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Abstract

Distilled student models in teacher-student architectures
are widely considered for computational-effective deploy-
ment in real-time applications and edge devices. However,
there is a higher risk of student models to encounter ad-
versarial attacks at the edge. Popular enhancing schemes
such as adversarial training have limited performance on
compressed networks. Thus, recent studies concern about
adversarial distillation (AD) that aims to inherit not only
prediction accuracy but also adversarial robustness of a ro-
bust teacher model under the paradigm of robust optimiza-
tion. In the min-max framework of AD, existing AD methods
generally use fixed supervision information from the teacher
model to guide the inner optimization for knowledge distil-
lation which often leads to an overcorrection towards model
smoothness. In this paper, we propose an adaptive adver-
sarial distillation (AdaAD) that involves the teacher model
in the knowledge optimization process in a way interacting
with the student model to adaptively search for the inner
results. Comparing with state-of-the-art methods, the pro-
posed AdaAD can significantly boost both the prediction
accuracy and adversarial robustness of student models in
most scenarios. In particular, the ResNet-18 model trained
by AdaAD achieves top-rank performance (54.23% robust
accuracy) on RobustBench under AutoAttack.

1. Introduction

Although demonstrating great success in dealing with
large-scale data, deep neural networks (DNNs) are often
over-parameterized in practice and require huge storage as
well as computational cost [18, 22, 26]. In many real-time
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applications, it is desirable to deploy lightweight models in
mobile devices with limited resources for prompt inference
results. Teacher-student architectures have been considered
as a means of computational-effective and high-performing
deployment in such applications [23, 29, 45]. Due to lim-
ited budget when deploying at the edge, small (student)
models are in general lack of sufficient protection mecha-
nisms. Compared with large-scale models, however, they
are more prone to the risk of being exposed to a potential
attacker, e.g., who crafts adversarial attacks for malicious
purpose [3, 21, 43]. Therefore, it is essential to improve ad-
versarial robustness of small models against malicious at-
tacks when applying them to real applications.

As a defense scheme, adversarial training (AT) has been
studied and demonstrated effective in improving adversar-
ial robustness for deep models [21, 24, 27, 32, 36]. Sev-
eral studies have shown that AT is more effective on over-
parameterized models with high capacity rather than on
small models [27, 31, 48]. Recently, adversarial distilla-
tion (AD) was proposed as an alternative scheme for im-
proving adversarial robustness in teacher-student architec-
tures [20, 28, 49, 50]. Like AT, AD can also be formulated
as a min-max optimization problem. It aims to enable the
student model to inherit not only the prediction accuracy but
also the adversarial robustness from a robust teacher model
under the paradigm of robust optimization.

Existing AD methods generally utilize teacher models to
produce fixed soft labels to guide the distillation optimiza-
tion process [20, 49, 50]. However, fitting a neighborhood
region with a fixed label will inevitably impose an over-
correction towards model smoothness, leading to a severe
trade-off between accuracy and robustness [12,12,17]. Fur-
thermore, these AD methods do not fully interact with the
teacher models to minimize the prediction discrepancy be-
tween student and teacher models, thereby limiting the pre-
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diction and robustness inherited by the student model.
In this paper, we propose adaptive adversarial distilla-

tion (AdaAD) which fully involves a robust teacher model
to adaptively search for more representative inner results in
the knowledge distillation process. Specifically, in the in-
ner optimization of AdaAD, we adaptively search for the
points, representing the upper bound of the prediction dis-
crepancy between the two models, as the inner results. And
in outer optimization, we minimize the upper bound to per-
form distillation. In this way, we can enable the student
model to better inherit the prediction accuracy and adver-
sarial robustness from the teacher model.

Our main contributions can be summarized as:

• We formulate a new AD objective by maximizing the
prediction discrepancy between teacher and student
models in the min-max framework, and provide de-
tailed analysis to explain why the proposed method can
achieve better distillation performance.

• We design an adaptive adversarial distillation scheme,
namely AdaAD, that adaptively searches for optimal
match points in the inner optimization. This enables
a much larger search radius (also known as perturba-
tion limit) in local neighborhoods, which significantly
enhances the robustness of student models.

• Extensive experimental results verify that the perfor-
mance of our method is significantly superior to that
of the state-of-the-arts AT and AD methods in various
scenarios. In particular, the ResNet-18 model trained
over CIFAR-10 dataset by AdaAD achieves top-rank
performance (54.23% robust accuracy) on the leader-
board of RobustBench 1 under AutoAttack.

