational burden. Unlike previous methods [9, 10], which
directly employ the underlying feature maps from the pixel
decoder, we use the refined pixel features in the Transformer
decoder to produce segmentation masks. This setup reduces
the requirement of the pixel decoder for heavy context ag-
gregation. We thus can use a lightweight pixel decoder
module. For a better trade-off between accuracy and speed,
we use a variant called PPM-FPN [11] instead of vanilla
FPN [26], which adopts a pyramid pooling module [48] af-

ter C5 to enlarge receptive fields for improved performance.

3.3. Instance activation-guided queries

Object queries play a crucial role in Transformer archi-
tecture [4]. One of the reasons for the slow convergence
of DETR is that its object queries are zero-initialized. Al-
though learnable queries [9] mitigate this issue, they are still
image-independent and require many Transformer decoder
layers to refine. Inspired by Deformable DETR [50], which
selects the query bounding boxes from pyramidal features
for object detection, we propose instance activation-guided
queries that straightforwardly pick the queries with high se-
mantics from underlying multi-scale feature maps. Specif-
ically, given the output feature maps of the pixel decoder,
we add an auxiliary classification head, followed by a soft-
max activation, on top of the feature map E4 to yield the
class probability prediction pi∈∆K+1 for each pixel, where
∆K+1 is the (K + 1)-dimensional probability simplex, K
is the number of classes, added by one for “no object” (∅),
i is the pixel index, and the auxiliary classification head is
composed of two convolutional layers with 3×3 and 1×1
kernel sizes, respectively. Through pi we obtain the fore-
ground probability pi,ki

, ki = argmaxk{pi,k|pi,k ∈ pi, k ∈
{1, · · · ,K}} for each pixel. Then we select Na pixel em-
beddings from the feature map E4 with high foreground
probabilities as the object queries. Here we first select the
ones with pi,ki

that is the local maximum in the correspond-
ing class plane (i.e., pi,ki

≥ pn,ki
, n ∈ δ(i), where δ(i) is

the spatially 8-neighboring index set of i) and then pick the
ones with the top foreground probabilities in {pi,ki}i. Note
that a pixel with a non-local-maximum probability in the
corresponding class plane means there exists a pixel in its
8-neighborhood which has a higher probability score of that
class. With locations so close, we naturally prefer to pick
its neighboring pixel rather than it as the object query.

During training, we apply matching-based Hungarian
loss [4, 35] to supervise the auxiliary classification head.
Unlike [50], which employs prior anchor boxes and binary
classification scores for the matching problem, we simply
use the class predictions with a location cost Lloc to com-
pute the assignment costs. The location cost Lloc is defined
as an indicator function that is 0 when the pixel is located
in the region of that object; otherwise, it is 1. The intuition
behind this cost is that only pixels that fall inside an object
can have a reason to infer the class and mask embedding
of that object. Also, the location cost reduces the bipartite
matching space and speeds up training convergence.

We term the queries generated from the above strategy as
instance activation-guided (IA-guided) queries. Compared
to the zero [4] or learnable queries [9], IA-guided queries
hold rich information about potential objects at the initial
and improve the efficiency of query iterations in the Trans-
former decoder. Note that we can also select the queries
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Figure 2. Model overview. FastInst consists of three modules: backbone, pixel decoder, and Transformer decoder. The backbone and
pixel decoder extract and refine multi-scale features (Section 3.2). The Transformer decoder selects Na instance activation-guided queries
(IA-guided queries) from the feature map E4 (Section 3.3) and concatenates them with Nb auxiliary learnable queries as initial queries.
Then taking the initial queries and the flattened feature map E3 as input, the Transformer decoder performs the object classification and
segmentation at each layer with a dual-path update strategy (Section 3.4). During training, we introduce ground truth (GT) mask-guided
learning to improve the performance of masked attention (Section 3.5). For readability, we omit positional embeddings in this figure.

from feature maps E3 or E5. Larger feature maps contain
richer instance clues but suffer heavier computational bur-
dens. We use the middle-size feature map E4 for a trade-off.

