
CP3: Channel Pruning Plug-in for Point-based Networks

Yaomin Huang1,2,* Ning Liu2,* Zhengping Che2 Zhiyuan Xu2 Chaomin Shen1

Yaxin Peng3 Guixu Zhang1,B Xinmei Liu1 Feifei Feng2 Jian Tang2,B

1School of Computer Science, East China Normal University
2Midea Group

3Department of Mathematics, School of Science, Shanghai University
1{51205901049,51205901078}@stu.ecnu.edu.cn 1{cmshen,gxzhang}@cs.ecnu.edu.cn

2{liuning22,chezp,xuzy70,feifei.feng,tangjian22}@midea.com 3yaxin.peng@shu.edu.cn

Abstract

Channel pruning can effectively reduce both compu-
tational cost and memory footprint of the original net-
work while keeping a comparable accuracy performance.
Though great success has been achieved in channel pruning
for 2D image-based convolutional networks (CNNs), exist-
ing works seldom extend the channel pruning methods to
3D point-based neural networks (PNNs). Directly imple-
menting the 2D CNN channel pruning methods to PNNs
undermine the performance of PNNs because of the dif-
ferent representations of 2D images and 3D point clouds
as well as the network architecture disparity. In this pa-
per, we proposed CP3, which is a Channel Pruning Plug-
in for Point-based network. CP3 is elaborately designed
to leverage the characteristics of point clouds and PNNs
in order to enable 2D channel pruning methods for PNNs.
Specifically, it presents a coordinate-enhanced channel im-
portance metric to reflect the correlation between dimen-
sional information and individual channel features, and it
recycles the discarded points in PNN’s sampling process
and reconsiders their potentially-exclusive information to
enhance the robustness of channel pruning. Experiments
on various PNN architectures show that CP3 constantly
improves state-of-the-art 2D CNN pruning approaches on
different point cloud tasks. For instance, our compressed
PointNeXt-S on ScanObjectNN achieves an accuracy of
88.52% with a pruning rate of 57.8%, outperforming the
baseline pruning methods with an accuracy gain of 1.94%.

* Equal contributions.
B Corresponding authors.
This work is done during Yaomin Huang and Xinmei Liu’s internship

at Midea Group.

1. Introduction

Convolutional Neural Networks (CNNs) often encounter
the problems of overloaded computation and overweighted
storage. The cumbersome instantiation of a CNN model
leads to inefficient, uneconomic, or even impossible de-
ployment in practice. Therefore, light-weight models that
provide comparable results with much fewer computational
costs are in great demand for nearly all applications. Chan-
nel pruning is a promising solution to delivering efficient
networks. In recent years, 2D CNN channel pruning,
e.g., pruning classical VGGNets [37], ResNets [14], Mo-
bileNets [16], and many other neural networks for process-
ing 2D images [6, 7, 12, 24, 26, 29, 40], has been success-
fully conducted. Most channel pruning approaches focus on
identifying redundant convolution filters (i.e., channels) by
evaluating their importance. The cornerstone of 2D chan-
nel pruning methods is the diversified yet effective channel
evaluation metrics. For instance, HRank [24] uses the rank
of the feature map as the pruning metric and removes the
low-rank filters that are considered to contain less informa-
tion. CHIP [40] leverages channel independence to repre-
sent the importance of each feature mapping and eliminates
less important channels.

With the widespread application of depth-sensing tech-
nology, 3D vision tasks [9, 10, 36, 44] are a rapidly growing
field starving for powerful methods. Apart from straight-
forwardly applying 2D CNNs, models built with Point-
based Neural Networks (PNNs), which directly process
point clouds from the beginning without unnecessary ren-
dering, show their merits and are widely deployed on edge
devices for various applications such as robots [22, 49] and
self-driving [2, 53]. Compressing PNNs is crucial due to
the limited resources of edge devices and multiple models
for different tasks are likely to run simultaneously [8, 30].
Given the huge success of 2D channel pruning and the great
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demand for efficient 3D PNNs, we intuitively raise one
question: shall we directly implement the existing pruning
methods to PNNs following the proposed channel impor-
tance metrics in 2D CNNs pruning?

