
Primitive Generation and Semantic-related Alignment
for Universal Zero-Shot Segmentation

Shuting He1† Henghui Ding2†� Wei Jiang1

1Zhejiang University 2Nanyang Technological University
https://henghuiding.github.io/PADing

Abstract

We study universal zero-shot segmentation in this work
to achieve panoptic, instance, and semantic segmentation
for novel categories without any training samples. Such
zero-shot segmentation ability relies on inter-class relation-
ships in semantic space to transfer the visual knowledge
learned from seen categories to unseen ones. Thus, it is
desired to well bridge semantic-visual spaces and apply
the semantic relationships to visual feature learning. We
introduce a generative model to synthesize features for
unseen categories, which links semantic and visual spaces
as well as address the issue of lack of unseen training
data. Furthermore, to mitigate the domain gap between
semantic and visual spaces, firstly, we enhance the vanilla
generator with learned primitives, each of which contains
fine-grained attributes related to categories, and synthesize
unseen features by selectively assembling these primitives.
Secondly, we propose to disentangle the visual feature
into the semantic-related part and the semantic-unrelated
part that contains useful visual classification clues but is
less relevant to semantic representation. The inter-class
relationships of semantic-related visual features are then
required to be aligned with those in semantic space, thereby
transferring semantic knowledge to visual feature learning.
The proposed approach achieves impressively state-of-the-
art performance on zero-shot panoptic segmentation, in-
stance segmentation, and semantic segmentation.

1. Introduction
Image segmentation aims to group pixels with different

semantics, e.g., category or instance [11]. Deep learn-
ing methods [9, 11, 27, 34, 35, 44] have greatly advanced
the performance of image segmentation with the powerful
learning ability of CNNs [28] and Transformer [54]. How-
ever, since deep learning methods are data-driven, great
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Figure 1. Zero-shot image segmentation aims to transfer the
knowledge learned from seen classes to unseen ones (i.e., never
shown up in training) with the help of semantic knowledge.

challenges are induced by the intense demand for large-
scale labeled training samples, which are labor-intensive
and time-consuming. To address this issue, zero-shot
learning (ZSL) [36,47] is proposed to classify novel objects
with no training samples. Recently, ZSL is extended
into segmentation tasks like zero-shot semantic segmen-
tation (ZSS) [4, 57] and zero-shot instance segmentation
(ZSI) [63]. Herein, we further introduce zero-shot panoptic
segmentation (ZSP) and aim to build a universal framework
for zero-shot panoptic/semantic/instance segmentation with
the help of semantic knowledge, as shown in Fig. 1.

Different from image classification, segmentation re-
quires pixel-wise classification and is more challenging in
terms of class representation learning. Substantial efforts
have been devoted to zero-shot semantic segmentation [4,
57] and can be categorized into projection-based meth-
ods [19, 57, 61] and generative model-based methods [4,
25, 38]. The generative model-based methods are usu-
ally superior to the projection-based methods because they
produce synthetic training features for the unseen group,
which contribute to alleviating the crucial bias issue [49] of
tending to classify objects into seen classes. Owing to the
above merits, we follow the paradigm of generative model-
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based methods to address zero-shot segmentation tasks.

However, the current generative model-based methods
are usually in the form of per-pixel-level generation, which
is not robust enough in the more complicated scenarios.
Recently, several works propose to decouple the segmen-
tation into class-agnostic mask prediction and object-level
classification [8, 11, 29, 56]. We follow this strategy and
degenerate the pixel-level generation to a more robust
object-level generation. What’s more, previous generative
works [4, 25, 38] usually learn a direct mapping from
semantic embedding to visual features. Such a genera-
tor does not consider the visual-semantic gap of feature
granularity that images contain much richer information
than languages. The direct mapping from coarse to fine-
grained information results in low-quality synthetic fea-
tures. To address this issue, we propose to utilize abundant
primitives with very fine-grained semantic attributes to
compose visual representations. Different assemblies of
these primitives construct different class representations,
where the assembly is decided by the relevance between
primitives and semantic embeddings. Primitives greatly
enhance the expressive diversity and effectiveness of the
generator, especially in terms of rich fine-grained attributes,
making the synthetic features for different classes more
reliable and discriminative.