2. Related Work
2.1. Adversarial Attacks

Adversarial attacks are roughly categorized into 1)
white-box attacks, and 2) black-box attacks. In white-box
attacks, the adversary usually utilizes gradient informa-
tion from target models to perform iteration optimization
for crafting adversarial examples, like Fast Gradient Sign
Method (FGSM) [21], Projected Gradient Descent (PGD)
[27], Jacobian-based Saliency Map Attacks (JSMA) [33],
Carlini-Wagner attacks (CW) [5], and AutoAttack (AA)
[16]. Black-box attacks includes transfer-based attacks and
query-based attacks. In transfer-based attacks, the adver-
sary trains surrogate models locally to generate adversarial
examples, which are then used to successfully attack tar-
get models. Query-based attacks, on the other hand, require
querying the target models and searching for optimal direc-
tions across their discriminative boundary [1,10,11,13,15].

1https://robustbench.github.io

2.2. Adversarial Training

Adversarial training (AT) augmenting training samples
with adversarial ones is one of the most effective and prac-
tical methods for training robust models, which cannot be
completely defeated by powerful adapted attacks and thus
has shown to be promising. [21] initially proposed to use
FGSM adversarial examples for training. Then, [27] ex-
tended it by replacing FGSM samples with PGD ones, re-
ferred to as PGD-AT. Mathematically, PGD-AT can be for-
mulated as a min-max framework to solve a robust opti-
mization problem. An increasing number of approaches are
proposed to improve AT, including introducing regulariza-
tion terms [32,47], using additional data [6,35,39], and han-
dling iteration process [24, 36].

2.3. Adversarial Distillation

AT is known as to require a large model capacity [38],
making it challenging for small models with low capac-
ity to attain satisfactory robustness. To mitigate this issue,
Adversarial Distillation (AD), which aims at improving the
robustness of small models (student models) by distilling
knowledge from large, robust models (teacher models), has
been extensively studied and shown to be promising. Unlike
the conventional knowledge distillation [4, 23], AD empha-
sizes that student models are expected to inherit robustness
from teacher models in addition to clean accuracy. Adver-
sarial Robust Distillation (ARD) [20] was proposed to per-
form AD by involving the clean predictions of teacher mod-
els, which can be viewed as a natural extension of AT from
the perspective of knowledge distillation. Then, [50] revis-
ited ARD and proposed Robust Soft Label Adversarial Dis-
tillation (RSLAD) to use the robust soft labels in the inner
optimization, demonstrating improved robustness. RSLAD
highlights the importance of considering robust soft labels
in the inner optimization of AD. [49] claimed that teacher
models are not consistently reliable in each point and then
proposed Introspective Adversarial Distillation (IAD) to
conduct reliable AD. In addition, [28] proposed Adversar-
ial Knowledge Distillation (AKD) to enhance AD by sev-
eral strategies, such as early stopping, label mixing. The
above mentioned AD methods perform alignment on the
prediction outputs. On the other hand, some studies have
explored alignment on feature layers [2, 8, 40, 44] or input
gradients [7, 41], for robust student models generation.

3. Methodology
3.1. The Min-Max Framework of AD

We first revisit knowledge distillation in the ordinary set-
ting. In general, knowledge distillation aims at distilling the
knowledge of larger teacher models into small student mod-
els and is widely adopted in model compression. Assume
that the input data point (xi, yi) obey the joint data distribu-
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tion pd(x, y), the optimization objective of knowledge dis-
tillation can be formulated as

Epd(x)[(1−α)ℓ(S(x), pd(y|x))+ατ2KL (Sτ (x), T τ (x))],
(1)

where pd(y|x) denotes the ground-true labels typically pro-
vided by the dataset, ℓ is Cross-Entropy loss (CE) widely
used in supervision learning, τ is a temperature constant
added in softmax transformation, KL is the Kullback-
Leibler divergence, T (·) and S(·) denote the teacher and
student model, parameterized by θT and θS , respectively.
Given an input x, the output of the student model S(x)
is trained to match T (x) generated by the teacher model.
In the ordinary knowledge distillation, the student model is
expected to inherit clean accuracy from the teacher model
without consideration on adversarial robustness.

