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Abstract

The performance of video prediction has been greatly
boosted by advanced deep neural networks. However, most
of the current methods suffer from large model sizes and
require extra inputs, e.g., semantic/depth maps, for promis-
ing performance. For efficiency consideration, in this pa-
per, we propose a Dynamic Multi-scale Voxel Flow Net-
work (DMVFN) to achieve better video prediction perfor-
mance at lower computational costs with only RGB images,
than previous methods. The core of our DMVFN is a dif-
ferentiable routing module that can effectively perceive the
motion scales of video frames. Once trained, our DMVFN
selects adaptive sub-networks for different inputs at the in-
ference stage. Experiments on several benchmarks demon-
strate that our DMVFN is an order of magnitude faster than
Deep Voxel Flow [35] and surpasses the state-of-the-art
iterative-based OPT [63] on generated image quality.

1. Introduction
Video prediction aims to predict future video frames

from the current ones. The task potentially benefits the
study on representation learning [40] and downstream fore-
casting tasks such as human motion prediction [39], au-
tonomous driving [6], and climate change [48], etc. Dur-
ing the last decade, video prediction has been increasingly
studied in both academia and industry community [5, 7].

Video prediction is challenging because of the diverse
and complex motion patterns in the wild, in which accurate
motion estimation plays a crucial role [35, 37, 58]. Early
methods [37, 58] along this direction mainly utilize recur-
rent neural networks [19] to capture temporal motion infor-
mation for video prediction. To achieve robust long-term
prediction, the works of [41, 59, 62] additionally exploit the
semantic or instance segmentation maps of video frames for
semantically coherent motion estimation in complex scenes.
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Figure 1. Average MS-SSIM and GFLOPs of different video
prediction methods on Cityscapes [9]. The parameter amounts
are provided in brackets. DMVFN outperforms previous methods
in terms of image quality, parameter amount, and GFLOPs.

However, the semantic or instance maps may not always be
available in practical scenarios, which limits the application
scope of these video prediction methods [41,59,62]. To im-
prove the prediction capability while avoiding extra inputs,
the method of OPT [63] utilizes only RGB images to esti-
mate the optical flow of video motions in an optimization
manner with impressive performance. However, its infer-
ence speed is largely bogged down mainly by the computa-
tional costs of pre-trained optical flow model [54] and frame
interpolation model [22] used in the iterative generation.

The motions of different objects between two adjacent
frames are usually of different scales. This is especially ev-
ident in high-resolution videos with meticulous details [49].
The spatial resolution is also of huge differences in real-
world video prediction applications. To this end, it is es-
sential yet challenging to develop a single model for multi-
scale motion estimation. An early attempt is to extract
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multi-scale motion cues in different receptive fields by em-
ploying the encoder-decoder architecture [35], but in prac-
tice it is not flexible enough to deal with complex motions.

In this paper, we propose a Dynamic Multi-scale Voxel
Flow Network (DMVFN) to explicitly model the com-
plex motion cues of diverse scales between adjacent video
frames by dynamic optical flow estimation. Our DMVFN
is consisted of several Multi-scale Voxel Flow Blocks
(MVFBs), which are stacked in a sequential manner. On
top of MVFBs, a light-weight Routing Module is pro-
posed to adaptively generate a routing vector according
to the input frames, and to dynamically select a sub-
network for efficient future frame prediction. We con-
duct experiments on four benchmark datasets, including
Cityscapes [9], KITTI [12], DAVIS17 [43], and Vimeo-
Test [69], to demonstrate the comprehensive advantages
of our DMVFN over representative video prediction meth-
ods in terms of visual quality, parameter amount, and
computational efficiency measured by floating point oper-
ations (FLOPs). A glimpse of comparison results by differ-
ent methods is provided in Figure 1. One can see that our
DMVFN achieves much better performance in terms of ac-
curacy and efficiency on the Cityscapes [9] dataset. Exten-
sive ablation studies validate the effectiveness of the com-
ponents in our DMVFN for video prediction.

In summary, our contributions are mainly three-fold:

• We design a light-weight DMVFN to accurately pre-
dict future frames with only RGB frames as inputs.
Our DMVFN is consisted of new MVFB blocks that
can model different motion scales in real-world videos.

