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Figure 1. We present Mask3D, which learns to embed 3D priors to 2D representations for image understanding tasks, based on a self-
supervised pre-training formulation from single RGB-D views, without requiring any camera pose or multi-view correspondence informa-
tion. Our pre-training takes masked RGB and depth patches as input to reconstruct the dense depth map, and the pre-trained color backbone
is used to fine-tune various downstream image understanding tasks. This results in effective ViT pre-training for a variety of downstream
tasks and datasets.

Abstract

Current popular backbones in computer vision, such as
Vision Transformers (ViT) and ResNets are trained to per-
ceive the world from 2D images. However, to more effec-
tively understand 3D structural priors in 2D backbones, we
propose Mask3D to leverage existing large-scale RGB-D
data in a self-supervised pre-training to embed these 3D
priors into 2D learned feature representations. In con-
trast to traditional 3D contrastive learning paradigms re-
quiring 3D reconstructions or multi-view correspondences,
our approach is simple: we formulate a pre-text reconstruc-
tion task by masking RGB and depth patches in individual
RGB-D frames. We demonstrate the Mask3D is particu-
larly effective in embedding 3D priors into the powerful
2D ViT backbone, enabling improved representation learn-
ing for various scene understanding tasks, such as semantic
segmentation, instance segmentation and object detection.

Experiments show that Mask3D notably outperforms exist-
ing self-supervised 3D pre-training approaches on ScanNet,
NYUv2, and Cityscapes image understanding tasks, with
an improvement of +6.5% mIoU against the state-of-the-art
Pri3D on ScanNet image semantic segmentation.

1. Introduction
Recent years have seen remarkable advances in 2D im-

age understanding as well as 3D scene understanding, al-
though their representation learning has generally been
treated separately. Powerful 2D architectures such as
ResNets [21] and Vision Transformers (ViT) [14] have
achieved notable success in various 2D recognition and seg-
mentation tasks, but focus on learning from 2D image data.
Current large-scale RGB-D datasets [1,4,10,34,35] provide
an opportunity to learn key geometric and structural priors
to provide more informed reasoning about the scale and cir-
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cumvent view-dependent effects, which can provide more
efficient representation learning. In 3D, various successful
methods have been leveraging the RGB-D datasets for con-
strastive point discrimination [6, 24, 39, 44] for downstream
3D tasks, including high-level scene understanding tasks as
well as low-level point matching tasks [15, 42, 43]. How-
ever, the other direction from 3D to 2D is less explored.

We thus aim to embed such 3D priors into 2D back-
bones to effectively learn the structural and geometric pri-
ors underlying the 3D scenes captured in 2D image pro-
jections. Recently, Pri3D [25] adopted similar multi-view
and reconstruction-based constraints to induce 3D priors in
learned 2D representations. However, this relies on not only
acquiring RGB-D frame data but also the robust registration
of multiple views to obtain camera pose information for
each frame. Instead, we consider how to effectively learn
such geometric priors from only single-view RGB-D data in
a more broadly applicable setting for 3D-based pre-training.

We thus propose Mask3D, which learns effective 3D pri-
ors for 2D backbones in a self-supervised fashion by pre-
training with single-view RGB-D frame data. We propose a
pre-text reconstruction task to reconstruct the depth map by
masking different random RGB and depth patches of an in-
put frame. These masked input RGB and depth are encoded
simultaneously in separate encoding branches and decoded
to reconstruct the dense depth map. This imbues 3D priors
into the RGB backbone which can then be used for fine-
tuning downstream image based scene understanding tasks.

In particular, our self-supervised approach to embedding
3D priors from single-view RGB-D data to 2D learned fea-
tures is not only more generally applicable, but we also
demonstrate that it is particularly effective for pre-training
vision transformers. Our experiments demonstrate the ef-
fectiveness of Mask3D on a variety of datasets and image
understanding tasks. We pre-train on ScanNet [10] with
our masked 3D pre-training paradigm and fine-tune for 2D
semantic segmentation, instance segmentation, and object
detection. This enables notable improvements not only on
ScanNet data but also generalizes to NYUv2 [34] and even
Cityscapes [8] data. We believe that Mask3D makes an im-
portant step to shed light on the paradigm of incorporating
3D representation learning to powerful 2D backbones.