However, there are only real image features of seen
classes to supervise the generator, leaving unseen classes
unsupervised. To provide more constraints for the feature
generation of unseen classes, we propose to transfer the
inter-class relationships in semantic space to visual space.
The category relationships obtained by semantic embed-
dings are employed to constrain the inter-class relationships
of visual features. With such constraint, the visual features,
especially the synthesized features for unseen classes, are
promoted to have a homogeneous inter-class structure as
in semantic space. Nevertheless, there is a discrepancy
between the visual space and the semantic space [10, 52],
so as to their inter-class relationships. Visual features
contain richer information and cannot be fully aligned
with semantic embeddings. Directly aligning two disjoint
relationships inevitably compromises the discriminative of
visual features. To address this issue, we propose to disen-
tangle visual features into semantic-related and semantic-
unrelated features, where the former is better aligned with
the semantic embedding while the latter is noisy to semantic
space. We only use semantic-related features for relation-
ship alignment. The proposed relationship alignment and
feature disentanglement are mutually beneficial. Feature
disentanglement builds semantic-related visual space to
facilitate relationship alignment and excludes semantic-
unrelated features that are noisy for alignment. Relationship
alignment in turn contributes to disentangling semantic-
related features by providing semantic clues.

Overall, the main contributions are as follows:
• We study universal zero-shot segmentation and pro-

pose Primitive generation with collaborative relation-
ship Alignment and feature Disentanglement learning
(PADing) as a unified framework for ZSP/ZSI/ZSS.

• We propose a primitive generator that employs lots
of learned primitives with fine-grained attributes to
synthesize visual features for unseen categories, which
helps to address the bias issue and domain gap issue.

• We propose a collaborative relationship alignment and
feature disentanglement learning approach to facilitate
the generator producing better synthetic features.

• The proposed approach PADing achieves new state-
of-the-art performance on zero-shot panoptic segmen-
tation (ZSP), zero-shot instance segmentation (ZSI),
and zero-shot semantic segmentation (ZSS).

2. Related Work
Zero-shot learning (ZSL) [33, 36, 47, 62] aims to clas-

sify images of unseen classes with no training samples
via utilizing semantic descriptors as auxiliary information.
There are two main paradigms: classifier-based meth-
ods that learn a visual-semantic projection [1, 39, 62] and
instance-based methods [20, 59] that synthesize fake sam-
ples for unseen classes. Generalized zero-shot learning
(GZSL), introduced by Scheirer et al. [51], aims to classify
samples from both seen and unseen sets. Then, Chao et
al. [6] show that the ZSL methods can’t work well in GZSL
setting from experiments, due to the feature of overfitting on
seen classes. Classification score calibration methods [5,13,
26, 31] and out-of-distribution detector methods [3, 22] are
proposed to alleviate this bias issue.

Image Segmentation is one of the most fundamental
computer vision tasks [14, 17, 18, 42, 43]. Deep-learning-
based image segmentation methods under a fully super-
vised manner are extensively studied [9, 11, 15, 16, 27,
34, 35, 44, 56]. However, these methods require a large
number of labeled training samples and cannot handle
unseen categories that do not appear or are not defined
in training data. To address these issues, Zero-Shot Se-
mantic Segmentation (ZSS) [4] and Zero-Shot Instance
Segmentation (ZSI) [63] extend ZSL methods to semantic
segmentation and instance segmentation, respectively. In
this work, we further introduce Zero-Shot Panoptic Seg-
mentation (ZSP) to extend the zero-shot learning to the
panoptic segmentation task. There are two main paradigms:
projection-based methods [8, 19, 30, 45, 48, 57, 58, 61] and
generative-based methods [4, 12, 38]. Projection-based
techniques commonly utilize a projection approach to map
the visual or semantic features of seen categories onto a
shared space. (e.g., visual, semantic, or latent space),
and then classify novel objects by measuring the feature
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Figure 2. Overview of our approach PADing for universal zero-shot image segmentation. We first obtain class-agnostic masks and their
corresponding global representations, named class embeddings, from our backbone. A primitive generator is trained to produce synthetic
features (i.e., fake class embeddings). The classifier, which takes class embeddings as input, is trained with both the real class embeddings
from image and synthetic class embeddings by the generator. During the training of the generator, the proposed feature disentanglement
and relationship alignment are employed to constrain the synthesized features.

similarity in the common space. The generative methods
adopt generator to produce synthetic features for unseen
classes. However, existing generative works [4, 25, 38]
usually learn a direct mapping from semantic embedding to
visual features and do not consider the visual-semantic gap
of feature granularity. We design a primitive generation and
semantic-related alignment approach to universally address
zero-shot segmentation, including ZSP, ZSI, and ZSS.