3.4. Dual-path Transformer decoder

After selecting Na IA-guided queries from the under-
lying feature map, we concatenate them with Nb auxil-
iary learnable queries to obtain the total queries Q, where
auxiliary learnable queries are used to facilitate group-
ing background pixel features and provide general image-
independent information in the subsequent dual update pro-
cess. Then the total queries Q combined with the flattened
1/8 high-resolution pixel features X are fed into the Trans-
former decoder. In the Transformer decoder, we add po-
sitional embeddings for queries Q and pixel features X,
followed by successive Transformer decoder layers to up-
date them. One Transformer decoder layer contains one
pixel feature update and one query update. The whole
process is like an EM (Expectation–Maximization) cluster-
ing algorithm. E step: update pixel features according to
the centers (queries) they belong to; M step: update clus-
ter centers (queries). Compared with the single-path up-
date strategy [9], the dual-path update strategy co-optimizes
both pixel features and queries, reducing the dependence on
heavy pixel decoders and acquiring more fine-grained fea-
ture embeddings. Finally, we use the refined pixel features
and queries to predict the object classes and segmentation
masks at each layer.
Positional embeddings. Location information is critical
in distinguishing different instances with similar seman-
tics, especially for objects with the same class [37, 41,
42]. Instead of non-parametric sinusoidal positional em-
beddings [9], we use the learnable positional embeddings,
which we find can improve the model inference speed with-

out compromising the performance. Specifically, we em-
ploy a fixed-size learnable spatial positional embedding
P ∈ RS×S×256, where S is the spatial size and we em-
pirically set it to the rounded square root of the IA-guided
query number Na. During forwarding, we interpolate P to
two different sizes. One is with the same size as E3, which
is then flattened as positional embeddings for pixel features
X; the other is with the same size as E4, from which we
select the positional embeddings for IA-guided queries ac-
cording to their locations {(xi, yi)}Na

i=1 in the feature map
E4. The auxiliary learnable queries employ additional Nb

learnable positional embeddings.
Pixel feature update. We first update the pixel features.
Given the flattened pixel features X and the queries Q, the
pipeline of pixel feature update consists of a cross-attention
layer and a feedforward layer, as illustrated in the right side
of Figure 2. The positional embeddings are added to queries
and keys at every cross-attention layer [4]. For the update of
pixel features, we do not use self-attention, which will in-
troduce a massive computation and memory cost due to the
long sequence length of pixel features. The global features
can be aggregated through cross-attention on queries.
Query update. Asymmetrically, we use masked attention
followed by self-attention and feedforward network for the
query update, as in Mask2Former [9]. Masked attention
restricts the attention of each query to only attend within
the foreground region of the predicted mask from the pre-
vious layer, and the context information is hypothesized to
be gathered through following self-attention. Such a design
has significantly improved query-based model performance
in image segmentation tasks [9]. Here the positional embed-
dings are also added to queries and keys at every masked-
and self-attention layer.
Prediction. We apply two separate 3-layer MLPs on top of
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refined IA-guided queries at each decoder layer to predict
object classes and mask embeddings, respectively. Each IA-
guided query needs to predict the probability of all object
classes, including the ”no object” (∅) class. A linear pro-
jection is added to the refined pixel features to obtain mask
features. Then mask embeddings are multiplied with mask
features to obtain the segmentation masks for each query.
Here the parameters of MLPs and linear projection at each
Transformer decoder layer are not shared, since queries and
pixel features are updated alternately and their features can
be in different representation spaces at different decoder
layers. In addition, instance segmentation requires a con-
fidence score for each prediction for evaluation. We follow
previous work [9] and multiply the class probability score
with the mask score (i.e., the average of mask probabilities
in the foreground region) as the confidence score.

3.5. Ground truth mask-guided learning

Although masked attention introduces prior sparse at-
tention knowledge that accelerates model convergence and
improves the performance, it restricts the receptive field
of each query and may cause the Transformer decoder to
fall into a suboptimal query update process. To mitigate
this issue, we introduce ground truth (GT) mask-guided
learning. Firstly, we use the last layer’s bipartite matched
ground truth mask to replace the predicted mask used in l-th
layer’s masked attention. For the queries that do not match
any instance in the last layer (including auxiliary learnable
queries), we use the standard cross attention, i.e.,