With this question in mind, we investigate the fundamen-
tal factors that potentially impair 2D pruning effectiveness
on PNNs. Previous works [19, 48] have shown that point
clouds record visual and semantic information in a signifi-
cantly different way from 2D images. Specifically, a point
cloud consists of a set of unordered points on objects’ and
environments’ surfaces, and each point encodes its features,
such as intensity along with the spatial coordinates (x,y,z).
In contrast, 2D images organize visual features in a dense
and regular pixel array. Such data representation differences
between 3D point clouds and 2D images lead to a) different
ways of exploiting information from data and b) contrasting
network architectures of PNNs and 2D CNNs. It is credible
that only the pruning methods considering the two aspects
(definitely not existing 2D CNN pruners) may obtain supe-
rior performance on PNNs.

From the perspective of data representations, 3D point
clouds provide more 3D feature representations than 2D im-
ages, but the representations are more sensitive to network
channels. To be more specific, for 2D images, all three
RGB channels represent basic information in an isotropic
and homogeneous way so that the latent representations ex-
tracted by CNNs applied to the images. On the other hand,
point clouds explicitly encode the spatial information in
three coordinate channels, which are indispensable for ex-
tracting visual and semantic information from other chan-
nels. Moreover, PNNs employ the coordinate information
in multiple layers as concatenated inputs for deeper feature
extraction. Nevertheless, existing CNN pruning methods
are designed only suitable for the plain arrangements of 2D
data but fail to consider how the informative 3D information
should be extracted from point clouds.

Moreover, the network architectures of PNNs are de-
signed substantially different from 2D CNNs. While using
smaller kernels [37] is shown to benefit 2D CNNs [37], it
does not apply to networks for 3D point clouds. On the
contrary, PNNs leverage neighborhoods at multiple scales
to obtain both robust and detailed features. The reason
is that small neighborhoods (analogous to small kernels in
2D CNNs) in point clouds consist of few points for PNNs
to capture robust features. Due to the necessary sampling
steps, the knowledge insufficiency issue becomes more se-
vere for deeper PNN layers. In addition, PNNs use the
random input dropout procedure during training to adap-
tively weight patterns detected at different scales and com-
bine multi-scale features. This procedure randomly discards
a large proportion of points and loses much exclusive infor-
mation of the original data. Thus, the architecture disparity
between 2D CNNs and PNNs affects the performance of

directly applying existing pruning methods to PNNs.
In this paper, by explicitly dealing with the two charac-

teristics of 3D task, namely the data representation and the
PNN architecture design, we propose a Channel Pruning
Plug-in for Point-based network named CP3, which can be
applied to most 2D channel pruning methods for compress-
ing PNN models. The proposed CP3 refines the channel
importance, the key factor of pruning methods, from two
aspects. Firstly, considering the point coordinates (x, y, and
z) encode the spatial information and deeply affects fea-
ture extraction procedures in PNN layers, we determine the
channel importance by evaluating the correlation between
the feature map and its corresponding point coordinates by
introducing a coordinate-enhancement module. Secondly,
calculating channel importance in channel pruning is data-
driven and sensitive to the input, and the intrinsic sampling
steps in PNN naturally makes pruning methods unstable. To
settle this problem, we make full use of the discarded points
in the sampling process via a knowledge recycling mod-
ule to supplement the evaluation of channel importance.
This reduces the data sampling bias impact on the chan-
nel importance calculation and increases the robustness of
the pruning results. Notably, both the coordinates and re-
cycled points in CP3 do not participate in network training
(with back-propagation) but only assist channel importance
calculation in the reasoning phase. Thus, CP3 does not in-
crease any computational cost of the pruned network. The
contributions of this paper are as follows:
• We systematically consider the characteristics of PNNs

and propose a channel pruning plug-in named CP3 to
enhance 2D CNN channel pruning approaches on 3D
PNNs. To the best of our knowledge, CP3 is the first
method to export existing 2D pruning methods to PNNs.

• We propose a coordinate-enhanced channel importance
score to guide point clouds network pruning, by evaluat-
ing the correlation between feature maps and correspond-
ing point coordinates.

• We design a knowledge recycling pruning scheme that
increases the robustness of the pruning procedure, using
the discarded points to improve the channel importance
evaluation.

• We show that using CP3 is consistently superior to di-
rectly transplanting 2D pruning methods to PNNs by ex-
tensive experiments on three 3D tasks and five datasets
with different PNN models and pruning baselines.