3. Methodology
Fig. 2 illustrates the overview architecture of our pro-

posed approach, Primitive generation with collaborative re-
lationship Alignment and feature Disentanglement learning
(PADing). Our backbone predicts a set of class-agnostic
masks and their corresponding class embeddings. Primitive
generator is trained to synthesize class embeddings from se-
mantic embeddings. The real & synthetic class embeddings
are disentangled to semantic-related and semantic-unrelated
features. We conduct the relationship alignment learning on
the semantic-related feature. With the synthesized unseen
class embeddings, we re-train our classifier with both the
real class embedding of seen categories and the synthetic
class embedding of unseen categories. The training process
is demonstrated in Algorithm 1. The details of each part
will be introduced in the following sections.

3.1. Task Formulation
Herein we give the problem formulation of zero-shot

image segmentation. There are two spaces, feature space
X and semantic space A, to represent the visual features of
images and semantic representations of categories, denoted
as X = {Xs, Xu}, A = {As, Au}, respectively. The
superscript s and u represent the two non-overlapping
groups, Ns seen categories and Nu unseen categories,

respectively. We use Y = {Y s, Y u} to denote the ground
truth label. Y s is label set of seen group and Y u is label
set of unseen group, Y s ∩ Y u = ∅. The training set is
constructed from the images that contain any of the Ns

seen categories but no unseen categories, which is different
from the open-vocabulary paradigm [32, 60]. According
to the categories that appear in the testing set, there are
two different settings named zero-shot learning (ZSL) and
generalized zero-shot learning (GZSL). ZSL only classifies
testing samples of unseen categories while GZSL needs to
classify testing data of both seen and unseen categories.
Zero-shot segmentation is naturally a kind of GZSL since
the because images typically contain multiple and diverse
categories. In this work, all the zero-shot segmentation
tasks are under the GZSL setting unless otherwise specified.

3.2. Primitive Cross-Modal Generation

Due to the lack of unseen samples, the classifier cannot
be optimized with features of unseen classes. As a result,
the classifier trained on seen classes tends to assign all
objects/stuff a label of seen group, which is called bias
issue [6]. To address this issue, previous methods [4,25,38]
propose to utilize a generative model to synthesize fake
visual features for unseen classes. However, previous gen-
erative zero-shot segmentation works [4, 25, 38] commonly
adopt Generative Moment Matching Network (GMMN)
[38,40] or GAN [23], which consist of multiple linear layers
as feature generator. Such a generator, though achieves
good performance, does not consider the visual-semantic
difference of feature granularity. It is well known that image
generally contains much richer information than language.
Visual information provides very fine-grained attributes of
objects while textual information typically provides abstract
and high-level attributes. Such difference results in an in-
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Figure 3. Primitive Cross-Modal Generator. We use lots of learned
primitives to represent fine-grained attributes. The generator
synthesizes visual features via assembling these primitives
according to input semantic embedding.

consistency between visual features and semantic features.
To address this challenge, we propose a Primitive Cross-
Modal Generator that employs lots of learned attribute
primitives to construct visual representations.

As shown in Fig. 3, we build our Primitive Generator
with a Transformer architecture. First, a set of learn-
able primitives are randomly initialized, denoted as P =
{pi}Ni=1, where pi ∈ Rdk and dk is the number of channels.
These primitives are assumed to contain very fine-grained
attributes related to categories, e.g., hair, color, shape,
etc. Different kinds of assembly of these primitives build
different representations for categories. A self-attention is
first performed on these primitives to construct relationship
graph among these primitives. Next, we utilize two different
linear layers ωK and ωV to deal with P to obtain the
Key and Value for cross attention, denoted as K and V
respectively. Then, taking semantic embeddings as Query
Q, cross attention is performed as

X ′ = ω1

(
softmax(

QKT

√
dk

)V +A+ Z
)
, (1)

where X ′ represents synthetic visual features and Z denotes
random sample with a fixed Gaussian distribution. ω1

is the linear layer. Different from feature generation via
processing semantic embedding with several linear layers,
we synthesize visual features via weighted assembling these
abundant primitives, which provides much more diverse
and richer representations. Moreover, for related categories
that share some similarities in semantic space, primitives
provide an explicit way to express such similarities. For
example, dog and cat both have the attributes of hairy
and tail, so the primitives related to hairy and tail show high
response to the semantic embedding query of dog and cat.
With such primitives that describe fine-grained attributes,
we can easily construct different category representations
and transfer the knowledge of seen classes to unseen ones.