Ml
i =

{
Mgt

j if (i, j) ∈ σ

∅ otherwise
. (1)

where Ml
i is the attention mask for the i-th query in the l-

th layer, σ= {(i, j)|i ∈ {1, · · · , Na}, j ∈ {1, · · · , Nobj}}
is the matching of the last decoder layer, and Mgt

j is the
matched ground truth mask for the i-th query in the last
layer. Here Nobj denotes the number of ground truth tar-
gets. Then we use the replaced attention mask Ml com-
bined with original output queries and pixel features of l-th
layer, which are refined and for better guidance, as input to
forward the l-th Transformer decoder layer again. The new
output is supervised according to the fixed matching σ, con-
sistent with the last layer’s bipartite matching results. This
fixed matching ensures the consistency of the predictions
at each Transformer decoder layer and saves the matching
computation cost during training. By such guided learning,
we allow each query to see the whole region of its target
predicted object during training, which helps the masked at-
tention attend within a more appropriate foreground region.

3.6. Loss function

The overall loss function for FastInst can be written as:

L = LIA-q + Lpred + L′
pred (2)

where LIA-q is the instance activation loss of the auxiliary
classification head for IA-guided queries, Lpred and L′

pred
are prediction loss and GT mask-guided loss, respectively.
Instance activation loss. The LIA-q is defined as:

LIA-q = λcls-qLcls-q (3)

where λcls-q is a hyperparameter and Lcls-q is the cross-
entropy loss with a weight 1/T for “no object” class. Here
T =(H/16)×(W/16) is the spatial size of E4 from which
IA-guided queries are selected. We use the Hungarian algo-
rithm [22] to search for the optimal bipartite matching be-
tween the prediction and ground truth sets. For the matching
cost, we add an additional location cost Lloc of a weight λloc
to the above classification cost, as illustrated in Section 3.3.
Prediction loss. Following the prior work [9], the predic-
tion loss Lpred for the Transformer decoder is defined as:

Lpred =

D∑
i=0

(λceLi
ce + λdiceLi

dice) + λclsLi
cls (4)

where D denotes the number of Transformer decoder lay-
ers and i = 0 represents the prediction loss for IA-guided
queries before being fed into the Transformer decoder, Li

ce
and Li

dice denote the binary cross-entropy loss and dice
loss [31] for segmentation masks, respectively, and Lcls is
the cross-entropy loss for object classification with a “no
object” weight of 0.1. λce, λdice, and λcls are the hyperpa-
rameters to balance three losses. Similarly, we exploit the
Hungarian algorithm to search for the best bipartite match-
ing for target assignments. And for the matching cost, we
add an additional location cost λlocLloc for each query.
GT mask-guided loss. The GT mask-guided loss L′

pred is
similar to Equation (4). The only differences are that it does
not count the 0-th layer’s loss and uses a fixed target assign-
ment strategy, which is consistent with the bipartite match-
ing result of the last Transformer decoder layer.

4. Experiments
In this section, we evaluate FastInst on COCO [27] and

compare it with several state-of-the-art methods. We also
conduct detailed ablation studies to verify the effectiveness
of each proposed component.

4.1. Implementation details

Our model is implemented using Detectron2 [44]. We
use the AdamW [30] optimizer with a step learning rate
schedule. The initial learning rate is 0.0001, and the weight
decay is 0.05. We apply a learning rate multiplier of 0.1
to the backbone, which is ImageNet-pretrained, and decay
the learning rate by 10 at fractions 0.9 and 0.95 of the to-
tal number of training iterations. Following [9], we train
our model for 50 epochs with a batch size of 16. For data
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method backbone epochs size FPS AP AP50 AP75 APS APM APL