When considering adversarial robustness, the student
model is expected to inherit not only accuracy on natural
samples, but also robustness on adversarial ones from the
teacher model. Along with this line of work, ARD [20] de-
fined distillation objective from the adversarial perspective,
which is formulated as

Epd(x)[(1−α)ℓ(S(x), pd(y|x))+ατ2KL (Sτ (x∗), T τ (x))],
(2)

where x∗ denotes the searching result of the inner optimiza-
tion, which can be written as

x∗ = x+ argmax
∥δ∥p≤ϵ

ℓ (S(x+ δ), pd(y|x)) , (3)

where ϵ is the perturbation size under the Lp-norm con-
strain. Generally, ϵ can also be regarded as the search ra-
dius or the neighborhood region as well. To further improve
robustness performance of student models, inherited from
teacher models, RSLAD [50] was proposed to demonstrate
that student models can obtain better robustness results by
using robust soft-labels, i.e., the predictions of teacher mod-
els on clean samples, to guide the inner optimization. The
inner optimization of RSLAD can be formulated as

x∗ = x+ argmax
∥δ∥p≤ϵ

KL(S(x+ δ) ||T (x)). (4)

In addition, AKD [28] was proposed to enhance AD by
label mixing, the objective of AKD is

Epd(x)CE(S(x
∗), βT (x∗) + (1− β)pd(y|x)), (5)

where x∗ is calculated by Eq. (3) and β ∈ [0, 1] controls the
mixing of the distilled labels and the ground-true ones.

3.2. Adaptive Adversarial Distillation (AdaAD)

The desire goal of AD is to enable student models to
inherit as much of the prediction accuracy and adversar-
ial robustness from teacher models by distillation training.

Ideally, given an input x and its ϵ-neighborhood spaces,
it is expected that the predictions of the student model on
any point in this space can be maximally aligned with the
teacher model. By considering the whole input distribution
and the relevant space of tolerant perturbation, the distilla-
tion objective in AD could be formally defined as

LAD =

∫∫
D(S(x+ δ), T (x+ δ))dδdx, (6)

where D(·) represents distance function and δ represents
feasible points under the constrain ∥δ∥p ≤ ϵ. This objec-
tive term Eq. (6) encourages to achieve maximum point-
to-point alignment between S(·) and T (·) on the full input
distribution pd(x) along with the adversarial spaces. How-
ever, since the input distribution is generally mapped in a
high-dimensional space , it is extraordinarily challenging to
directly optimize LAD in practice.

We note that the upper bound of D(S(x+ δ), T (x+ δ))
for any point x and its ϵ-neighborhood spaces can be ap-
proximately tractable by leveraging gradient descent opti-
mization. With this observation, it is feasible to convert
Eq. (6) into a solvable objective L′

AD to alternatively op-
timize LAD, formulated as

L′
AD =

∫
sup

∥δ∥p≤ϵ

(D(S(x+ δ), T (x+ δ)))dx. (7)

The optimization of Eq. (7) consists of two steps. The
first step is to find the maximum distance value in the ϵ-
neighborhood region of the given point x, and the next step
is to compute the cumulative integral of the corresponding
maximum distance over all sampled x. The two steps can
be equivalent to a min-max optimization process, can be
written as

min max
∥δ∥p≤ϵ

D(S(x+ δ), T (x+ δ)). (8)

Based on the above analysis, we propose to utilize a min-
max framework to derive the suboptimal solution of mini-
mizing LAD, which can be viewed as an alternative of max-
imum point-to-point alignment between student and teacher
models under the paradigm of robust training. Specifically,
we first use gradient descent algorithm to adaptively search
the upper bound of the prediction discrepancy between the
student and teacher model in the inner optimization, in
which the gradient of the prediction discrepancy between
two models w.r.t the input is derived by involving both two
models in the backpropagation. Then we minimize the
upper bound in outer optimization to perform distillation.
Since the inner optimization can adaptively search for the
upper bound of discrepancy between two models’ predic-
tions on ϵ-neighborhood region, we therefore name the pro-
posed method as adaptive adversarial distillation (AdaAD).
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Figure 1. The comparison on the inner optimization of RSLAD and the proposed AdaAD

Mathematically, given an input x and tolerant perturba-
tion size ϵ, the proposed inner optimization aims at search-
ing for the “support” point x∗ with maximum prediction
discrepancy between student and teacher models in the
neighborhood region of the data point x, formulated as

x∗ = x+ argmax
∥δ∥p≤ϵ

KL (S(x+ δ) ||T (x+ δ)) . (9)