• We propose an effective Routing Module to dynam-
ically select a suitable sub-network according to the
input frames. The proposed Routing Module is end-
to-end trained along with our main network DMVFN.

• Experiments on four benchmarks show that our
DMVFN achieves state-of-the-art results while being
an order of magnitude faster than previous methods.

2. Related Work
2.1. Video Prediction

Early video prediction methods [35, 37, 58] only utilize
RGB frames as inputs. For example, PredNet [37] learns an
unsupervised neural network, with each layer making lo-
cal predictions and forwarding deviations from those pre-
dictions to subsequent network layers. MCNet [58] decom-
poses the input frames into motion and content components,
which are processed by two separate encoders. DVF [35]
is a fully-convolutional encoder-decoder network synthesiz-
ing intermediate and future frames by approximating voxel
flow for motion estimation. Later, extra information is ex-
ploited by video prediction methods in pursuit of better

performance. For example, the methods of Vid2vid [59],
Seg2vid [41], HVP [32], and SADM [2] require additional
semantic maps or human pose information for better video
prediction results. Additionally, Qi et al. [44] used extra
depth maps and semantic maps to explicitly inference scene
dynamics in 3D space. FVS [62] separates the inputs into
foreground objects and background areas by semantic and
instance maps, and uses a spatial transformer to predict the
motion of foreground objects. In this paper, we develop a
light-weight and efficient video prediction network that re-
quires only sRGB images as the inputs.

2.2. Optical Flow

Optical flow estimation aims to predict the per-pixel mo-
tion between adjacent frames. Deep learning-based optical
flow methods [17,29,38,53,54] have been considerably ad-
vanced ever since Flownet [11], a pioneering work to learn
optical flow network from synthetic data. Flownet2.0 [25]
improves the accuracy of optical flow estimation by stack-
ing sub-networks for iterative refinement. A coarse-to-fine
spatial pyramid network is employed in SPynet [46] to es-
timate optical flow at multiple scales. PWC-Net [53] em-
ploys feature warping operation at different resolutions and
uses a cost volume layer to refine the estimated flow at each
resolution. RAFT [54] is a lightweight recurrent network
sharing weights during the iterative learning process. Flow-
Former [21] utilizes an encoder to output latent tokens and
a recurrent decoder to decode features, while refining the
estimated flow iteratively. In video synthesis, optical flow
for downstream tasks [22, 35, 68, 69, 72] is also a hot re-
search topic. Based on these approaches, we aim to design
a flow estimation network that can adaptively operate based
on each sample for the video prediction task.

2.3. Dynamic Network

The design of dynamic networks is mainly divided into
three categories: spatial-wise, temporal-wise, and sample-
wise [16]. Spatial-wise dynamic networks perform adap-
tive operations in different spatial regions to reduce com-
putational redundancy with comparable performance [20,
47, 57]. In addition to the spatial dimension, dynamic
processing can also be applied in the temporal dimension.
Temporal-wise dynamic networks [52, 64, 70] improve the
inference efficiency by performing less or no computation
on unimportant sequence frames. To handle the input in a
data-driven manner, sample-wise dynamic networks adap-
tively adjust network structures to side-off the extra compu-
tation [56,60], or adaptively change the network parameters
to improve the performance [10, 18, 51, 76]. Designing and
training a dynamic network is not trivial since it is difficult
to directly enable a model with complex topology connec-
tions. We need to design a well-structured and robust model
before considering its dynamic mechanism. In this paper,
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Figure 2. Overview of the proposed Dynamic Multi-scale Voxel Flow Network (DMVFN). (a): To predict a future frame, we use
the voxel flow [35] to guide the pixel fusion of the input frames. The voxel flow contains the prediction of object motion and occlusion.
(b): DMVFN contains several MVFBs with decreasing scaling factor Si. According to the routing vector v estimated by a Routing
Module, a sub-network is selected to process the input image. (c): Each MVFB has a scaling factor Si, which means that the motion
path is performed on images whose sizes are 1/Si of the original. (d): Two consecutive frames are fed into several neural layers and a
Differentiable Bernoulli sample to generate the hard routing vector.

we propose a module to dynamically perceive the motion
magnitude of input frames to select the network structure.