MEInst [46] R50 36 512 26.4 32.2 53.9 33.0 13.9 34.4 48.7
CenterMask [23] R50 48 600 32.6 32.9 - - 12.9 34.7 48.7
SOLOv2 [42] R50 36 448 41.3 34.0 54.0 36.1 10.3 36.3 54.4
OrienMask [14] D53 100 544 51.0 34.8 56.7 36.4 16.0 38.2 47.8
SparseInst [11] R50 144 608 51.2 34.7 55.3 36.6 14.3 36.2 50.7
YOLACT [1] R50 54 550 53.5 28.2 46.6 29.2 9.2 29.3 44.8
FastInst-D1 (ours) R50 50 576 53.8 35.6 56.7 37.2 8.8 53.0 72.8
CondInst [37] R50 36 800 20.0 37.8 59.1 40.5 21.0 40.3 48.7
Mask2Former† R50 50 640 25.3 38.0 60.3 39.8 10.8 54.9 74.3
FastInst-D3 (ours) R50 50 640 35.5 38.6 60.2 40.6 10.8 56.2 75.2
YOLACT [1] R101 54 700 33.5 31.2 50.6 32.8 12.1 33.3 47.1
FastInst-D1 (ours) R101 50 640 35.3 38.3 60.2 40.5 10.7 55.8 74.8
SOLOv2 [42] R101 36 800 15.7 39.7 60.7 42.9 17.3 42.9 57.4
CondInst [37] R101 36 800 16.4 39.1 60.9 42.0 21.5 41.7 50.9
Mask2Former† R101 50 640 21.1 39.5 61.7 41.6 11.2 56.3 75.8
FastInst-D3 (ours) R101 50 640 28.0 39.9 61.5 42.3 11.4 57.1 76.6
SOLOv2 [42] R50-DCN 36 512 32.0 37.1 57.7 39.7 12.9 40.0 57.4
YOLACT++ [2] R50-DCN 54 550 39.4 34.1 53.3 36.2 11.7 36.1 53.6
SparseInst [11] R50-d-DCN 144 608 46.5 37.9 59.2 40.2 15.7 39.4 56.9
FastInst-D1 (ours) R50-d-DCN 50 576 47.8 38.0 59.7 39.9 10.0 54.9 74.5
FastInst-D3 (ours) R50-d-DCN 50 640 32.5 40.5 62.6 42.9 11.9 57.9 76.7

Table 1. Instance segmentation on COCO test-dev. FastInst outperforms most previous real-time instance segmentation algorithms
in both accuracy and speed. Mask2Former† denotes a light version of Mask2Former [9] that exploits PPM-FPN as the pixel decoder, as in
FastInst and SparseInst [11]. FastInst-Dα represents FastInst with α Transformer decoder layers. “R50-d-DCN” means ResNet-50-d [17]
backbone with deformable convolutions [49]. For a fair comparison, all entries are single-scale results.

augmentation, we use the same scale jittering and random
cropping as in [11]. For example, the shorter edge varies
from 416 to 640 pixels, and the longer edge is no more than
864 pixels. We set the loss weights λcls, λce, and λdice to
2.0, 5.0, and 5.0, respectively, as in [9]. λcls-q and λloc are
set to 20.0 and 1000.0, respectively. We use 100 IA-guided
queries and 8 auxiliary learnable queries by default. We re-
port the AP performance as well as the FLOPs and FPS.
FLOPs are averaged using 100 validation images. FPS is
measured on a V100 GPU with a batch size of 1 using the
entire validation set. Unless specified, we use a shorter edge
of 640 pixels with a longer edge not exceeding 864 pixels
to test and benchmark models.

4.2. Main results

We compare FastInst with state-of-the-art methods on
the COCO dataset in Table 1. Since the goal of FastInst
is for an efficient real-time instance segmenter, we mainly
compare it with state-of-the-art real-time instance segmen-
tation algorithms in terms of accuracy and inference speed.
The evaluation is conducted on COCO test-dev. We
provide FastInst with different backbones and different
numbers of Transformer decoder layers to achieve a trade-
off between speed and accuracy. The results show that
FastInst outperforms most previous state-of-the-art real-
time instance segmentation methods with better perfor-
mance and faster speed. For example, with a ResNet-
50 [16] backbone, the designed FastInst-D1 model outper-
forms a strong convolutional baseline SparseInst [11] by 0.9

AP while using fewer training epochs and less inference
time. We also compare FastInst with the query-based model
Mask2Former [9]. To keep the speed and accuracy in a sim-
ilar order, we replace the MSDeformAttn [50] pixel decoder
in Mask2Former with the PPM-FPN-based one, which is
the same as FastInst as well as SparseInst [11]. Meanwhile,
for a fair comparison, the training setting of Mask2Former,
including data augmentation, is replaced with the same as
FastInst. As expected, Mask2Former relies on a strong
pixel decoder and performs worse than FastInst in both ac-
curacy and speed with a lighter pixel decoder (even if it
has 9 decoder layers), showing less efficiency in the real-
time benchmark. Besides, with ResNet-50-d-DCN [17, 49]
backbone, our algorithm achieves 32.5 FPS and 40.5 AP, the
only algorithm in Table 1 with AP> 40 while maintaining
a real-time speed (≥30 FPS). Figure 1 illustrates the speed-
accuracy trade-off curve, which also demonstrates the supe-
riority of our method.