We adopt KL divergence as the distance function to mea-
sure the discrepancy between two models’ output probabil-
ities. In practice, we leverage projection gradient descent
strategy [27] to search for “support” instance x∗ for train-
ing. After the searching process of x∗ has been done, the
upper bound of the prediction discrepancy between the stu-
dent and teacher model in the ϵ-neighborhood region of the
data point x could be approximated as KL(S(x∗) ||T (x∗)).
Then, the outer optimization is to minimize the approxi-
mated upper bound of the two models’ output discrepancy
to perform distillation, defined as

argmin
θS

KL(S(x∗) ||T (x∗)). (10)

With considering introducing the distillation temperature
τ and combining the inner and outer optimization, the pro-
posed overall optimization could be formulated as

argmin
θS

(1−α)KL(S(x) ||T (x))+αKL(Sτ (x∗) ||T τ (x∗)),

(11)
where x∗ is derived by Eq. (9), the clean output matching
KL(S(x) ||T (x)) can also be considered in the outer opti-
mization, and the hyper-parameter α is used to control the
balance between the two matching part.

Considering that teacher models with high capacity may
still be unable to make the accurate prediction on some
input points and their neighborhood region, teacher mod-
els become unreliable. Thus, it is undesirable to conduct
AD for those points on which teacher models make wrong
predictions. [49] demonstrated that teacher models progres-
sively become unreliable during AD training and accord-
ingly proposed Introspective Adversarial Distillation (IAD)

to encourage student models to partially instead of fully
trust teacher models for AD. Because the objective of the
proposed AdaAD is to maximally align with the teacher
model and is a general method for AD, AdaAD can be nat-
urally coupled with IAD to make the distillation process
more reliable. The combination of AdaAD and IAD is re-
ferred to as AdaIAD.

3.3. Inner Optimization Difference

Fig. 1 illustrates the inner optimization of RSLAD and
AdaAD. RSLAD differs from AdaAD in two key aspects.
First, RSLAD employs fixed soft predictions as the super-
vision target for guiding the inner optimization. Second,
RSLAD does not require backward propagation of teacher
models during the inner optimization, whereas AdaAD
does. The former imposes local invariance, leading to a sig-
nificant adversarial trade-off between accuracy and robust-
ness, which we will discuss in detail in Sec. 3.5. The latter
means that RSLAD treats the teacher model as a black-box
model, and does not utilize the gradient information from
the teacher model to optimize the inner result x∗ during
the inner optimization. As a result, the predictions discrep-
ancy between the two models on the inner results is subop-
timal. Hence, the inner optimization of RSLAD can only be
considered a rough estimate of the upper bound in Eq. (7),
thereby limiting distilled performance by student models.

Note that AdaAD will be equivalent to RSLAD when
the search radius ϵ = 0. Nonetheless, setting ϵ = 0 will
make AD methods convert into conventional knowledge
distillation defined as Eq. (1), which cannot ensure robust
optimization. When ϵ is appropriately selected and larger,
RSLAD and AdaAD are not equivalent because the soft pre-
dictions of the teacher model on the ϵ-neighborhood region
are not constant due to the high-dimensional property [21].

3.4. Larger Search Radius ϵ

As aforementioned, PGD-AT, RSLAD, and other AD
methods use fixed either hard labels or soft labels as the
supervision information to guide the inner optimization, in
which the discrepancy between the prediction of the in-
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ner result and the fixed supervision target is expected to
be maximized. Hence, the inner results generated by them
are more likely to be highly adversarial. Meanwhile, there
is an inevitable demand of large model capacity for fitting
highly adversarial inner results with the pre-given targets
[38]. However, student models obviously do not meet the
requirement. Intuitively, the larger the search radius ϵ in the
inner optimization is, the stronger the adversarial nature of
the produced inner results would be. Therefore, with large
ϵ in the inner optimization, the performance of PGD-AT,
RSLAD, and cited other AD methods will sharply drop.

In contrast, the inner optimization of AdaAD is to search
for the upper bound of the prediction discrepancy between
student and teacher models, implying the generated inner
results are not necessarily adversarial. This inherent prop-
erty allows AdaAD to significantly expand the searching
region of the inner results, i.e., larger ϵ in the inner opti-
mization. Increasing ϵ in the inner optimization means that
the feasible searching region is expanded, which is benefi-
cial for student models to inherit prediction accuracy and
adversarial robustness from the robust teacher model. The
experimental results can be referred to Sec. 4.2.