3. Methodology
3.1. Background

Video prediction. Given a sequence of past t frames
{Ii ∈ Rh×w×3|i = 1, ..., t}, video prediction aims to pre-
dict the future frames {Ĩt+1, Ĩt+2, Ĩt+3, ...}. The inputs
of our video prediction model are only the two consec-
utive frames It−1 and It. We concentrate on predicting
Ĩt+1, and iteratively predict future frames {Ĩt+2, Ĩt+3, ...}
in a similar manner. Denote the video prediction model as
Gθ(It−1, It), where θ is the set of model parameters to be
learned, the learning objective is to minimize the difference
between Ĩt+1 = Gθ(It−1, It) and the “ground truth” It+1.

Voxel flow. Considering the local consistency in space-
time, the pixels of a generated future frame come from
nearby regions of the previous frames [69,75]. In video pre-
diction task, researchers estimate optical flow ft+1→t from
It+1 to It [35]. And the corresponding frame is obtained
using the pixel-wise backward warping [26] (denoted as
←−
W). In addition, to deal with the occlusion, some meth-
ods [28, 35] further introduce a fusion map m to fuse the
pixels of It and It−1. The final predicted frame is obtained

by the following formulation (Figure 2 (a)):

Ît+1←t−1 =
←−
W(It−1, ft+1→t−1), (1)

Ît+1←t =
←−
W(It, ft+1→t), (2)

Ĩt+1 = Ît+1←t−1 ×m + Ît+1←t × (1−m). (3)

Here, Ît+1←t and Ît+1←t−1 are intermediate warped im-
ages. To simplify notations, we refer to the optical flows
ft+1→t, ft+1→t−1 and the fusion map m collectively as the
voxel flow Ft+1, similar to the notations in [35]. The above
equations can be simplified to the following form:

Ĩt+1 =
←−
W(It−1, It,Ft+1). (4)

3.2. Dynamic Multi-Scale Voxel Flow Network

MVFB. To estimate the voxel flow, DVF [35] assumes
that all optical flows are locally linear and temporally sym-
metric around the targeted time, which may be unreason-
able for large-scale motions. To address the object position
changing issue [22] in adjacent frames, OPT [63] uses flow
reversal layer [68] to convert forward flows to backward
flows. We aim to estimate voxel flow end-to-end without
introducing new components and unreasonable constraints.
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Figure 3. Visual comparison of (t+ 1)-th frame predicted from t-th and (t− 1)-th frames on the DAVIS17-Val [43].

We denote the i-th MVFB as f i
MV FB(·). It learns to

approximate target voxel flow Fi
t+1 by taking two frames

It−1 and It, the synthesized frame Ĩi−1t+1 , and the voxel flow
estimated by previous blocks Fi−1

t+1 as inputs.
The architecture of our MVFB is shown in Figure 2 (c).

To capture the large motion while retaining the original spa-
tial information, we construct a two-branch network struc-
ture [71]. This design inherits from pyramidal optical flow
estimation [46, 53]. In the motion path, the input is down-
sampled by a scaling factor Si to facilitate the expansion of
the receptive field. Another spatial path operates at high
resolution to complement the spatial information. We de-
note Ĩit+1 as the output of the i-th MVFB. Formally,

Ĩit+1,Fi
t+1 = f i

MVFB(It−1, It, Ĩ
i−1
t+1 ,Fi−1

t+1, S
i). (5)

The initial values of Ĩ0t+1 and F0
t+1 are set to zero. As il-

lustrated in Figure 2 (b), our DMVFN contains 9 MVFBs.
To generate a future frame, we iteratively refine a voxel
flow [35] and fuse the pixels of the input frames.

Many optical flow estimation methods predict the flow
field on a small image, and then refine it on a large im-
age [53, 67]. For simplicity and intuition, we consider de-
creasing scaling factor sequences. Finally, the scaling fac-
tors is experimentally set as [4, 4, 4, 2, 2, 2, 1, 1, 1].

DMVFN. Different pairs of adjacent frames have diverse
motion scales and different computational demands. An
intuitive idea is to adaptively select dynamic architectures
conditioned on each input. We then perform dynamic rout-
ing within the super network (the whole architecture) [16],
including multiple possible paths. DMVFN saves redun-
dant computation for samples with small-scale motion and
preserves the representation ability for large-scale motion.