4.3. Ablation studies

We now perform a series of ablation studies to analyze
FastInst. We first verify the effectiveness of three proposed
key components, i.e., IA-guided queries, dual-path update
strategy, and GT mask-guided learning, and then study the
effect of some other designs about FastInst. Unless speci-
fied otherwise, we conduct experiments on FastInst-D3 with
ResNet-50 [16] backbone. All ablation results are evaluated
on the COCO val2017 set.
IA-guided queries. As shown in Table 2, our IA-guided
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D APval APS APM APL FLOPs FPS

zero [4] 1 31.5 10.8 33.6 52.6 58.4G 50.0
learnable [9] 1 34.6 13.5 37.5 55.4 58.4G 50.0
resize [32] 1 34.9 13.7 37.9 56.2 58.4G 49.7
IA-guided 1 35.6 14.3 38.8 56.6 59.6G 48.8

zero [4] 3 37.2 15.4 40.3 58.6 74.3G 36.1
learnable [9] 3 37.5 15.0 40.6 59.0 74.3G 36.1
resize [32] 3 37.6 15.6 40.4 59.7 74.3G 36.0
IA-guided 3 37.9 16.0 40.7 60.1 75.5G 35.5

Table 2. IA-guided queries. Our IA-guided queries perform bet-
ter than other methods, especially when the Transformer decoder
layer number (i.e., D) is small.

D APval APS APM APL FLOPs FPS

single pixel feat. update 6 32.5 13.9 36.3 50.5 85.4G 35.5
single query update [9] 6 36.9 15.0 39.6 59.8 63.3G 35.0
dual query-then-pixel 3 37.8 16.0 40.6 60.0 75.5G 35.5
dual pixel-then-query 3 37.9 16.0 40.7 60.1 75.5G 35.5

Table 3. Dual-path update strategy. Our dual pixel-then-query
update strategy consistently outperforms single-path update strate-
gies. We double the Transformer decoder layers (i.e., D) for the
single-path update strategies for a fair comparison.

backbone APval APS APM APL FLOPs FPS

w/o GT mask guidance R50 37.4 15.2 40.6 59.6 75.5G 35.5
w/ GT mask guidance R50 37.9 16.0 40.7 60.1 75.5G 35.5

w/o GT mask guidance R50-d-DCN 39.7 17.5 43.1 61.9 77.9G 32.5
w/ GT mask guidance R50-d-DCN 40.1 17.7 43.2 62.4 77.9G 32.5

Table 4. GT mask-guided learning. Our GT mask-guided learn-
ing improves the performance across different backbones.

APval APS APM APL FLOPs FPS

FPN [26] 37.4 15.5 40.3 59.4 75.4G 35.7
Transformer-Encoder [4] 38.9 17.3 41.6 61.4 78.5G 29.5
MSDeformAttn [50] 40.0 17.5 43.5 62.2 114.7G 21.2
PPM-FPN [11] 37.9 16.0 40.7 60.1 75.5G 35.5

Table 5. Pixel decoder. Stronger pixel decoders lead to higher
performance but consume more computation. PPM-FPN obtains a
better trade-off between accuracy and speed.

queries achieve better results than zero [4] or learning-based
ones [9]. Recent work [32] proposes to use resized multi-
scale features as instance queries. However, such a fix-
position query selection strategy is hard to extract represen-
tative embeddings for all potential objects and thus obtains
lower performance. Note that IA-guide queries achieve a
more significant result when the model is equipped with
only one Transformer decoder layer, which shows their
great efficiency in lightweight model design.
Dual-path update strategy. Table 3 shows the effective-
ness of our dual-path update strategy. Thanks to the co-
optimization of query and pixel features, our dual-path up-
date strategy performs better than the conventional single
query update strategy [9] in our lightweight pixel decoder
setting. The update order of query and pixel features does
not matter much in our experiments.
GT mask-guided learning. As shown in Table 4, GT