In summary, our contributions are:
• We introduce a self-supervised pre-training approach

to learn masked 3D priors for 2D image understanding
tasks based on learning from only single-view RGB-D
data, without requiring any camera pose or 3D recon-
struction information, and thus enabling more general
applicability.

• We demonstrate that our masked depth reconstruction
pre-training is particularly effective for the modern,
powerful ViT architecture, across a variety of datasets
and image understanding tasks.

2. Related Work
Pre-training in Visual Transformers. Recently, visual
transformers have revolutionized computer vision and at-
tracted wide attention. In contrast to popular CNNs that
operate in a sliding window fashion, Vision Transformers
(ViT) describe the image as patches of 16x16 pixels. The
Swin Trasnformer [28] has set new records with its hier-
archical transformer formulation on major vision bench-
marks. The dominance of visual transformers in many vi-
sion tasks has inspired study into how to pre-training such
backbones. MoCoV3 [5] first investigated the effects of sev-
eral fundamental components for self-supervised ViT train-
ing. MAE [19] then proposed an approach inspired by
BERT [13], which randomly masks words in sentences and
leveraged masked image reconstruction for self-supervised
pre-training that achieved state-of-the-art results in ViT. A
similar self-supervision has also been proposed by Mask-
Feat [37] for self-supervised video pre-training. MaskFeat
randomly masks out pixels of the input sequence and then
predicts the Oriented Gradients (HOG) of the masked re-
gions. However, such ViT pre-training methods focus on
image or video data, without exploring how 3D priors can
potentially be exploited. MultiMAE [2] on the other hand
introduces depth priors. However, it requires depth as input
not only in pre-training but also in downstream tasks. In ad-
dition to depth, human annotations (e.g., semantics) are also
leveraged in the pre-training. To achieve a self-supervised
pre-training, we do not use semantics in the pre-training and
only use RGB images as input in downstream tasks.

RGB-D Scene Understanding. Research in 3D scene un-
derstanding have been spurred forward with the introduc-
tion of larger-scale, annotated real-world RGB-D datasets
[1, 4, 10]. This has enabled data-driven semantic under-
standing of 3D reconstructed environments, where we have
now seen notable progress, such as for 3D semantic seg-
mentation [7,11,17,31,32,36], object detection [29,30,45],
instance segmentation [16, 18, 22, 23, 26, 27, 40, 41], and re-
cently panoptic segmentation [9]. Such 3D scene under-
standing tasks have been analogously defined to 2D im-
age understanding, which considers RGB-only input with-
out depth information. However, learning from 3D en-
ables geometric reasoning without requiring learning view-
dependent effects or resolving depth/scale ambiguity that
must be learned when considering solely 2D data. We thus
take advantage of existing large-scale RGB-D data to ex-
plore how to effectively embed 3D priors for better repre-
sentation learning for 2D scene understanding tasks.

Embedding 3D Priors in 2D Backbones. Learning
cross-modality features has been seen in extensive studies
of the ties between languages and images. In particular,
CLIP [33] learns visual features from language supervi-
sion during pre-training, showing promising results in zero-
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shot learning for image classification. Pri3D [25] explores
3D-based pre-training for image-based tasks by leverag-
ing multi-view consistency and 2D-3D correspondence with
contrastive learning to embed 3D priors into ResNet back-
bones. This results in enhanced features over ImageNet pre-
training on 2D scene understanding tasks. However, Pri3D
requires camera pose registration across RGB-D video se-
quences and is specifically designed for CNNs-based archi-
tectures. In contrast, we formulate a self-supervised pre-
training that operates on only single-view RGB-D frames
and leverages masked 3D priors that can effectively pre-
train powerful ViT backbones.