To make our DMVFN end-to-end trainable, we design a
differentiable Routing Module containing a tiny neural net-
work to estimate routing vector v for each input sample.
Based on this vector, our DMVFN dynamically selects a

sub-network to process the input data. As the Figure 2 (b)
shows, some blocks are skipped during inference.

Different from some dynamic network methods that can
only continuously select the first several blocks (n op-
tions) [4, 55], DMVFN is able to choose paths freely (2n

options). DMVFN trains different sub-networks in the su-
per network with various possible inference paths and uses
dynamic routing inside the super network during inference
to reduce redundant computation while maintaining the per-
formance. A dynamic routing vector v ∈ {0, 1}n is pre-
dicted by the proposed Routing Module. For the i-th MVFN
block of DMVFN, we denote vi as the reference of whether
processing the reached voxel flow Fi−1

t+1 and the reached pre-
dicted frame Ĩi−1t+1 . The path f i

MVFB to the i-th block from
the last block will be activated only when vi = 1. Formally,

Ĩit+1,Fi
t+1 =


f i
MVFB(Ĩ

i−1
t+1 ,Fi−1

t+1), vi = 1

Ĩi−1t+1 ,Fi−1
t+1, vi = 0.

(6)

During the training phase, to enable the backpropagation of
Eqn. (6), we use vi and (1 − vi) as the weights of the two
branches and average their outputs.

In the iterative scheme of our DMVFN, each MVFB es-
sentially refines the current voxel flow estimation to a new
one. This special property allows our DMVFN to skip some
MVFBs for every pair of input frames. Here, we design
a differentiable and efficient routing module for learning
to trade-off each MVFB block. This is achieved by pre-
dicting a routing vector v ∈ {0, 1}n to identify the proper
sub-network (e.g., 0 for deactivated MVFBs, 1 for activated
MVFBs). We implement the routing module by a small neu-
ral network (∼ 1/6 GFLOPs of the super network), and
show its architecture in Figure 2 (d). It learns to predict the
probability ṽ of choosing MVFBs by:

ṽ = Linear(AvgPooling(Convs(It−1, It))), (7)

v = Bernoulli-Sampling(ṽ). (8)
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Table 1. Quantitative results of different methods on the Cityscapes [9], and KITTI [12] datasets. “RGB”, “F”, “S” and “I” de-
note the video frames, optical flow, semantic map, and instance map, respectively. We denote our DMVFN without routing module as
“DMVFN (w/o r)”. FVS [62] integrates a segmentation model [77] on KITTI [12] to obtain the semantic maps. “N/A” means not available.

Method Inputs
Cityscapes-Train→Cityscapes-Test [9] KITTI-Train→KITTI-Test [12]

GFLOPs
MS-SSIM (×10−2) ↑ LPIPS (×10−2) ↓

GFLOPs
MS-SSIM (×10−2) ↑ LPIPS (×10−2) ↓

t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

Vid2vid [59] RGB+S 603.79 88.16 80.55 75.13 10.58 15.92 20.14 N/A N/A N/A N/A N/A N/A N/A
Seg2vid [41] RGB+S 455.84 88.32 N/A 61.63 9.69 N/A 25.99 N/A N/A N/A N/A N/A N/A N/A

FVS [62] RGB+S+I 1891.65 89.10 81.13 75.68 8.50 12.98 16.50 768.96 79.28 67.65 60.77 18.48 24.61 30.49
SADM [2] RGB+S+F N/A 95.99 N/A 83.51 7.67 N/A 14.93 N/A 83.06 72.44 64.72 14.41 24.58 31.16

PredNet [37] RGB 62.62 84.03 79.25 75.21 25.99 29.99 36.03 25.44 56.26 51.47 47.56 55.35 58.66 62.95
MCNET [58] RGB 502.80 89.69 78.07 70.58 18.88 31.34 37.34 204.26 75.35 63.52 55.48 24.05 31.71 37.39

DVF [35] RGB 409.78 83.85 76.23 71.11 17.37 24.05 28.79 166.47 53.93 46.99 42.62 32.47 37.43 41.59
CorrWise [13] RGB 944.29 92.80 N/A 83.90 8.50 N/A 15.00 383.62 82.00 N/A 66.70 17.20 N/A 25.90