2. Related Work
2.1. 2D Channel Pruning

Channel pruning (a.k.a., filter pruning) methods reduce
the redundant filters while maintaining the original struc-
ture of CNNs and is friendly to prevailing inference accel-
eration engines such as TensorFlow-Lite (TFLite) [11] and
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Mobile Neural Network (MNN) [18]. Mainstream channel
pruning methods [6, 7, 12, 29] usually first evaluate the im-
portance of channels by certain metrics and then prune (i.e.,
remove) the less important channels. Early work [21] uses
the l1 norm of filters as importance score for channel prun-
ing. Afterwards, learning parameters, such as the scaling
factor γ in the batch norm layer [26] and the reconstruction
error in the final network layer [51], are considered as the
importance scores for channel selection. The importance
sampling distribution of channels [23] is also used for prun-
ing. Recent works [15, 40] measure the correlation of mul-
tiple feature maps to determine the importance score of the
filter for pruning. HRank [24] proposes a method for prun-
ing filters based on the theory that low-rank feature maps
contain less information. [50] leverages the statistical dis-
tribution of activation gradient and takes the smaller gradi-
ent as low importance score for pruning. [46] calculates the
average importance of both the input feature maps and their
corresponding output feature maps to determine the overall
importance. [13, 45] compress CNNs from multiple dimen-
sions While most channel pruning methods are designed for
and tested on 2D CNNs, our CP3 can work in tandem with
existing pruners for 3D point-based networks.

2.2. Point-based Networks for Point Cloud Data

Point-based Neural Networks (PNNs) directly process
point cloud data with a flexible range of receptive field,
have no positioning information loss, and thus keep more
accurate spatial information. As a pioneer work, Point-
Net [32] learns the spatial encoding directly from the in-
put point clouds and uses the characteristics of all points to
obtain the global representations. PointNet++ [33] further
proposes a multi-level feature extraction structure to extract
local and global features more effectively. KPConv [42]
proposes a new point convolution operation to learn lo-
cal movements applied to kernel points. ASSANet [34]
proposes a separable set abstraction module that decom-
poses the normal SA module in PointNet++ into two sepa-
rate learning phases for channel and space. PointMLP [28]
uses residual point blocks to extract local features, trans-
forms local points using geometric affine modules, and ex-
tracts geometric features before and after the aggregation
operation. PointNeXt [35] uses inverted residual bottle-
neck and separable multilayer perceptrons to achieve more
efficient model scaling. Besides classification, PNNs also
serve as backbones for other 3D tasks. VoteNet [31] effec-
tively improves the 3D object detection accuracy through
the Hough voting mechanism [20]. PointTransformer [52]
designs models improving prior work across domains and
tasks. GroupFree3D [27] uses the attention mechanism to
automatically learn the contribution of each point to the ob-
ject. In this paper, we show that CP3 can be widely applied
to point-based networks on a variety of point cloud bench-

marks and representative original networks.

3. Methodology
Although point-based networks are similar to CNN in

concrete realization, they have fundamental differences in
data representation and network architecture design. To
extend the success of CNN pruning to PNN, two mod-
ules are proposed in CP3 taking advantage from the di-
mensional information and discarded points: 1) coordinate-
enhancement (CE) module, which produces a coordinate-
enhanced score to estimate the channel importance by com-
bining dimensional and feature information, and 2) knowl-
edge recycling module reusing the discarded points to im-
prove the channel importance evaluation criteria and in-
crease the robustness.

3.1. Formulations and Motivation

Point-based networks PNN is a unified architecture that
directly takes point clouds as input. It builds hierarchical
groups of points and progressively abstracts larger local re-
gions along the hierarchy. PNN is structurally composed by
a number of set abstraction (SA) blocks. Each SA block
consists of 1) a sampling layer iteratively samples the far-
thest point to choose a subset of points from input points, 2)
a group layer gathers neighbors of centroid points to a local
region, 3) a set of shared Multi-Layer Perceptrons (MLPs)
to extract features, and 4) a reduction layer to aggregate
features in the neighbors. Formally speaking, a SA block
takes an ni−1 × (d + ci−1) matrix as input that is from ni−1
points with d-dim coordinates and ci−1-dim point feature.
It outputs an ni × (d + ci) matrix of ni subsampled points
with d-dimensional coordinates (i.e., d = 3) and new ci-
dimensional feature vectors summarizing local context. The
SA block is formulated as:

Fl+1
i = R

{
hΘ

([
Fl

j;xl
j −xl

i

])}
, (1)

where hΘ is MLPs to extract grouped points feature, R is
the reduction layer (e.g. max-pooling) to aggregate features
in the neighbors { j : (i, j)∈ N }, F l

j is the features of neigh-
bor j in the l-th layer, xl

i and xl
j are input points coordinates

and coordinates of neighbor j in the l-th layer.