Algorithm 1 Training of Universal Zero-Shot Segmentation.

Input: Image Is of seen classes, semantic embedding A = {As, Au}
from text encoder;

1: Pre-train the visual backbone with images of seen classes;
2: Forward image Is into the trained visual backbone, generating a set of

masks Ms and their corresponding class embeddings Xs;
3: Train primitive generator:

a: Forward semantic embedding A into primitive generator to get
synthetic visual feature X ′ = {Xs′, Xu′}, supervise Xs′ with Xs

by LG in Eq. (2);
b: Disentangle visual feature xi ∈ {Xs or X ′} into semantic-related
feature x̂i and semantic-unrelated feature ẍi;
c: Constrain semantic-related feature x̂i using alignment LA;

4: Fine-tune the classifier of the visual backbone with Xs and Xu′.

We follow [40] to define our generator loss LG to dimin-
ish maximum mean discrepancy between two probability
distributions:

LG =
∑

f,ḟ∈Xs

k(f, ḟ)+
∑

f ′,ḟ ′∈Xs′

k(f ′, ḟ ′)−2
∑

f∈Xs

∑
f ′∈Xs′

k(f, f ′),

(2)
where Xs and Xs′ denote real visual features and synthetic
visual features of seen classes, respectively. k is a kernel
and k(f, f ′) = exp(− 1

2σ2 ∥f − f ′∥2) with bandwidth σ.
When a semantic embedding from unseen group is

fed into the trained Primitive Generator, we can get its
corresponding synthetic class embedding. We then re-train
our classifier with both the real class embedding of seen
categories and the synthetic class embedding of unseen
categories, which greatly alleviates the bias issue. Besides,
such global representations are more robust than per-pixel
classification [4, 25, 38, 61, 63] and can thus have a better
alignment between visual space and semantic space.

3.3. Semantic-Visual Relationship Alignment

It is well known that relationships among categories
are naturally different [7, 38, 55]. For example, there
are three objects: apple, orange, and cow. Obvi-
ously, the relationship of apple & orange is closer
than apple & cow. Class relationships in semantic
space are powerful prior knowledge, while the category-
specific feature generation does not explicitly leverage
such relationships. As shown in Fig. 4, we build such
relationships with semantic embeddings and explore to
transfer this knowledge to visual space, making semantic-
visual alignment in terms of class-wise relationships. By
considering the relationship, there are more constraints on
the unseen categories’ feature generations, to pull or push
their distances with seen categories.

Semantic-related Visual Feature However, the visual
features are not fully aligned with the semantic represen-
tations but contain richer information including semantic-
related visual features and also semantic-unrelated visual
features. Semantic-unrelated features may have strong
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Figure 4. Relationship alignment. (a) The conventional relation-
ship alignment. (b) Our proposed two-step relationship alignment.
Considering the domain gap, we introduce a semantic-related
visual space, where features are disentangled from visual space
and have more direct relevance with semantic space. We have
the relationship in semantic-related visual space be aligned with
semantic space. ui/sj refers to unseen/seen category. Taking u1

dog as an example, we aim to transfer its similarities with {cat,
elephant, horse, zebra} from semantic to visual space.

visual clues and contribute to classification, but have low
relevance with language semantic representations. Directly
aligning semantic embeddings with original visual features
would confuse the generator and reduce its generalization to
unseen categories. To address this issue, we propose to dis-
entangle the semantic-related visual features and semantic-
unrelated visual features. Given a feature xi, where xi ∈ X
is the class embedding from either backbone or our gen-
erator, feature disentanglement learns how to disentangle
and reconstruct xi itself. We use encoder ER to extract
semantic-related feature, x̂i = ER(xi). Then, we calculate
the correlation score between semantic-related feature x̂i

and semantic embeddings A = {a1, ..., aNs+Nu}. ER is
trained with cross-entropy loss as a classification problem
to endow semantic-related features x̂i with discriminative
semantic knowledge, i.e.,

LR = −
∑
i

∑
k

1([x̂i] = k)log
exp(x̂iak/τ)∑
k exp(x̂iak/τ)

, (3)

where [x̂i] is the ground truth class intex of x̂i, 1(·) is the
indicator function that outputs 1 if the condition is true and
0 otherwise. τ is the temperature parameter.