Figure 3. Visualization of IA-guided queries. The first and sec-
ond rows show the distributions of IA-guided queries with dif-
ferent supervision losses for the auxiliary classification head. First
column: dense pixel-wise semantic classification loss. Second col-
umn: bipartite matching-based Hungarian loss without the loca-
tion cost. Third column: bipartite matching-based Hungarian loss
with the location cost (ours). Fourth column: ground truth. The
query points under our designed loss (third column) are more con-
centrated on the region of each foreground object. The last row
shows four predicted masks (blue) with corresponding IA-guided
query locations (red).

mask-guided learning improves the model performance by
up to 0.5 AP, indicating that this technique indeed helps the
Transformer decoder learn how to update queries for better
object embeddings under masked attention mechanism. Ta-
ble 4 also demonstrates the generality of GT mask-guided
learning for different backbones.

The above ablations demonstrate the effectiveness of our
proposed three key techniques. We refer interested readers
to the Appendix for more ablations about them, e.g., the
changes and the corresponding improvements based on the
original Mask2Former. We then explore the effect of some
other designs about FastInst.
Pixel decoder. FastInst is compatible with any existing
pixel decoders. Table 5 shows the performance of FastInst
with different pixel decoders. Stronger pixel decoders pro-
duce better contextual features and lead to higher results
but consume more computation. For fast real-time instance
segmentation, PPM-FPN [11] is a good trade-off choice.
Transformer decoder layer number. As shown in Ta-
ble 6a, increasing the number of Transformer decoder layers
contributes to the segmentation performance in FastInst. In
particular, the mask performance achieves 30.5 AP without
using the Transformer decoder. This is mainly attributed
to the effectiveness of IA-guided queries, which carry rich
embedding information about potential objects at the ini-
tial. In addition, our segmentation performance is saturated
at around the sixth layer. Continuing to increase decoder
layers only marginally improve it. Also note that FastInst
can obtain good performance with only a few Transformer
decoder layers, which is advantageous in real-time.
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D APval APS APM APL FLOPs FPS

0 30.5 12.1 34.5 48.6 51.6G 60.2
1 35.6 14.3 38.8 56.6 59.6G 48.8
2 37.1 15.8 39.7 58.8 67.5G 41.0
3 37.9 16.0 40.7 60.1 75.5G 35.5
6 38.7 16.6 41.7 61.1 99.3G 25.1
9 39.1 16.1 42.3 62.1 123.2G 19.2

(a) Transformer decoder layer number. FastInst
benefits from more Transformer decoder layers.

Na APval APS APM APL FLOPs FPS

10 31.2 10.2 32.9 54.2 71.9G 39.8
50 36.9 14.5 39.6 58.5 73.5G 37.7
100 37.9 16.0 40.7 60.1 75.5G 35.5
200 38.5 16.2 41.3 60.8 79.5G 31.6
300 38.8 17.5 42.0 60.2 83.5G 28.6

(b) Effect of IA-guided query number on AP.
Increasing IA-guided query number contributes to
AP performance.

Na ARval ARS ARM ARL

10 38.2 14.4 40.5 62.8
50 49.8 26.2 53.3 72.6
100 52.0 28.9 55.3 74.2
200 53.4 30.5 57.4 74.9
300 54.0 31.3 57.6 75.3

(c) Effect of IA-guided query number on
AR@100. Larger IA-guided query number im-
proves object recalls, especially for small objects.

Nb Na AP APS APM APL FLOPs FPS

0 100 37.7 15.7 40.4 60.3 75.2G 35.6
0 108 37.6 15.6 40.7 59.9 75.6G 35.3
8 100 37.9 16.0 40.7 60.1 75.5G 35.5
16 100 37.8 16.1 40.9 59.9 75.7G 35.1

(d) Auxiliary learnable query number. Adding
a few (i.e., 8) auxiliary learnable queries performs
better than setting all queries as IA-guided ones.