OPT [63] RGB 313482.15 94.54 86.89 80.40 6.46 12.50 17.83 127431.71 82.71 69.50 61.09 12.34 20.29 26.35
DMVFN (w/o r) RGB 24.51 95.29 87.91 81.48 5.60 10.48 14.91 9.96 88.06 76.53 68.29 10.70 19.28 26.13

DMVFN RGB 12.71 95.73 89.24 83.45 5.58 10.47 14.82 5.15 88.53 78.01 70.52 10.74 19.27 26.05

Differentiable Routing. To train the proposed Routing
Module, we need to constrain the probability values to pre-
vent the model from falling into trivial solutions (e.g., se-
lect all blocks). On the other hand, we allow this module to
participate in the gradient calculation to achieve end-to-end
training. We introduce the Gumbel Softmax [27] and the
Straight-Through Estimator (STE) [3] to tackle this issue.

One popular method to make the routing probability ṽ
learnable is the Gumbel Softmax technique [24, 27]. By
treating the selection of each MVFB as a binary classifica-
tion task, the soft dynamic routing vector v ∈ Rn is

vi =
exp

(
1
τ (ṽi +Gi)

)
exp

(
1
τ (ṽi +Gi)

)
+ exp

(
1
τ (2− ṽi −Gi)

) , (9)

where i = 1, ..., n, Gi ∈ R is Gumbel noise following the
Gumbel(0, 1) distribution, and τ is a temperature parame-
ter. We start at a very high temperature to ensure that all
possible paths become candidates, and then the temperature
is attenuated to a small value to approximate one-hot distri-
bution. To encourage the sum of the routing vectors {vi}ni=1

to be small, we add the regularization term ( 1
n

∑n
i=1 vi) to

the final loss function. However, we experimentally find
that our DMVFN usually converges to an input-independent
structure when temperature decreases. We conjecture that
the control of the temperature parameter τ and the design
of the regularization term require further study.

Inspired by previous research on low-bit width neu-
ral networks [23, 74], we adopt STE for Bernoulli Sam-
pling (STEBS) to make the binary dynamic routing vector
differentiable. An STE can be regarded as an operator that
has arbitrary forward and backward operations. Formally,

w̃i = min(β × n× σ(ṽi)/

n∑
i

σ(ṽi), 1), (10)

STE Forward : vi ∼ Bernoulli(w̃i), (11)

STE Backward :
∂o

∂w̃
=

∂o

∂v
, (12)

where σ is the Sigmoid function and we denote the objective
function as o. We use the well-defined gradient ∂o

∂v as an
approximation for ∂o

∂w̃ to construct the backward pass. In
Eqn. (10), we normalize the sample rate. During training,
β is fixed at 0.5. We can adjust the hyper-parameter β to
control the complexity in the inference phase.

3.3. Implementation Details

Loss function. Our training loss Ltotal is the sum of the
reconstruction losses of outputs of each block Iit+1:

Ltotal =

n∑
i=1

γn−id(Ĩit+1, It+1), (13)

where d is the ℓ1 loss calculated on the Laplacian pyra-
mid representations [42] extracted from each pair of images.
And we set γ = 0.8 in our experiments following [54].

Training strategy. Our DMVFN is trained on 224× 224
image patches. The batch size is set as 64. We employ the
AdamW optimizer [30, 36] with a weight decay of 10−4.
We use a cosine annealing strategy to reduce the learning
rate from 10−4 to 10−5. Our model is trained on four
2080Ti GPUs for 300 epochs, which takes about 35 hours.

4. Experiments
4.1. Dataset and Metric

Dataset. We use several datasets in the experiments:

Cityscapes dataset [9] contains 3,475 driving videos with
resolution of 2048×1024. We use 2,945 videos for training
(Cityscapes-Train) and 500 videos in Cityscapes dataset [9]
for testing (Cityscapes-Test).
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Table 2. Quantitative results on the DAVIS17-Val [43] and Vimeo90K-Test [69] benchmarks. We denote DMVFN without routing as
“DMVFN (w/o r)”. “N/A” means not available.