We use another encoder EU to extract semantic-
unrelated feature, denoted as ẍi = EU(xi). We suppose the
semantic-unrelated features to have the normal distribution
N (0, 1) with zero mean and unit variance [37]. We use KL
divergence loss to constrain the distribution range,

LU =
∑
i

DKL[ẍi||N (0, 1)], (4)

where DKL[p||q]=−
∫
p(z)log p(z)

q(z) . Such that each class
has its own independent and diverse feature component. To
push the network to extract more representative semantic-
related features and preserve visual feature information, we
reconstruct the feature with a decoder D under ℓ1 loss:

Lrecon =
∑
i

∥xi −D(x̂i, ẍi)∥1 . (5)

The training objective for feature disentanglement is LD =
LR + LU + Lrecon.

Relationship Alignment Then we conduct relationship
alignment between semantic-related visual space and se-
mantic space. We use KL divergence loss to make the
similarity of any two semantic-related features x̂i and
x̂j reach the similarity of their corresponding semantic
embeddings a[x̂i] and a[x̂j ], i.e.,

LA = DKL[
x̂ix̂j

∥x̂i∥∥x̂j∥
/τ ||

a[x̂i]a[x̂j ]

∥a[x̂i]∥∥a[x̂j ]∥
/τ ], (6)

where [x̂i] is the ground truth class index of x̂i, τ is the
temperature parameter to control the sharpness of similarity
distribution operating on the KL loss. x̂s

i of the seen
group is from either real features or synthetic features
while x̂u

i of the unseen group is from synthetic features by
generator only. There are two kinds of alignment, intra-
group alignment and inter-group alignment, with different
focuses in Eq. (6). When x̂i and x̂j are from the same
group, e.g., x̂s

i and x̂s
j both from seen group, it is intra-

group alignment and contributes to extracting better class
representations with the relationships as a constraint. When
they are from different groups, e.g., x̂s

i from seen group and
x̂u
j from unseen group, it is inter-group alignment that aims

to transfer the relationship knowledge from seen to unseen.
Inter-group alignment gives constraints on the relationships
of seen and unseen categories, real features and synthetic
features. It greatly improves the model’s adaptability and
generalization to unseen categories.

Collaborative Disentanglement and Alignment Our dis-
entanglement and alignment are complementary and mu-
tually beneficial. On the one hand, disentanglement pro-
motes relationship alignment. With the disentanglement,
semantic-related features can be extracted for alignment
and semantic-unrelated noises are excluded. On the other
hand, relationship alignment facilitates disentanglement.
Introducing intra-group and inter-group alignment, class-
wise relationship among semantic-related features can be
constructed and the discrepancy between semantic-visual
feature distributions can be reduced, eventually leading to
the improvement of the feature disentanglement.

3.4. Training Objective

Algorithm 1 shows the overall training pipeline of our
universal zero-shot segmentation model. First, we pre-train
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our segmentation backbone with annotated data from seen
classes in a full-supervision manner. Next, We train the
primitive generator under the following objective:

Ltotal = LG + λ(LD + LA), (7)

where λ is the weight to control the importance of the
disentanglement and alignment module. Once the generator
is trained above, it can generate synthetic features for
unseen classes. Together with the real features from seen
classes, we can train a new classification layer.

4. Experiments
4.1. Experimental Setup

Implementation Details. The proposed network and all
our experiments are implemented based on Pytorch. We
utilize CLIP text embeddings [50] and word2vec [46] as
our semantic embedding and normalize it with ℓ2 normal-
ization. CLIP text embeddings are extracted following the
previous works [19,24]. We adopt Mask2Former [11] build
upon the ResNet-50 as backbone [28], with 100 queries
for both training and inference. Hyper-parameters are con-
sistent with the setting of [11] unless otherwise specified.
Encoder ER and EU are both multi-layer perceptron (MLP)
containing one hidden layer, LeakyReLU activation and
dropout. ED is constructed with two stacked single MLP
layers followed by LeakyReLU activation and dropout.
We apply SGD optimizer for the parameters of classifier
with learning rate 1 × 10−3, weight decay 5 × 10−4 and
momentum 0.9, and Adam optimizer for the parameters
of generator, ER, EU, and ED with initial learning rate
2 × 10−4. The number of the Transformer layers, loss
weight λ in Eq. (7), temperature τ , σ are set to 3, 0.002,
0.1, {2, 5, 10, 20, 40, 60}, respectively.