3.5. Reconciling Accuracy and Robustness

The robust error defined in the original formulation of
PGD-AT is equivalent to

RMadry(θ) = Epd(x)[ max
∥δ∥p≤ϵ

KL (pd(y|x)∥fθ(x+ δ))],

(12)
by replacing the Cross-Entropy loss with KL divergence
[27, 30], where pd(y|x) denotes the ground-truth distribu-
tion. The desired goal of Eq. (12) is to minimize the differ-
ence between the distribution of predictions of adversarial
examples and the ground-truth distribution. However, many
empirical observations have shown that despite model ro-
bustness being enhanced, clean accuracy largely drops by
optimizing Eq. (12). This adversarial trade-off has received
extensive attention. In particular, [30] revealed that opti-
mizing the robust error RMadry (θ) to find the optimal θ∗

will impose an inductive bias towards local invariance: for
∀δ ∈ {δ | ∥δ∥p ≤ ϵ}, fθ(x+δ) is encouraged to be equal to
pd(y|x) that represents the hard labels in the dataset. Sim-
ilarly, replacing pd(y|x) by fixed T (x) in RSLAD still in-
evitably imposes the local invariance. As a result of the
locally-invariant bias, the trained model has a propensity
to be over-smoothed,i.e., an overcorrection towards model
smoothness, as shown in the earlier publication [12, 17].
Consequently, when minimizing RMadry w.r.t θ during AT,
fθ∗(x) generally does not converge to pd(y|x) as demon-
strated in [30]. This inconsistency between fθ∗(x) and
pd(y|x) can explain why there exists a distinct trade-off be-
tween accuracy and robustness by AT.

The proposed AdaAD can address the inconsistency to

Table 1. The performance of teacher models for two datasets.
WRN-34-10 and WRN-34-20 are abbreviations of teacher mod-
els WideResNet-34-10 and WideResNet-34-20, respectively.

Dataset Teacher Clean PGD CW AA
CIFAR-10 WRN-34-10 [31] 87.20 55.90 77.80 51.79
CIFAR-10 WRN-34-20 [9] 86.03 63.33 82.60 57.71
CIFAR-100 WRN-34-10 [9] 64.07 36.61 56.22 30.57

some extent, which enables the trained model improve the
adversarial trade-off. Specifically, different from PGD-AT,
the robust error defined in AdaAD is

RAdaAD(θS) = Epd(x)[ max
∥δ∥p≤ϵ

KL (S(x+ δ)∥T (x+ δ))].

(13)
In AdaAD, the teacher model T (·) is a well-trained robust
model and can be viewed as a well-estimated probability
generator for each data point and its ϵ-neighborhood region.
Hence, the teacher model T (·) can be served as a better sub-
stitute than pd(y|x). In this way, pd(y|(x+ δ)) that is inac-
cessible and is not accurately labeled in the dataset can be
approximated by T (x + δ) for any δ ∈ {δ | ∥δ∥p ≤ ϵ}.
The used teacher model T (·) generally has a non-negligible
property of local variance: for ∀δ1, δ2, satisfying δ1 ̸= δ2
and δ1, δ2 ∈ {δ | ∥δ∥p ≤ ϵ}, T (x+ δ1) is generally not ex-
actly equal to T (x + δ2) . More importantly, even for data
points of the same class in supervision classification, there
are non-negligible numerical differences. Meanwhile, the
inner results produced by AdaAD from different initial data
points will essentially yield various convergence points.
The alignment between T (x+δ∗) and S(x+δ∗) in the outer
optimization in AdaAD allows S(x+δ) to point-wisely and
maximally match T (x + δ) for any δ ∈ {δ | ∥δ∥p ≤ ϵ}.
These natures mean that local invariance can be largely
eliminated during the training. Hence, AdaAD can gener-
ally reconcile accuracy and robustness.

4. Experimental Evaluations
Experimental Setup. We evaluate the effectiveness of

AdaAD in two benchmark image datasets, namely CIFAR-
10 and CIFAR-100 [25]. In both two datasets, the pixel
range of images is normalized to be in the interval [0,1].
We compare AdaAD and AdaIAD with two commonly used
AT methods (PGD-AT and TRADES) and some represen-
tative AD approaches, namely ARD, IAD, RSLAD, and
AKD. Following the standard setting in AD [20,49,50], we
also consider two widely used student models, including
ResNet-18 [22] and MobileNetV2 [37], and teacher mod-
els including WideResNet-34-10 for both two datasets and
WideResNet-34-20 for CIFAR-10 [9,31]. The performance
of teacher models is shown in Tab. 1

Implementation Details. We train the models using
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Table 2. Model robustness by recognition accuracy (%) on various attacks over CIFAR-10 dataset. RN-18 and MN-V2 are abbreviations
of student models ResNet-18 and MobileNetV2, respectively. The best results are boldfaced.