3. Method
We introduce Mask3D to embed 3D priors into learned

2D representations by self-supervised pre-training from
only single-view RGB-D frames. To effectively learn 3D
structural priors without requiring any camera pose infor-
mation or multi-view constraints, we formulate a pre-text
depth reconstruction task to inform the RGB feature extrac-
tion to be geometrically aware. Randomly masked color
and depth images are used as input to reconstruct the dense
depth map, and the RGB backbone can then be used to fine-
tune downstream image understanding tasks. In particular,
we show in Sec. 4 that this single-frame self-supervision
is particularly well-suited for powerful vision transformer
(ViT) backbones, even without any multi-view information.

3.1. Learning Masked 3D Priors

We propose to learn masked 3D priors to embed to
learned 2D backbones by pre-training to reconstruct dense
depth from RGB images with the guidance of sparse depth.
That is, for an RGB-D frame F = (C,D) with RGB image
C and depth map D, we train to reconstruct D from masked
patches of C guided with sparse masked patches of D. An
overview of our approach is shown in Fig. 2.

To create masked color and depth Mc and Md from C
and D as input for reconstruction, a 240x320 RGB image
C is uniformly divided into 300 16x16 patches, from which
we randomly keep a percentage pc of patches, masking out
the others, to obtain Mc. Md is created similarly by keep-
ing only a percentage pd of patches, such that the resulting
depth patches do not coincide with the RGB patches in Mc.

We then train color and depth encoders Ψc and Ψd to
separately encode RGB and depth signals. RGB patches are
fed into Ψc and concatenated with a positional embedding,
following the ViT architecture, and similarly for depth. The
positional embedding used encodes the patch location by
a cosine function. Patches and their positional embeddings
are then mapped into higher dimensional feature vectors via
Ψc and Ψd. The encoders Ψc and Ψd are built by blocks
composed of linear and norm layers. The features from Ψc

and Ψd are then fused in the bottleneck; since depth patches

were selected in regions where no RGB patches were se-
lected, there are no duplicate patches representing the same
patch location.

For those regions which do not have any associated RGB
or depth patch, we use patches of constant values as mask
tokens to create a placeholder in the bottleneck to enable
reconstructing dense depth at the original image resolution.
In the bottleneck, the RGB and depth patch feature vectors,
along with the mask tokens, form the input to the decoder.
This formulates a reconstruction task from sparse RGB and
depth; the joint RGB-D pre-training enables reconstruction
from very sparse input, as shown by our ablation on the
masked input rations in Sec. 4.5. Note that the depth en-
coder is trained only during pre-training, and only the color
ViT encoder (and decoder, if applicable) are used for down-
stream fine-tuning.

To demonstrate the effectiveness of the pre-training task,
we demonstrate the depth completion results from the pre-
training phase in Fig. 6. A detailed analysis of masking dif-
ferent ratios of color and depth signals is shown in Sec. 4.5.
Pre-training Loss In contrast to the widely used con-
trastive loss in 3D representation learning, we train for
dense depth reconstruction with an ℓ2 reconstruction loss.
Similar to MAE [19], we normalize the output patches as
well as the target patches prior to computing the loss, which
we found to empirically improve the performance.

4. Results
We demonstrate the effectiveness of Mask3D pre-

training for ViT [14] backbones on semantic segmenta-
tion, instance segmentation, and object detection tasks.
We pre-train on ScanNet [10] data and demonstrate the
effectiveness of learned masked 3D priors for not only
ScanNet downstream tasks but also their transferability to
NYUv2 [34] and even across the indoor/outdoor domain
gap to Cityscapes [8] data.

4.1. Experimental Setup

In this section, we introduce the pre-training and fine-
tuning procedures. Our method uses a two-stage pre-
training design introduced in the following.

Stage-I: Mask3D Encoder Initialization. We initialize
the RGB encoder with network weights trained on Ima-
geNet [12] (as pre-training for our pre-training). To main-
tain a fully self-supervised pre-training paradigm, we ini-
tialize with weights obtained by self-supervised ImageNet
pre-training [19].