Datasets. We use the popular dataset MSCOCO 2017,
which consists training set with 118k images and validation
set with 5k images. For panoptic segmentation, 133 classes
(80 thing classes and 53 stuff classes) are included in
annotations. For semantic segmentation, COCO-Stuff con-
tains 171 valid classes in total. To get a fair comparison with
ZSI [63], we use MSCOCO 2014 for instance segmentation
which contains 80k training and 40k validation images.

4.2. Zero-Shot Panoptic Segmentation Task

Because of the high similarities between semantic
segmentation and panoptic segmentation, we develop the
ZSP datasets by following the previous ZSS works [57].
In order to avoid any information leakage, SPNet selects
15 classes in COCO stuff that do not appear in ImageNet
as unseen classes. In COCO panoptic dataset, we find 14
classes overlapped with the 15 ones selected by SPNet and
set them as unseen classes, i.e., {cow, giraffe, suitcase,
frisbee, skateboard, carrot, scissors, cardboard,

sky-other-merged, grass-merged, playingfield,
river, road, tree-merged}, while the remaining 119
classes are set as seen classes. To guarantee no information
leakage in the training set, we discard the training images
that contain even one pixel of any unseen classes. Thus
the model is trained by samples of seen classes only with
45617 training images. We use all 5k validation images to
evaluate the performance of ZSP. Panoptic and semantic
segmentation tasks are evaluated on the union of thing
and stuff classes while instance segmentation is only
evaluated on the thing classes.

Evaluation Metrics. Under the GZSL setting, the model
needs to segment objects/stuff of both seen and unseen
classes, which is closer to real-world complicated scenarios.
Following previous ZSS [4, 57], ZSD [2], and ZSI [63]
tasks, we compute seen metrics, unseen metrics, and the
harmonic mean (HM) of seen metrics and unseen metrics
as follows,

HM =
2× Pseen × Punseen

Pseen + Punseen
, (8)

where Pseen and Punseen denote the seen and unseen met-
rics, respectively. We use the PQ (panoptic quality) met-
ric [35] which can be viewed as the multiplication of a
segmentation quality (SQ) and a recognition quality (RQ).
We also report the results on instance segmentation, object
detection and semantic segmentation tasks. For instance
segmentation and object detection, we use the standard
mAP (mean Average Precision) [41] with an IoU threshold
of 0.5. For semantic segmentation, we use mIoU (mean
Intersection-over-Union) [21].

4.3. Ablation Study

In Tab. 1 and Tab. 2, We perform ablation studies of
the proposed PADing on MS-COCO dataset under four
tasks, including zero-shot panoptic segmentation, zero-shot
instance segmentation, zero-shot object detection, and zero-
shot semantic segmentation. It is worth noting that the
results in Tab. 2 are obtained by the model trained on
zero-shot panoptic segmentation task only, which achieves
our goal of training a single model for universal zero-
shot image segmentation tasks. For simplicity, our abla-
tion analysis mainly focuses on ZSP, because ZSI, ZSD,
ZSS have similar trends with ZSP. First, to demonstrate
the advantage of introducing generative model, we imple-
ment a projection-based segmentation baseline by using
CLIP text embeddings as classifier’s weights, similar with
ZegFormer-seg [19]. During training, there are 119 text
embeddings used in classifier, while during inference, we
add another 14 unseen text embeddings into classifier and
label each object to one of these 133 classes. As the 2nd
row in Tab. 1, there is a strong bias towards seen classes,
resulting in extreme low accuracy even zero for unseen
group. Next, we construct baseline build upon genera-
tive GMMN model following ZS3 [4], which outperforms
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Seen Unseen HM
Method G/P A D PQ SQ RQ PQ SQ RQ PQ SQ RQ