Teacher Model WRN-34-20 [9] WRN-34-10 [31]
Model Method Clean FGSM PGD CW2 AA Clean FGSM PGD CW2 AA

RN-18

PGD-AT 82.95 57.16 52.87 77.56 47.69 82.95 57.16 52.87 77.56 47.69
TRADES 83.00 58.42 53.18 76.92 49.21 83.00 58.42 53.18 76.92 49.21

ARD 84.03 58.16 53.11 79.13 48.07 84.04 58.26 52.67 74.95 48.62
IAD 84.71 61.28 54.92 79.44 49.85 83.19 57.76 53.17 76.77 48.82

RSLAD 83.52 58.36 53.46 78.36 48.66 83.60 57.45 52.60 76.85 48.45
AKD 83.22 58.63 54.16 78.44 49.26 84.69 58.97 53.28 77.25 48.37

AdaAD 85.58 60.85 56.40 80.83 51.37 86.75 60.37 54.13 78.18 50.06
AdaIAD 85.04 62.62 58.34 81.15 52.96 87.08 61.47 55.01 78.77 50.74

MN-V2

PGD-AT 77.54 53.58 49.90 72.54 44.56 77.54 53.58 49.90 72.54 44.56
TRADES 79.80 54.84 50.51 75.30 45.67 79.80 54.84 50.51 75.30 45.67

ARD 79.56 53.17 49.06 74.51 44.04 84.63 58.00 50.82 72.93 46.48
IAD 83.31 58.29 52.98 78.03 47.11 82.11 55.27 50.20 75.41 45.66

RSLAD 81.11 56.39 51.66 76.20 46.75 83.24 56.69 51.57 76.52 47.18
AKD 83.41 57.71 52.35 77.97 46.82 82.64 56.17 50.49 75.31 45.67

AdaAD 83.79 57.29 53.04 79.24 47.66 86.80 58.56 52.00 78.27 47.97
AdaIAD 84.63 59.79 54.97 80.21 49.29 85.69 56.55 50.11 77.55 46.03

Table 3. Model robustness by recognition accuracy (%) on various
attacks over CIFAR-100 dataset.

Teacher Model WRN-34-10 [9]

RN-18

Method Clean FGSM PGD CW2 AA
PGD-AT 56.27 32.08 29.84 49.05 24.99
TRADES 57.82 32.52 30.38 51.30 25.02

ARD 60.94 35.31 32.72 53.67 26.04
IAD 60.43 35.75 32.80 52.71 26.84

RSLAD 59.55 35.68 33.35 52.89 27.77
AKD 57.84 34.32 31.98 51.06 26.06

AdaAD 62.19 35.33 32.52 54.67 26.74
AdaIAD 62.49 36.31 33.76 55.18 27.98

MN-V2

PGD-AT 51.55 29.34 27.26 45.73 22.07
TRADES 53.05 29.07 27.44 47.62 21.82

ARD 57.18 33.13 30.91 51.50 24.20
IAD 56.33 32.88 30.18 49.00 24.07

RSLAD 56.04 32.76 30.29 50.14 24.56
AKD 56.75 33.11 30.50 49.53 24.65

AdaAD 61.44 34.75 31.97 54.21 25.91
AdaIAD 61.24 34.82 32.68 54.47 26.43

an SGD momentum optimizer with an initial learning rate
0.1, momentum 0.9, and weight decay 5e-4. For PGD-
AT, we adopt 110 training epochs with early stopping strat-
egy [31, 36], while for TRADES and other AD methods,
we use 200 training epochs and the learning rate is divided
by 10 at the 100th and 150th epochs. Unless otherwise
specified, the number of iterations during the inner opti-
mization is set to 10 with step size 2/255, and the total
perturbation bound is 8/255 under L∞ constrain. We set
the hyper-parameter α = 1.0 in ARD, IAD, RSLAD, and

AdaAD as recommended in [20]. For each AD method,
we use the recommended distillation temperature τ as re-
ported in [20, 49, 50]. We adopt random cropping and
flipping for data augmentation during the whole training
process. Our implementation is based on Pytorch frame-
work [34] and advertorch library [19]. Code is available at
https://github.com/boyellow/AdaAD.