Method
UCF101-Train→DAVIS17-Val UCF101-Train→Vimeo90K-Test

GFLOPs ↓
MS-SSIM (×10−2) ↑ LPIPS (×10−2) ↓

GFLOPs ↓
MS-SSIM (×10−2) ↑ LPIPS (×10−2) ↓

t+ 1 t+ 3 t+ 1 t+ 3 t+ 1 t+ 1

DVF [35] 324.15 68.61 55.47 23.23 34.22 89.64 92.11 7.73
DYAN [34] 130.12 78.96 70.41 13.09 21.43 N/A N/A N/A

OPT [63] 165312.80 83.26 73.85 11.40 18.21 45716.20 96.75 3.59

DMVFN (w/o r) 19.39 84.81 75.05 9.41 16.24 5.36 97.24 3.30
DMVFN 9.96 83.97 74.81 9.96 17.28 2.77 97.01 3.69

DV
F

FV
S

OP
T

DM
VF

N
GT

t + 1 t + 3 t + 5
Figure 4. Prediction comparison on KITTI. The yellow line is
aligned with the car in the ground truth. The results show that
previous methods (DVF [35], FVS [62], and OPT [63]) cannot ac-
curately predict the car’s location in the long-term prediction. The
motion predicted by our DMVFN is the most similar to the ground
truth, while the errors of other methods grow larger with time. The
fences predicted by DMVFN remain vertical when moving.

KITTI dataset [12] contains 28 driving videos with resolu-
tion of 375 × 1242. 24 videos in KITTI dataset are used
for training (KITTI-Train) and the remaining four videos in
KITTI dataset are used for testing (KITTI-Test).

UCF101 [50] dataset contains 13, 320 videos under 101 dif-
ferent action categories with resolution of 240 × 320. We
only use the training subset of UCF101 [50].

Vimeo90K [69] dataset has 51, 312 triplets for training,
where each triplet contains three consecutive video frames
with resolution of 256×448. There are 3, 782 triplets in the
Vimeo90K testing set. We denote the training and testing
subsets as Vimeo-Train and Vimeo-Test, respectively.

DAVIS17 [43] has videos with resolution around 854×480.
We use the DAVIS17-Val containing 30 videos as test set.
Configurations. We have four experimental configurations
following previous works [34, 35, 63]:

• Cityscapes-Train→Cityscapes-Test
• KITTI-Train→KITTI-Test
• UCF101→DAVIS17-Val
• UCF101→Vimeo-Test

Here, the left and right sides of the arrow represent the train-
ing set and the test set, respectively. For a fair comparison
with other methods that are not tailored for high resolution
videos, we follow the setting in [62] and resize the images
in Cityscapes [9] to 1024×512 and images in KITTI [12] to
256× 832, respectively. During inference of Cityscapes [9]
and KITTI [12], we predict the next five frames. We pre-
dict the next three frames for DAVIS17-Val [43] and next
one frame for Vimeo-Test [69], respectively. Note that
OPT [63] is an optimization-based approach and uses pre-
trained RAFT [54] and RIFE [22] models. RIFE [22] and
RAFT [54] are trained on the Vimeo-Train dataset [69] and
the Flying Chairs dataset [11], respectively.
Evaluation metrics. Following previous works [63], we
use Multi-Scale Structural Similarity Index Measure (MS-
SSIM) [61] and a perceptual metric LPIPS [73] for quan-
titative evaluation. To measure the model complexity, we
calculate the GFLOPs.

4.2. Comparison to State-of-the-Arts

We compare our DMVFN with state-of-the-art video
prediction methods. These methods fall into two cate-
gories: the methods requiring only RGB images as in-
put (e.g., PredNet [37], MCNET [58], DVF [35], Cor-
rWise [13], OPT [63]) and the methods requiring extra
information as input (e.g., Vid2vid [59], Seg2vid [41],
FVS [62], SADM [2]).
Quantitative results. The quantitative results are reported
in Table 1 and Table 2. When calculating the GFLOPs
of OPT [63], the number of iterations is set as 3, 000. In
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(a) (b) (c)
Figure 5. (a): Average usage rate on videos with different motion magnitudes. “Fast”: tested on Vimeo-Fast. “Medium”: tested on
Vimeo-Medium. “Slow”: tested on Vimeo-Slow. (b): Difference between “Fast”/“Slow” and “Medium” of (a). (c): Averaged usage
rate on different time intervals between two input frames from Vimeo-Slow. “Int.”: time interval.