1) Supervised ✗ ✗ ✗ 43.2 80.8 51.6 0.0 0.0 0.0 - - -
2) Projection ✗ ✗ ✗ 43.3 80.9 51.7 0.0 0.0 0.0 0.0 0.0 0.0
3) Baseline G ✗ ✗ 40.1 80.1 48.2 4.9 48.5 5.8 8.7 60.4 10.3
4) P-only P ✗ ✗ 38.9 79.9 46.2 11.5 56.5 13.8 17.7 66.1 21.2
5) P&A P ✓ ✗ 38.4 79.2 45.8 13.8 52.7 16.4 20.3 63.2 24.1
6) PADing P ✓ ✓ 41.5 80.6 49.7 15.3 72.8 18.4 22.3 76.5 26.8

Table 1. Zero-shot panoptic segmentation ablation study results on MSCOCO. G, P, A, D denote GMMN generator, primitive generator,
disentanglement, and alignment, respectively.

Object Detection (ZSD) Instance Segmentation (ZSI) Semantic Segmentation (ZSS)
Method G/P A D Seen Unseen HM Seen Unseen HM Seen Unseen HM

1) Supervised ✗ ✗ ✗ 53.2 0.0 - 53.9 0.0 - 51.2 0.0 -
2) Projection ✗ ✗ ✗ 53.2 12.6 20.4 54.0 12.5 20.3 50.8 1.2 2.3
3) Baseline G ✗ ✗ 52.2 16.5 25.0 52.8 16.2 24.7 50.8 11.6 18.8
4) P-only P ✗ ✗ 52.0 18.5 27.2 52.5 18.4 27.2 50.4 16.7 25.0
5) P&A P ✓ ✗ 51.9 18.8 27.6 52.3 18.6 27.4 50.2 16.0 24.2
6) PADing P ✓ ✓ 52.1 19.6 28.4 52.6 19.2 28.1 50.5 18.5 27.0

Table 2. Ablation study on ZSD, ZSI, and ZSS. G, P, A, D denote GMMN generator, primitive generator, disentanglement, and alignment,
respectively. The results validate our goal of training a single model for universal zero-shot image segmentation tasks.

(a) GMMN generator (b) Primitive generator (c)  PADing

Figure 5. t-SNE visualization of synthesized features for unseen
classes. (a) GMMN generator network. (b) The proposed primitive
generator. (c) Our PADing which further utilizes relationship
information based on the primitive generator.

projection-based method by 4.9% in terms of unseen PQ.
This phenomenon shows that generative model contributes
to solving crucial bias issue.

GMMN vs. Our Primitive Generator. As shown in
Tab. 1 and Tab. 2, our primitive generator significantly
surpasses GMMN generator by at least 9.0% PQ, 5.7% SQ,
and 10.9% RQ for HM metric. This shows that our primitive
generator is capable of generating more effective features
and the primitives can better grasp the real distribution of
visual features compared to the baseline generator GMMN.

#Primitives 100 200 300 400 500 600 700
PQ 7.3 9.1 10.2 11.5 11.5 11.3 11.2

Table 3. Ablation study on the number of primitives.

Number of Primitives. We report the network’s per-
formance with different numbers of primitives in Tab. 3.
From the results, increasing the primitive number from 100
to 400 brings a significant performance gain of 4.2%. The
performance is a little down when the primitive number is
larger than 400, thus we choose 400 as the default setting.

Effectiveness of Alignment. Then, by applying seman-
tic alignment as a constraint to our generator, the HM-
PQ is further improved by 2.6%, demonstrating the ef-
fectiveness of introducing inter-class relationships inherent
from semantic space. Finally, we evaluate the alignment

module with disentanglement, see 6) PADing in Tab. 1
and Tab. 2. In comparison to using alignment only, align-
ment+disentanglement transfers semantic prior knowledge
on semantic-related features and consistently brings perfor-
mance gains of 2.0% HM-PQ, 13.3% HM-SQ, and 2.7%
HM-RQ. The significant improvement demonstrates that
the semantic-visual discrepancy has been alleviated owing
to omitting semantic-unrelated noises. The utilization of
disentanglement enables more effective alignment in the
separated semantic-related space.