Stage-II: Mask3D Pre-training on ScanNet. Mask3D
pre-training leverages 3D priors in RGB-D frame data, for
which we use the color and depth maps of ScanNet [10].
Note that this does not use any semantic or reconstruction
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Figure 2. Overview of Mask3D Pre-training. As a pretext task, we predict dense depth from color and sparse depth signals. We use
masked input by randomly selecting a set of patches from the input color image, which are then mapped to higher dimensional feature
vectors; input depth is similarly masked and encoded. The color and depth features are then fused into a bottleneck from which dense
depth is reconstructed as a self-supervised loss.

information during pre-training. ScanNet contains 2.5M
RGB-D frames from 1513 ScanNet train video sequences.
We regularly sample every 25th frame without any other fil-
tering (e.g., no control on viewpoint variation).

Downstream Fine-tuning. We evaluate our Mask3D pre-
training by fine-tuning a variety of downstream image un-
derstanding tasks (semantic segmentation, instance seg-
mentation, object detection). We consider in-domain trans-
fers on ScanNet image understanding, and further evaluate
the out-of-domain transfer on datasets with different statis-
tical characteristics: the indoor image data of NYUv2 [34],
as well as across a strong domain gap to the outdoor image
data of Cityscapes [8]. For semantic segmentation tasks, we
use both encoder and decoder pre-trained with Mask3D, and
for instance segmentation and detection, only the backbone
encoder is pre-trained.

Baselines. To evaluate the effectiveness of our learned
masked 3D priors for 2D representations, we benchmark
our method against relevant baselines:

Supervised ImageNet Pre-training (supIN). This uses the
pre-trained weights from ImageNet, provided by torchvi-
sion, as is commonly used for image understanding tasks.
Here, only ImageNet data is used, and no ScanNet data is
involved in the pre-training phase.

2-Stage MoCoV2 (MoCoV2-supIN→SN). Supervised
ImageNet pre-trained (supIN) weights are used as network
initialization for pre-training. MoCoV2 [20] is used for
pre-training with randomly shuffled ScanNet images. Here,
both ImageNet and ScanNet image data are used without
any geometric priors.

2-Stage MAE (MAE-unsupIN→SN). Self-supervised Im-

ageNet pre-trained weights are used as network initializa-
tion for pre-training. MAE [19] is used for pre-training
with randomly shuffled ScanNet images. Here, both Ima-
geNet and ScanNet image data are used without any geo-
metric priors.

Pri3D [25]. Supervised ImageNet pre-trained are used
to initialize Pri3D pre-training, which leverages multi-view
and reconstruction constraints from ScanNet data under a
contrastive loss. Here, both ImageNet and ScanNet data are
used, incorporating 3D priors from reconstructed RGB-D
video sequences for pre-training.

Implementation Details. We use a ViT-B backbone to
train our approach. For pre-training, we use an SGD op-
timizer with a learning rate of 0.1 and an effective batch
size of 128 (accumulated gradients from an actual batch
size of 64). The learning rate is decreased by a factor of
0.99 every 1000 steps, and our method is trained for 100
epochs. Fine-tuning on semantic segmentation is trained
with a batch size of 8 for 80 epochs. The initial learning rate
is 0.01, with polynomial decay with a power of 0.9. Fine-
tuning on detection and instance segmentation is trained us-
ing Detectron2 [38] with the 1x schedule. Pre-training ex-
periments are conducted on a single NVIDIA A6000 GPU,
or 2 NVIDIA RTX3090 GPUs, or 4 NVIDIA RTX2080Ti
GPUs; semantic segmentation experiments are conducted
on a single NVIDIA A6000 GPU; instance segmentation
and detection experiments are conducted on 8 V100 GPUs.