Channel pruning Assume a pre-trained PNN model has
a set of K convolutional layers, and A l is the l-th convolu-
tion layer. The parameters in A l can be represented as a set
of filters WA l =

{
wl

1,w
l
2, . . . ,w

l
cl

}
∈R(d+cl)×(d+cl−1)×kl×kl ,

where j-th filter is wl
j ∈ R(d+cl−1)×kl×ki . (d + cl) repre-

sents the number of filters in A l and kl denotes the kernel
size. The outputs of filter, i.e., feature map, are denoted as
F l =

{
fl
1, f

l
2, . . . , f

l
ni

}
∈ Rni×(d+ci). Channel pruning aims

to identify and remove the less importance filter from the
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Figure 1. The framework of CP3. The figure shows the specific pruning process of one of the SA blocks. Whether a channel in a PNN
is pruned is determined by three parts: 1) Original channel importance: obtained from the original CNNs channel pruning method (e.g.,
HRank [24], CHIP [40]). 2) Discarded channel importance: obtained from the Knowledge-Recycling module by leveraging the discarded
points in the network to supplement the channel importance evaluation of the corresponding points and improve the robustness of the
channel selection. 3) CE (Coordinate-Enhanced) channel importance: obtained from calculating the correlation between the feature map
and its corresponding points coordinates to guide point clouds network pruning.

original networks. In general, channel pruning can be for-
mulated as the following optimization problem:

min
δi j

K

∑
i=1

ni

∑
j=1

δi jL
(
wi

j
)

, s.t.
ni

∑
j=1

δi j = kl , (2)

where δi j is an indicator which is 1 if wi
j is to be pruned or 0

if wi
j is to be kept, L(·) measures the importance of a filter

and kl is the kept filter number.

Robust importance metric for channel pruning The
metrics for evaluating the importance of filters is critical.
Existing CNN pruning methods design a variety of L(·)
on the filters. Consider the feature maps, contain rich and
important information of both filter and input data, ap-
proaches using feature information have become popular
and achieved state-of-the-art performance for channel prun-
ing. The results of the feature maps may vary depending
on the variability of the input data. Therefore, when the
importance of one filter solely depends on the information
represented by its own generated feature map, the measure-
ment of the importance may be unstable and sensitive to the
slight change of input data. So we have taken into account
the characteristics of point clouds data and point-based net-
works architecture to improve the robustness of channel im-
portance in point-based networks. On the one hand, we pro-
pose a coordinate-enhancement module by evaluating the
correlation between the feature map and its corresponding
points coordinates to guide point clouds network pruning,
which will be described in Sec. 3.2. On the other hand, we
design a knowledge recycling pruning schema, using dis-
carded points to improve the channel importance evaluation
criteria and increase the robustness of the pruning module,
which will be described in detail in Sec. 3.3.

3.2. Coordinate-Enhanced Channel Importance

Dimensional information is critical in PNNs. The di-
mensional information (i.e., coordinates of the points) are
usually adopted as input for feature extraction. Namely, the
input and output of each SA block are concatenated with
the coordinates of the points. Meanwhile, the intermediate
feature maps reflect not only the information of the original
input data but also the corresponding channel information.
Therefore, the importance of the channel can be obtained
from the feature maps, i.e., the importance of the corre-
sponding channel. The dimensional information is crucial
in point-based tasks and should be considered as part of im-
portance metric. Thus the critical problem falls in design-
ing a function that can well reflect the dimensional infor-
mation richness of feature maps. The feature map, obtained
by encoding points spatial x, y, and z coordinates, should be
closely related to the original corresponding points coordi-
nates. Therefore, we use the correlation between the cur-
rent feature map and the corresponding input points coordi-
nates to determine the importance of the filter. The designed
Coordinate-Enhancement (CE) module based on Eq. (2):

min
δi j

K

∑
i=1

ni

∑
j=1

δi jLc
(
Fi

j
)

, s.t.
ni

∑
j=1

δi j = kl , (3)

where δi j is an indicator which is 1 if wi
j is to be pruned or

0 if wi
j is to be kept and kl is the kept channel number. Lc(·)

measures the importance of a channel from take account of
the relationship between feature map and points coordinates
which can be formulated as:

Lc
(
F i

j
)
= M {CE

(
F i

j ,x
i)}, (4)

where CE obtains the coordinate-enhanced score by calcu-
lating correlation of each channel in the feature map with
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Figure 2. Comparisons on the pruned model accuracy with differ-
ent pruning metrics with CE scores. Results are on ModelNet40
with PointNeXt-S (C=64).

the original coordinates, and M takes the maximum value.
Hence, higher coordinate-enhanced score (i.e., Lc) serve as
a reliable measurement for information richness.