Figure 6. Visual effect comparison in the Vimeo-Test [69]
dataset. our DMVFN faithfully reproduces the motion of the hand
and the head with less distortion and artifacts.

terms of MS-SSIM and LPIPS, our DMVFN achieves much
better results than the other methods in both short-term
and long-term video prediction tasks. The GFLOPs of our
DMVFN is considerably smaller than the comparison meth-
ods. These results show the proposed routing strategy re-
duces almost half the number of GFLOPs while maintaining
comparable performance. Because the decrease of GFLOPs
is not strictly linear with the actual latency [45], we mea-
sure the running speed on TITAN 2080Ti. For predicting a
720P frame, DVF [35] spends 0.130s on average, while our
DMVFN only needs 0.023s on average.

Table 3. Comparison between DMVFN and STRPM.

Method
UCF Sports Human3.6M

t+ 1 t+ 6 t+ 1 t+ 4

PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓ PSNR↑ / LPIPS↓
STRPM 28.54 / 20.69 20.59 / 41.11 33.32 / 9.74 29.01 / 10.44
DMVFN 30.05 / 10.24 22.67 / 22.50 35.07 / 7.48 29.56 / 9.74

More comparison. The quantitative results compared with
STRPM [8] are reported in Table 3. We train our DMVFN
in UCFSports and Human3.6M datasets following the set-
ting in [8]. We also measure the average running speed

on TITAN 2080Ti. To predict a 1024 × 1024 frame, our
DMVFN is averagely 4.06× faster than STRPM [8].
Qualitative results on different datasets are shown in Fig-
ure 3, Figure 4 and Figure 6. As we can see, the frames
predicted by our DMVFN exhibit better temporal continuity
and are more consistent with the ground truth than those by
the other methods. Our DMVFN is able to predict correct
motion while preserving the shape and texture of objects.

4.3. Ablation Study

Here, we perform extensive ablation studies to further
study the effectiveness of components in our DMVFN.
The experiments are performed on the Cityscapes [9] and
KITTI [12] datasets unless otherwise specified.
1) How effective is the proposed Routing Module? As
suggested in [65, 66], we divide the Vimeo-90K [69] test
set into three subsets: Vimeo-Fast, Vimeo-Medium, and
Vimeo-Slow, which correspond to the motion range. To
verify that our DMVFN can perceive motion scales and
adaptively choose the proper sub-networks, we retrain our
DMVFN on the Vimeo-Train [69] using the same training
strategy in §3.3. We calculate the averaged usage rate of
each MVFB on three test subsets. From Figures 5 (a) and
5 (b), we observe that our DMVFN prefers to select MVFBs
with large scale (e.g., 4x) for two frames with large motion.
There are two MVFBs with clearly smaller selection prob-
ability. We believe this reflects the inductive bias of our
DMVFN on different combinations of scaling factors.

To further verify that our DMVFN also perceives the size
of the time interval, we test our DMVFN on the two frames
with different time intervals (but still in the same video). We
choose Vimeo-Slow as the test set, and set the time intervals
as 1, 3, and 5. The results are shown in Figure 5 (c). We ob-
serve that our DMVFN prefers large-scale blocks on long-
interval inputs, and small-scale blocks on short-interval in-
puts. This verifies that our DMVFN can perceive temporal
information and dynamically select different sub-networks
to handle the input frames with different time intervals.
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To further study how the MVFBs are selected, we select
103 video sequences (contain a high-speed moving car and
a relatively static background) from the KITTI dataset, de-
noted as KITTI-A. As shown in Table 4, on the KITTI-A
dataset, our DMVFN prefers to choose MVFBs with large
scaling factors to capture large movements. The flow esti-
mation for static backgrounds is straightforward, while the
large motion dominates the choice of our DMVFN.
Table 4. Average usage rate (10−2) of MVFBs in our DMVFN.

Scale 4 4 4 2 2 2 1 1 1

KITTI-A 80.95 34.22 26.70 81.19 73.91 44.90 55.34 0.49 0

Table 5. Routing Module based on STEBS is effective. The
evaluation metric is MS-SSIM (×10−2).