4.2. ScanNet Downstream Tasks

We demonstrate the effectiveness of representation
learning with 3D priors via downstream tasks on Scan-
Net [10] images. For fine-tuning, we follow the standard
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Pre-training Method Backbone Pre-training Data mIoU
Scratch ResNet-50 None 39.1
ImageNet Pre-training (supIN) ResNet-50 ImageNet 55.7
Supervised Pre-training ViT ImageNet+ScanNet 65.9 (+10.2)

MoCoV2-supIN→SN [20] ResNet-50 ImageNet+ScanNet 56.6 (+0.9)

Pri3D [25] ResNet-50 ImageNet+ScanNet 60.2 (+4.5)

Pri3D [25] ViT ImageNet+ScanNet 59.3 (+3.6)

DINO [3] ViT ImageNet+ScanNet 58.1 (+3.6)

MAE-unsupIN→SN [19] ViT ImageNet+ScanNet 63.3 (+7.6)

Ours – Mask3D (DINO) ViT ImageNet+ScanNet 60.5 (+4.8)

Ours – Mask3D (MAE) ViT ImageNet+ScanNet 66.7 (+11.0)

Table 1. ScanNet 2D Semantic Segmentation. Mask3D significantly outperforms Pri3D as well as other state-of-the-art pre-training
approaches that leverage both ImageNet and ScanNet data.

Pre-training Method AP@0.5 AP@0.75 AP
Scratch 32.7 17.7 16.9
ImageNet Pretrain (supIN) 41.7 25.9 25.1
MoCoV2-supIN→SN [20] 43.5 (+1.8) 26.8 (+0.9) 25.8 (+0.7)

Pri3D [25] 43.7 (+2.0) 27.0 (+1.1) 26.3 (+1.2)

MAE-unsupIN→SN [19] 46.1 (+4.4) 32.7 (+6.8) 30.5 (+5.4)

Mask3D (Ours) 50.4 (+8.7) 35.3 (+9.4) 32.7 (+7.6)

Table 2. ScanNet 2D Object Detection. Fine-tuning with
Mask3D pre-trained models leads to improved object detection
results across different metrics, in comparison to ImageNet pre-
training, MoCo-style pre-training, and a strong MAE-style pre-
training method.

Pre-training Method AP@0.5 AP@0.75 AP
Scratch 25.8 13.1 12.2
ImageNet Pretrain (supIN) 32.6 17.8 17.6
MoCoV2-supIN→SN [20] 33.9 (+1.3) 18.1 (+0.3) 18.3 (+0.7)

Pri3D [25] 34.3 (+1.7) 18.7 (+0.9) 18.3 (+0.7)

MAE-unsupIN→SN [19] 37.4 (+4.8) 20.3 (+2.5) 20.7 (+3.1)

Mask3D (Ours) 41.2 (+8.6) 22.7 (+4.9) 22.8 (+5.2)

Table 3. ScanNet 2D Instance Segmentation. Fine-tuning with
Mask3D pre-trained models leads to improved instance segmen-
tation results across different metrics compared to ImageNet pre-
training, MoCo-style pre-training, and a strong MAE-style pre-
training method.

Pre-training Method AP@0.5 AP@0.75 AP
Scratch 17.2 9.2 8.8
ImageNet Pretrain (supIN) 25.1 13.9 13.4
MoCoV2-supIN→SN [20] 27.2 (+2.1) 14.7 (+0.2) 14.8 (+1.4)

Pri3D [25] 28.1 (+3.0) 15.7 (+1.8) 15.7 (+2.3)

MAE-unsupIN→SN [19] 33.6 (+8.5) 19.0 (+5.1) 19.0 (+5.6)

Mask3D (Ours) 37.0 (+11.9) 21.6 (+7.7) 21.3 (+7.9)

Table 4. NYUv2 2D Instance Segmentation. Fine-tuning with
Mask3D pre-trained models leads to improved instance segmenta-
tion results across different metrics compared to previous methods,
demonstrating the cross-dataset transfer ability of Mask3D.

protocol of the ScanNet benchmark [10] and sample every
100th frame, resulting in 20,000 train images and 5,000 val-
idation images.