We evaluated the effectiveness of the CE module on
ModelNet40 with PointNeXt-S (C=64). To demonstrate
the experiment’s validity, we compared the overall accuracy
(OA) for pruning rates of 40%, 50%, 60%, and 70%, re-
spectively. Three sets of experiments are carried out. First,
the ‘CE’ group selected filters in order of value from the CE
module. Secondly, the ‘Random’ group is used to randomly
select filters for pruning, and finally, the ‘Reverse’ is used
to select filters according to the coordinate-enhanced score
from low to high. As shown in Fig. 2, the channel with
a higher coordinate-enhanced score has higher accuracy,
which means that the channel with a higher coordinate-
enhanced score has higher importance and should be re-
tained in the pruning process.

3.3. Knowledge Recycling

Sec. 3.2 shows that feature maps can reflect the impor-
tance of the corresponding channels. Another problem is
that the importance determination may be unstable and sen-
sitive to small changes in the input data as the feature maps
are highly related to the samples of input data. Therefore,
we aim to reduce the impact of such data variation. Through
the analysis of the PNNs in Sec. 3.1, we found that some
points are discarded to obtain hierarchical points set feature.
These discarded points are informative as well since the
sampling mechanism are highly random and can be lever-
aged to reduce the impact of data variation. The Knowledge
Recycling (KR) module is proposed to reuse the discarded
points to improve the robustness of channel pruning.

For those centroids that are computed in (l −1)-th layer
but discarded in l-th layer due to sampling, which are equiv-
alent to the sampled points. Therefore, the discarded cen-
troids xdis are feeded into l-th convolutional layer to gener-
ate the feature map fdis

l , and Lk

(
F i

dis j

)
is taken in use for

the evaluation of channel importance.
We calculate the relevant feature maps from the network

parameters trained from the sampled points and use them as

part of the importance calculation for the current SA layer
channels. Specifically, for each layer in the SA module, we
obtain the features of the discard points by Eq. 1:

F l
dis =

{
fdis

l
1, fdis

l
2, . . . , fdis

l
ni

}
∈ Rni×(3+ci),

where ni is sampled points number, ci is the points feature
dimension. So the supplement importance is:

Lk
(
F i

j
)
= Lk

(
F i

dis j

)
= M {CE

(
F i

j ,x
i
dis
)
},

(5)

where xi
dis are discard points for recycling.

It should be noted that the KR module only needs to
calculate F l

dis from the parameters trained by the sampled
points and does not incur much additional overhead.

3.4. Using CP3 in Pruning Methods

The overall CP3 improve the existing CNNs pruning
methods by considering the input data of PNNs and the
PNN structure in Sec. 3.2 and Sec. 3.3, respectively. In
fact, CP3 can complement the existing pruning methods,
i.e., as a plug-in to the existing pruning methods, to improve
the pruning performance on PNNs. Specifically, combining
Eq. (4) and Eq. (5), we obtain the final pruning formula ac-
cording to Eq. (2):

min
δi j

K

∑
i=1

ni

∑
j=1

δi j(L
(
wi

j
)
+Lc

(
F i

j
)
+Lk

(
F i

j
)
),

s.t.
ni

∑
j=1

δi j = kl ,

(6)

where δi j is an indicator which is 1 if wi
j is to be pruned

or 0 if wi
j is to be kept, L(·) is original CNNs pruning

method measure importance of a channel, Lc and Lk are
coordinate-enhanced score and knowledge-recycling score,
kl is the kept channel number.