AP APS APM APL FLOPs FPS

E5 37.8 15.5 40.7 60.2 74.6G 35.6
E4 37.9 16.0 40.7 60.1 75.5G 35.5
E3 38.0 16.3 41.2 60.6 79.1G 34.7

(e) Query selection source. Selecting IA-
guided queries from larger feature maps leads
to better results, but the gain is limited. E4 is a
trade-off choice between accuracy and speed.

AP APS APM APL FLOPs FPS

Baseline 37.9 16.0 40.7 60.1 75.5G 35.5
− bi. matching 35.7 14.2 38.1 57.5 75.5G 35.5
− loc. cost 37.1 14.9 40.0 59.3 75.5G 35.5

(f) Instance activation loss. We remove one compo-
nent at a time. When removing the bipartite match-
ing strategy, we use a fixed target assignment for each
pixel according to their semantic class labels.

Table 6. Several ablations for FastInst. Results are evaluated on COCO val2017.

APval APS APM APL FLOPs FPS

FastInst-D3 37.9 16.0 40.7 60.1 75.5G 35.5
− learnable pos. embeddings 37.9 16.4 40.6 60.3 75.5G 32.9

Table 7. Positional embeddings. When removing learnable po-
sitional embeddings, we use the non-parametric sinusoidal posi-
tional embeddings, as in [4, 9]

IA-guided query number. In Mask2Former, increasing the
query number to more than 100 will slightly degrade the in-
stance segmentation performance. In Table 6b, the results
indicate that increasing the number of IA-guided queries
will contribute to the segmentation performance in FastInst.
We attribute this to the improved object recall (see Table 6c)
and increased object embedding information for decoding.
On the other hand, growing IA-guided queries will affect
the model inference speed. Note that even with 10 IA-
guided queries, our model can obtain 31.2 AP on COCO
dataset, which has 7.7 instances per image on average [27].
This indicates the effectiveness of IA-guided queries again.
Auxiliary learnable query number. Auxiliary queries aim
to gather background and image-independent information
for pixel feature updates and query updates. They do not
participate in object predictions. Table 6d shows that adding
a few auxiliary learnable queries helps improve the perfor-
mance, better than setting all queries as IA-guided queries.
Query selection source. As shown in Table 6e, selecting
IA-guided queries from larger feature maps leads to better
results. E4 is a good trade-off choice between accuracy and
speed. Nevertheless, the contribution of the selection source
to the model performance is limited.
Instance activation loss. We study the effect of two
components in instance activation loss. As shown in Ta-
ble 6f, the bipartite matching-based target assignment strat-
egy leads to a significant gain, which provides a sparse

pixel embedding activation for IA-guided query selection.
Here when removing the bipartite matching strategy, we use
the semantic class label as the target of each pixel, as in
common semantic segmentation tasks [6, 7]. The location
cost also plays a vital role in the matching loss, which re-
duces matching space and accelerates model convergence.
Figure 3 visualizes the distributions of IA-guided queries,
which also shows the superiority of our designed loss.
Positional embeddings. Table 7 demonstrates that using
learnable positional embeddings instead of non-parametric
sinusoidal positional embeddings can improve the model in-
ference speed without compromising the performance.

5. Conclusion
We propose FastInst for real-time instance segmenta-

tion. Built on a query-based segmentation framework [9]
and three designed efficient components, i.e., instance
activation-guided queries, dual-path update strategy, and
ground truth mask-guided learning, FastInst achieves ex-
cellent performance on the popular COCO dataset while
maintaining a fast inference speed. Extensive experiments
demonstrate the effectiveness of core ideas and the superior-
ity of FastInst over previous state-of-the-art real-time coun-
terparts. We hope this work can serve as a new baseline for
real-time instance segmentation and promote the develop-
ment of query-based image segmentation algorithms.
Limitations. (1) Like general query-based models [4,9,25],
FastInst is not good at small targets. Even though using
stronger pixel decoders or larger feature maps improves it,
it introduces heavier computational burdens, and the result
is still unsatisfactory. We look forward to an essential solu-
tion to handle this problem. (2) although GT mask-guided
learning improves the performance of masked attention, it
increases training costs. We hope a more elegant method
can be proposed to replace it.
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