2D Semantic Segmentation. Tab. 1 shows the fine-tuning
for semantic segmentation, in comparison with baseline
pre-training approaches. All pre-training methods signifi-
cantly improve performance over training the semantic seg-
mentation model from scratch. In particular, Mask3D pro-
vides substantially better representation quality leading to a
much stronger improvement over supervised ImageNet pre-
training (+11 mIoU), and notably improving over MAE-
unsupIN→SN with ImageNet and ScanNet (+3.4 mIoU)
and the 3D-based pre-training of Pri3D (+6.5 mIoU). We
note that the multi-view 3D pre-training of Pri3D does
not effectively embed informative 3D priors to ViT back-
bones, rather suffering from performance degradation from
a ResNet-50 backbone. In contrast, our Mask3D pre-
training can notably improve performance with a ViT back-
bone, indicating the effectiveness of our learned 3D priors.

2D Object Detection and Instance Segmentation We
show that Mask3D provides effective general 3D priors for
a variety of image-based tasks, by evaluating downstream
object detection and instance segmentation in Tab. 2 and
Tab. 3, respectively. Across all tasks, various pre-training
approaches yield substantial improvement over training
from scratch. Our masked 3D prior learning transfers ef-
fectively learned representations for object detection and
instance segmentation, notably improving over the best-
performing MAE-unsupIN→SN (+4.3 AP@0.5 and +3.8
AP@0.5, respectively).

Data-Efficient Scenarios. We additionally show that our
single-view RGB-D pre-training to embed 3D priors in lim-
ited data scenarios for downstream ScanNet semantic seg-
mentation in Fig. 5. Mask3D shows consistent improve-
ments across a range of limited data; even with only 20%
of the training data, we recover 80% performance with
100% training data available and improving +15.2 mIoU
over Pri3D pre-training on a ViT backbone.

4.3. NYUv2 Downstream Tasks

We demonstrate the generalizability of our 3D-
imbued learned feature representations across datasets, us-
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Figure 3. Qualitative Results on Various Tasks across Different Benchmarks. We visualize predictions on different tasks across
various scene understanding benchmarks. From top to bottom rows: instance segmentation on ScanNet, instance segmentation on NYUv2,
semantic segmentation on NYUv2, and semantic segmentation results in ScanNet.

Figure 4. More Qualitative Results on Semantic Segmentation. We visualize semantic segmentation predictions on various scene
understanding benchmarks including ScanNet and NYUv2.

ing Mask3D pre-trained on ScanNet and fine-tuned on
NYUv2 [34] following the same fine-tuning setup as be-
fore. NYUv2 contains Microsoft Kinect RGB-D video

sequences of indoor scenes, comprising 1449 densely la-
beled RGB images. We use the official 795/654 train/val
split. Tables 5, 6, and 4 evaluate the downstream tasks
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Pre-training Method Backbone Pre-training Data mIoU
Scratch ResNet-50 None 24.8
ImageNet Pre-training (supIN) ResNet-50 ImageNet 50.0
Supervised Pre-training ViT ImageNet+ScanNet 55.5 (+5.5)

MoCoV2-supIN→SN [20] ResNet-50 ImageNet+ScanNet 47.6 (−2.4)

Pri3D [25] ResNet-50 ImageNet+ScanNet 54.2 (+4.2)

Pri3D [25] ViT ImageNet+ScanNet 53.2 (+3.2)

MAE-unsupIN→SN [19] ViT ImageNet+ScanNet 54.9 (+4.9)

Mask3D (Ours) ViT ImageNet+ScanNet 56.9 (+6.9)

Table 5. NYUv2 2D Semantic Segmentation. Mask3D significantly outperforms state-of-the-art pre-training approaches, demonstrating
its effectiveness in transferring to different dataset characteristics.