Visualization of synthesized feature representations.
To study the properties of our synthesized unseen fea-
tures and demonstrate the effectiveness of our proposed
approach, we employ t-SNE [53] to show the distribution
of our synthetic features in Fig. 5. As we can see in
Fig. 5 (a), the synthesized features produced by GMMN
generator are messy due to the semantic-visual discrepancy.
In Fig. 5 (b), when introducing our primitive generator,
features belonging to the same class become more com-
pact and features from different classes are highly sepa-
rable. Furthermore, after applying relationship-alignment
constraint on the semantic-related feature, see Fig. 5 (c),
features belonging to different classes are farther apart
with better-structured distributions, which shows that the
structure relationship is embedded into synthetic features
and the synthesized unseen features are greatly enhanced
with better discrimination.

4.4. Comparison with State-of-the-art ZSS Methods
To further validate the superiority of our approach, we

compare it with previous state-of-the-art ZSS methods on
the challenging semantic segmentation datasets COCO-
Stuff in Tab. 4. It is worth noting that we only report results
without self-training and without complicated crop-mask
image preprocess utilized for CLIP image encoder for a fair
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Figure 6. Qualitative results on the COCO for ZSP. The first row presents input images and the subsequent rows illustrate ground-truth
masks, predictions of the baseline, and predictions of our PADing.

Method Embed Seen IoU Unseen IoU HM IoU

SPNet [57] Word2vec 35.2 8.7 14.0
ZS3 [4] Word2vec 34.7 9.5 15.0
CaGNet [25] Word2vec 33.5 12.2 18.2
SIGN [12] Word2vec 32.3 15.5 20.9
Zsseg-seg [58] CLIP 38.7 4.9 8.7
ZegFormer-seg [19] CLIP 37.4 21.4 27.2
PADing(ours) CLIP 40.4 24.8 30.7
Table 4. Comparison with other ZSS methods on COCO-Stuff.

comparison. We train our model with semantic segmen-
tation annotations. The proposed approach outperforms the
previous best method ZegFormer-seg [19] by 3.5% HM-IoU
and 3.4% unseen-IoU, demonstrating its effectiveness. It is
worth noting that the above methods use ResNet-101 while
we only use ResNet-50.

4.5. Comparison with State-of-the-art ZSI Methods
We compare the proposed method with the previous

state-of-the-art method ZSI [63] under the Generalized
Zero-Shot Instance Segmentation (GZSI) setting in Tab. 5.
Our model is trained with instance segmentation annota-
tions for a fair comparison. We achieve new state-of-the-
art performance on both 48/17 split and 65/15 split. For
example, we surpass ZSI by 7.20% HM-mAP and 5.27%
HM-Recall on 48/17 split. It is worth noting that ZSI [63]
uses ResNet-101 while we use ResNet-50.

4.6. Qualitative Results
To qualitatively demonstrate the effectiveness of our

proposed approach, we visualize some examples of zero-
shot panoptic segmentation results in Fig. 6. The sec-
ond row is ground-truth mask while the third and fourth
rows are predicted masks by baseline and our proposed

Seen Unseen HM
Split Method mAP Recall mAP Recall mAP Recall

48/17 ZSI [63] 43.0 64.4 3.6 44.9 6.7 52.9
PADing(ours) 53.0 75.1 8.0 47.5 13.9 58.2

65/15 ZSI [63] 35.7 62.5 10.4 49.9 16.2 55.5
PADing(ours) 41.8 73.2 13.9 51.3 20.9 60.3

Table 5. Results on GZSI using word2vec embedding.

approach, respectively. We observe that our PADing suc-
cessively finds several unseen classes, e.g., suitcase,
grass, frisbee, road, tree, skateboard, that are
missed or misclassified by the baseline model. Besides,
thanks to the class-agnostic mask generation ability of
Mask2Former [11], our results show high-quality masks.

5. Conclusion
We propose primitive generation with collaborative re-

lationship alignment and feature disentanglement learning
(PADing) as a unified framework to achieve universal zero-
shot segmentation. A primitive generator is proposed
to synthesize fake training features for unseen classes.
A collaborative feature disentanglement and relationship
alignment learning strategy is proposed to help the gener-
ator produce better fake unseen features, where the former
one decouples visual features to semantic-related part and
semantic-unrelated part and the later one transfer inter-class
knowledge from semantic space to visual space. Extensive
experiments on three zero-shot segmentation tasks demon-
strate the effectiveness of the proposed approach.
Acknowledgement Shuting He and Wei Jiang were partially supported by
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