Setting
Cityscapes KITTI

t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

Copy last frame 76.95 68.82 64.45 58.31 48.99 44.16
w/o routing 95.29 87.91 81.48 88.06 76.53 68.29

Random 91.97 82.11 70.05 81.31 69.89 62.42
Gumbel Softmax 95.05 87.57 79.54 87.42 75.56 65.83

STEBS 95.73 89.24 83.45 88.53 78.01 70.52

2) How to design the Routing Module? A trivial solution
is to process the routing probability p with Gumbel Soft-
max. The comparison results of our DMVFNs with differ-
ent differentiable routing methods are summarized in Ta-
ble 5. Our DMVFN with STEBS outperforms the DMVFN
variant with Gumbel Softmax on MS-SSIM, especially for
long-term prediction. The DMVFN variant with Gumbel
Softmax usually degenerates to a fixed and static structure.
We also compare with the DMVFN randomly selecting each
MVFB with probability 0.5 (denoted as “Random”) and that
without routing module (denoted as “w/o routing”).

Table 6. Results of our DMVFN with different scaling factor
settings. The evaluation metric is MS-SSIM (×10−2).

Setting Cityscapes KITTI

in DMVFN t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

[1] 94.70 87.26 80.93 87.64 76.71 68.76
[2, 1] 95.30 87.93 82.02 87.97 77.23 69.58
[4, 2, 1] 95.73 89.24 83.45 88.53 78.01 70.52

3) How to set the scaling factors? We evaluate our
DMVFN with different scaling factors. We use three
non-increasing factor sequences of “[1, 1, 1, 1, 1, 1, 1, 1, 1]”,
“[2, 2, 2, 2, 2, 1, 1, 1, 1]” and “[4, 4, 4, 2, 2, 2, 1, 1, 1]”, de-
noted as “[1]”, “[2, 1]” and “[4, 2, 1]”, respectively. The
results are listed in Table 6. Our DMVFN with “[4, 2, 1]”
performs better than that with “[2, 1]” and “[1]”. The gap is
more obvious on longer-term future frames.

Table 7. Spatial path is effective in our DMVFN. The evaluation
metric is MS-SSIM (×10−2).

Setting
Cityscapes KITTI

t+ 1 t+ 3 t+ 5 t+ 1 t+ 3 t+ 5

w/o r, w/o path 94.99 87.59 80.98 87.75 76.22 67.86
w/o r 95.29 87.91 81.48 88.06 76.53 68.29

w/o path 95.55 88.89 83.03 88.29 77.53 69.86
DMVFN 95.73 89.24 83.45 88.53 78.01 70.52

4) How effective is the spatial path? To verify the effec-
tiveness of the spatial path in our DMVFN, we compare
it with the DMVFN without spatial path (denoted as “w/o
path”). The results listed in Table 7 show our DMVFN en-
joys better performance with the spatial path, no matter with
or without the routing module (denoted as “w/o r”).

5. Conclusion
In this work, we developed an efficient Dynamic Multi-

scale Voxel Flow Network (DMVFN) that excels previous
video prediction methods on dealing with complex motions
of different scales. With the proposed routing module, our
DMVFN adaptively activates different sub-networks based
on the input frames, improving the prediction performance
while reducing the computation costs. Experiments on di-
verse benchmark datasets demonstrated that our DMVFN
achieves state-of-the-artperformance with greatly reduced
computation burden. We believe our DMVFN can provide
general insights for long-term prediction, video frame syn-
thesis, and representation learning [14, 15]. We hope our
DMVFN will inspire further research in light-weight video
processing and make video prediction more accessible for
downstream tasks such as CODEC for streaming video.

Our DMVFN can be improved at several aspects. Firstly,
iteratively predicting future frames suffers from accumulate
errors. This issue may be addressed by further bringing ex-
plicit temporal modeling [22, 31, 66, 68] to our DMVFN.
Secondly, our DMVFN simply selects the nodes in a chain
network topology, which can be improved by exploring
more complex topology. For example, our routing mod-
ule can be extended to automatically determine the scaling
factors for parallel branches [33]. Thirdly, forecast uncer-
tainty modeling is more of an extrapolation abiding to past
flow information, especially considering bifurcation, which
exceeds the current capability of our DMVFN. We believe
that research on long-term forecast uncertainty may uncover
deeper interplay with dynamic modeling methods [1, 14].
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