Figure 5. Data-Efficient Results. Compared to previous methods,
Mask3D demonstrates consistent improvements on ScanNet 2D
semantic segmentation across a range of limited data scenarios.
Mask3D is particularly effective for ViT pre-training, improving
+15.2% mIoU over state-of-the-art Pri3D [25] on a ViT backbone
at 20% of the training data.

Pre-training Method AP@0.5 AP@0.75 AP
Scratch 21.3 10.3 9.0
ImageNet Pretrain (supIN) 29.9 17.3 16.8
MoCoV2-supIN→SN [20] 30.1 (+0.20) 18.1 (+0.80) 17.3 (+0.50)

Pri3D [25] 33.0 (+2.10) 19.8 (+2.60) 18.9 (+2.10)

MAE-unsupIN→SN [19] 40.3 (+10.4) 24.5 (+7.20) 23.2 (+6.40)

Mask3D (Ours) 44.0 (+14.1) 28.3 (+6.40) 25.9 (+9.10)

Table 6. NYUv2 2D Object Detection. Fine-tuning with
Mask3D pre-trained models leads to improved object detection re-
sults across different metrics, showing an effective transfer across
dataset characteristics.

of 2D semantic segmentation, object detection, and in-
stance segmentation, respectively. Across all three tasks
on NYUv2 data, our Mask3D pre-training achieves notably
improved performance than training from scratch as well as
the various baseline pre-training methods. In particular, we
achieve an improvement of +6.9 mIoU, +14.1 AP@0.5, and
+11.9 AP@ 0.5 over the common supervised ImageNet pre-
training on semantic segmentation, object detection, and in-
stance segmentation.

Pre-training Method Backbone mIoU
ImageNet Pre-training (supIN) ResNet-50 54.1
Pri3D [25] ResNet-50 55.1 (+1.00)

MAE-unsupIN→SN [19] ViT 64.7 (+10.6)

Mask3D (Ours) ViT 66.4 (+12.3)

Table 7. Cityscapes 2D Semantic Segmentation. Mask3D sig-
nificantly outperforms state-of-the-art Pri3D as well as a strong
MAE-style pre-training. This demonstrates the effectiveness of the
transferability of Mask3D, even under a significant domain gap.

4.4. Out-of-domain Transfer

While Mask3D concentrates on pre-training for improv-
ing indoor scene understanding, we further demonstrate the
effectiveness of our Mask3D pre-training for the out-of-
domain transfer on outdoor data, such as Cityscapes [8].
We use the official data split of 3000 images for training
and 500 images for the test. To evaluate the transferability
in such a large domain gap scenario, we fine-tune the pre-
trained models for the 2D semantic segmentation task in
Tab. 7. Our approach maintains performance improvement
over baseline pre-training methods such as Pri3D (+11.3
mIoU) and MAE-unsupIN→SN (+1.7 mIoU). This indi-
cates an encouraging transferability of our learned repre-
sentations and their applicability to a variety of scenarios.
Please refer to the supplemental material for more out-of-
domain transfer results on more generally distributed data,
such as ADE20K [46].

4.5. Ablation Studies

Does the pre-training masking ratio matter? We show
how different masking ratios influence downstream task re-
sults in Tab. 8 on ScanNet semantic segmentation. We
found a performance gain when masking more RGB values
(keeping 20%), which in combination with the heavy depth
masking (keeping 20%) leads to the best performance.

What about other ViT variants? In our experiments, we
use ViT-B as the meta-architecture. We show Mask3D also
works in other ViT variants, such as ViT-L (see Tab. 12),
which exhibits a similar trend of improvements.

Does the normalization in the reconstruction loss help?
We normalize the features when computing the reconstruc-
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RGB Ratio Depth Ratio mIoU
20.0% 0.0% 65.2
20.0% 20.0% 66.7
20.0% 80.0% 65.5
50.0% 20.0% 65.9
50.0% 50.0% 64.7
80.0% 20.0% 64.8
80.0% 50.0% 64.8

100.0% 0.0% 64.6
100.0% 20.0% 64.8
100.0% 100.0% 64.5

Table 8. Ablation Study of Masking Ratios. on ScanNet 2D se-
mantic segmentation. We mask out different ratios of RGB and
depth patches, where the ratio indicates the percentage of kept
patches. Refer to supplemental material for a full list.

tion loss and observe an improvement of +0.8% mIoU in
the semantic segmentation task on ScanNet.