Evaluation Metrics. We use natural/clean accuracy on
natural test samples and robust accuracy on adversarial test
samples to demonstrate model performance. We consider
4 representative adversarial attacks including FGSM, PGD,
CW2 (constrained by l2 norm), and AutoAttack (AA). For
FGSM, PGD, and AA, the maximum perturbation size is set
to 8/255, while PGD adopts 10 steps with step size 2/255.
The balance constant in CW is set to 0.1. Unless otherwise
specified, We report the results on the checkpoint with the
best PGD-10 accuracy.

4.1. Model Adversarial Robustness

Tab. 2 and Tab. 3 report the recognition accuracy of the
proposed AdaAD and AdaIAD models, as well as those of
other state-of-the-art methods, under various adversarial at-
tacks. Since PGD-AT and TRADES training is not facili-
tated by teacher models, the performance of models trained
by PGD-AT and TRADES remains unchanged with differ-
ent teacher models. From the two tables, we can observe
three important findings.

First, AD methods are substantially ahead of AT ones for
both clean accuracy and adversarial robustness, indicating
AD is more effective and competitive than AT in improving
the robustness of small-scaled models. Second, AdaAD and
AdaIAD significantly outperform the cited state-of-the-art
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(b) Using the teacher WideResNet-34-20 [9]

Figure 2. Clean and AA accuracy (%) of the studnet model ResNet-18 trained with increasing ϵ in the inner optimization on CIFAR-10.

methods in most scenarios. In particular, compared to the
best results achieved by the state-of-the-arts, for the robust
accuracy on the most powerful attack AA (abbreviated by
AA accuracy), AdaAD and AdaIAD achieve significant im-
provements of up to 1.52% and 3.11%, respectively, more-
over, for the natural accuracy, AdaAD and AdaIAD achieve
significant gains of up to 4.26% and 4.06%, respectively.
It reveals AdaAD and AdaIAD can explicitly improve the
adversarial trade-off. Third, the phenomenon of robust sat-
uration is observed for ARD and RSLAD. That is, the ro-
bustness of distilled student models does not increase with
the used teacher model becoming more robust. In contrast,
AdaAD and AdaIAD bring greater improvement in robust-
ness when using a more robust teacher model. It should also
be noted that since AA includes two kinds of query-based
attacks, the effectiveness of AdaAD and AdaIAD in im-
proving AA accuracy demonstrates that AdaAD and Ada-
IAD are reliable in resisting query-based attacks.

4.2. Effects of Increasing The Search Radius ϵ

Fig. 2 evaluates the clean accuracy and AA accuracy for
the student model ResNet-18 trained with increasing pertur-
bation limit ϵ in inner optimization on CIFAR-10. Overall,
the proposed AdaAD achieves significantly higher accuracy
and robustness than other methods in all cases of ϵ. Specif-
ically, when increasing ϵ from 8/255 to 32/255, the clean
accuracy on AdaAD will keep almost unchanged, and the
AA accuracy on AdaAD will consistently increase, while
the clean accuracy on all the compared methods will drop
sharply below 60% and their AA accuracy will decrease be-
low 40%, with two different teacher models being used. In
particular, the AA accuracy on the proposed AdaAD will
increase from 50.06% to 52.86%, surprisingly surpassing
that of the teacher WideResNet-34-10 [31] (51.79%). More

Table 4. Recognition accuracy (%) on transfer-based attacks for
ResNet-18 models trained by various methods over CIFAR-10
dataset.

Surrogate ResNet-34 VGG-16
Method FGSM PGD JSMA FGSM PGD JSMA
PGD-AT 63.05 60.58 84.90 64.06 62.78 85.77
TRADES 65.57 63.93 84.71 66.88 66.00 85.36

ARD 65.26 63.20 86.06 66.64 65.43 87.03
IAD 67.49 65.57 86.72 69.09 68.27 87.42

RSLAD 65.06 62.77 85.43 65.91 64.83 86.26
AKD 64.34 62.23 85.22 65.24 64.30 86.24

AdaAD 66.81 64.57 88.00 68.74 67.89 88.39
AdaIAD 67.66 65.81 87.31 69.44 68.62 88.01

importantly, as shown in Fig. 2b, even compared with the
best robust accuracy (52.48%) for ResNet-18 exhibited on
RobustBench [14] under AA attack in the scenario that no
additional data augmentation is used, our proposed AdaAD
method can achieve a 1.75% improvement (54.23%) when ϵ
is set as 32/255 and a more robust model, i.e., WideResNet-
34-20 [9], is employed as the teacher model. The results
verify that the adaptive nature allows AdaAD to search for
the upper bound of the prediction discrepancy between the
student and teacher model in a larger local region, which
benefits the student model to better inherit from the teacher
model without clean accuracy degradation.

4.3. Evaluation on Transfer-based Attacks

We examine whether the proposed AdaAD and Ada-
IAD effectively resist transfer-based attacks. Specifically,
we train two surrogate models with different architectures,
ResNet-34 [22] and VGG-16 [42], using the PGD-AT
method with the early stopping strategy. Then we gen-
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Figure 3. The visualization of weight loss landscape in the training process between 100 and 180 epochs for the ResNet-18 model along
10 different random directions, where Loss denotes the adversarial loss and s is the magnitude defined in [46].

Table 5. Recognition accuracy (%) evaluated on self adversarial
distillation over CIFAR-10 dataset.

Method Clean FGSM PGD CW2 AA

RN-18

PGD-AT 82.95 57.16 52.87 77.56 47.69
ARD 80.66 55.68 50.90 74.87 46.61
IAD 81.32 57.54 52.91 75.69 48.20

RSLAD 81.92 57.94 53.29 76.26 49.06
AKD 83.74 58.87 54.17 77.97 48.84

AdaAD 83.13 57.54 53.30 77.62 49.61
AdaIAD 82.88 58.45 54.29 77.62 50.19

erate adversarial attacks on the two surrogate models to
evaluate the effectiveness of the model ResNet-18 trained
by the proposed AdaAD and AdaIAD, and the cited other
AD approaches. Tab. 4 reports the evaluation results. It
demonstrates that the adversarial examples generated on
ResNet-34 model have stronger transferability than VGG-
16, which may be attributed to their similar architecture.
Moreover, AdaAD and AdaIAD consistently outperform
other approaches in prediction accuracy, which indicates
their effectiveness in mitigating transfer-based attacks.

4.4. Self Adversarial Distillation

Empirical studies have shown that self adversarial dis-
tillation is a promising technique for enhancing the per-
formance of AT [20, 49, 50]. In this section, we examine
whether the proposed methods are also effective in the con-
text of self-adversarial distillation. We first train a robust
model using AT or its variations, and then directly use it
as the teacher model to distillate a student model with the
same network architecture. We conduct the experiment on
ResNet-18 over CIFAR-10 and present the results in Tab. 5.
From Tab. 2 and Tab. 5, we observe that self adversarial
distillation by AdaAD and AdaIAD can improve the robust-
ness performance of PGD-AT and TRADES. In particular,
our proposed AdaIAD can significantly increase the AA ac-
curacy from 47.69% to 50.19%, indicating its promising
performance in self adversarial distillation.

4.5. The Effect of Alleviating Robust Overfitting

The prior work [46] studied the relationship between ro-
bust overfitting and weight loss landscape for AT methods,
indicating the flatter the weight loss landscape is, the less
likely robust overfitting occurs during the AT training pro-
cess. On the other hand, AD methods can achieve better
performance than AT in most scenarios, as shown in Tab. 2
and Tab. 3. To further explore the effectiveness of AD meth-
ods, we plot the weight loss landscape of AD methods and
PGD-AT. Fig. 3 demonstrates the weight loss landscape of
PGD-AT gradually becomes sharper while the landscape of
AdaAD almost keeps steady during the training process be-
tween 100 and 180 epochs. A similar trend could also be
observed for other AD methods. The results reveal that AD
methods can result in a flatter weight loss landscape to avoid
robust overfitting. Our results can coincide with and extend
the analysis in [46] for AD methods.

5. Conclusion
In this paper, we propose to engage a robust teacher

model in the inner optimization process to perform adap-
tive adversarial distillation (AdaAD) for building robust
lightweight models. AdaAD adaptively searches for match
points representing the upper bound of the prediction dis-
crepancy between student and teacher models for align-
ment. We analytically show that AdaAD partially re-
solves the overcorrection problem towards model smooth-
ness commonly faced by most of existing AT and AD meth-
ods, thereby reconciling the adversarial trade-off between
accuracy and robustness. Moreover, AdaAD allows for a
larger search radius ϵ in the inner optimization, which ben-
efits the distillation process. Extensive experimental results
demonstrate AdaAD and AdaIAD outperform existing AD
and AT methods in most scenarios.
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