Method Backbone mIoU
Train from Scratch ViT 32.6

MAE ViT 37.1
Mask3D ViT 42.2

Table 9. Results on ScanNet Semantic Segmentation without
ImageNet pre-training. Similar trend is seen as ImageNet pre-
training. The Gap gets larger compared to ImageNet pre-training.

Compared to a pure depth prediction baseline. In
Tab. 8, we demonstrate a superior performance with a 20%
kept patches of RGB and depth, compared to a pure depth
prediction method (66.7 vs. 64.6). Note in the table, pre-
training with 100% RGB ratio and 0% depth ratio is equiv-
alent to a pure depth prediction from a RGB image.

Color + depth reconstruction? We found that having
joint losses on color and depth during pre-training does not
benefit performance (see the following Tab. 10). The RGB
reconstruction loss potentially makes pre-training easier, as
we already have additional depth priors as guidance.

Method Reconstruction mIoU
Mask3D RGB+Depth 65.6
Mask3D Depth 66.7

Table 10. ScanNet Semantic Segmentation. RGB as an addi-
tional signal does not bring a significant improvement.

No Stage-I pre-training. We observe a performance drop
without ImageNet pre-training model as initialization for
our pre-training. Since ImageNet pre-training is readily
available and ScanNet has a relatively small amount of in-
door data, we make ImageNet pre-training initialization as
default, similar to Pri3D. Meanwhile, we conduct experi-
ments without ImageNet pre-training in Tab. 9, and observe
similar trends as when using ImageNet pre-training.

RGB + semantic segmentation as pre-training. Using
RGB and semantic segmentation for pre-training rather than

Datasets Mask3D - Semantics Mask3D
ScanNet 65.9 66.7
NYUv2 55.5 56.9

CityScapes 63.0 66.4

Table 11. Semantic segmentation results (mIoU). “Mask3D - Se-
mantics” denotes pre-training using RGB+Semantics.

Figure 6. Pre-trained ViT learns 3D structual priors. Our pro-
posed pre-training method learns spatial structures from heavily
masked RGB images.

Pre-training Method Backbone mIoU
Pri3D [25] ResNet-50 60.2
Pri3D [25] ViT-B 59.3 (-0.9)

MAE-unsupIN→SN [19] ViT-B 63.3 (+3.1)

Mask3D (Ours) ViT-B 66.7 (+6.5)

Pri3D [25] ViT-L 64.3 (+4.1)

MAE-unsupIN→SN [19] ViT-L 68.2 (+8.0)

Mask3D (Ours) ViT-L 70.7 (+10.5)

Table 12. ViT Variants on ScanNet 2D Semantic Segmentation.
Mask3D yields consistent improvements for both ViT-B and ViT-
L backbone architectures.

depth completion achieved competitive results on ScanNet
semantic segmentation, although this requires the use of se-
mantic labels for the pre-training dataset, and is likely to be
less transferable across domains than using depth comple-
tion. As shown in the following Tab. 11, the gap becomes
larger when transferring to both NYUv2 and Cityscapes.

5. Conclusion

In this paper, we present Mask3D, a new self-supervised
approach to embed 3D priors into learned 2D representa-
tions for image scene understanding. We leverage exist-
ing large-scale RGB-D data to learn 3D priors without re-
quiring any camera pose or multi-view correspondence in-
formation, instead learning geometric and structural cues
through a pre-text reconstruction task from masked color
and depth. We show that Mask3D is particularly effective
in pre-training the modern, powerful ViT backbones, with
notable improvements across a variety of image-based tasks
and datasets. We believe this shows the strong potential in
effectively learning 3D priors and provides new avenues for
such 3D-grounded representation learning.
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