4. Experiments
4.1. Experimental Settings

Baseline models and datasets To demonstrate the effec-
tiveness and generality of the proposed CP3, we tested it
on three different 3D tasks and five datasets with various
PNNs and three recent advanced channel pruning methods.
The evaluated pruning methods include HRank (2020) [24],
ResRep (2021) [7], and CHIP (2021) [40]. For the clas-
sification task, we chose the classical PointNet++ [33]
and PointNeXt [35] models as the original networks and
conducted experiments on ModelNet40 [47] and ScanOb-
jectNN [43]. Specifically, for PointNeXt-S we tested
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Table 1. Comparisons of classification on the ModelNet40 [47] test set with PointNet++ [33], PointNeXt-S (C=32) [35], and PointNeXt-S
(C=64). For PointNeXt-S (C=32), we report the baseline results from the original paper. For PointNet++ and PointNeXt-S (C=64), we
report the baseline results obtained by OpenPoints [35] re-implementations trained with the improved strategies.

Method
PointNet++ PointNeXt-S (C=32) PointNeXt-S (C=64)

OA mAcc Params. (M) GFLOPs (↓ %) OA mAcc Params. (M) GFLOPs (↓ %) OA mAcc Params. (M) GFLOPs (↓ %)

Baseline 92.80 89.90 1.47 1.71 (–) 92.99 89.6 1.37 1.64 (–) 93.44 91.05 4.52 6.49 (–)

HRank 92.59 89.83 0.86 0.77 (55.0) 92.87 89.97 0.74 0.71 (56.7) 92.23 89.81 2.12 2.69 (56.7)
HRank +CP3 92.95 89.91 0.84 0.75 (56.1) 93.23 90.56 0.71 0.67 (59.1) 93.52 90.33 2.01 2.58 (59.1)
HRank 91.79 88.82 0.59 0.42 (75.4) 92.63 89.12 0.50 0.39 (76.2) 92.71 90.45 1.33 1.56 (76.2)
HRank +CP3 92.54 88.52 0.57 0.39 (77.2) 93.03 90.92 0.49 0.38 (76.8) 93.07 90.55 1.28 1.50 (76.8)
HRank 91.34 88.18 0.36 0.15 (91.2) 92.73 89.98 0.43 0.29 (82.3) 92.83 89.99 0.74 0.71 (82.3)
HRank +CP3 91.71 88.68 0.34 0.13 (92.4) 92.99 90.11 0.40 0.27 (83.5) 93.11 90.52 0.71 0.67 (83.5)

ResRep 92.71 90.39 0.85 0.73 (57.3) 92.83 90.15 0.81 0.69 (57.9) 91.61 88.42 2.08 2.34 (57.9)
ResRep+CP3 93.27 90.48 0.82 0.70 (59.1) 93.35 90.93 0.79 0.67 (59.1) 92.93 90.66 1.89 2.02 (59.1)
ResRep 92.50 89.25 0.57 0.41 (76.0) 92.64 90.01 0.51 0.40 (75.6) 91.67 89.27 1.13 1.92 (75.6)
ResRep+CP3 92.46 89.43 0.54 0.40 (76.6) 93.41 90.87 0.49 0.38 (76.8) 93.11 90.82 1.02 1.89 (76.8)
ResRep 92.11 89.00 0.55 0.24 (86.0)) 92.30 89.31 0.34 0.21 (87.2) 89.54 88.54 0.72 0.69 (87.2)
ResRep+CP3 92.48 89.21 0.58 0.21 (87.7) 92.95 90.70 0.33 0.18 (89.0) 91.02 89.82 0.69 0.65 (89.0)

CHIP 92.79 89.23 0.82 0.73 (57.3) 93.11 90.27 0.71 0.67 (59.1) 93.03 90.60 1.48 1.44 (59.1)
CHIP+CP3 92.99 90.66 0.81 0.70 (59.1) 93.35 90.80 0.69 0.65 (60.4) 93.35 91.11 1.45 1.40 (60.4)
CHIP 92.45 89.19 0.57 0.39 (77.2) 92.71 89.90 0.49 0.38 (76.8) 92.79 90.39 0.92 0.76 (76.8)
CHIP+CP3 92.91 89.65 0.54 0.35 (79.5) 93.03 90.51 0.48 0.37 (77.4) 93.23 90.30 0.89 0.74 (77.4)
CHIP 92.26 89.56 0.36 0.15 (91.2) 92.42 89.13 0.32 0.16 (90.2) 90.83 88.70 0.65 0.46 (90.2)
CHIP+CP3 92.71 90.41 0.34 0.13 (92.4) 92.50 90.35 0.30 0.14 (91.5) 92.87 90.25 0.63 0.44 (91.5)

two settings with widths of 32 and 64. For the seg-
mentation task, we conducted experiments on S3DIS [1]
with PointNeXt-B and PointNeXt-L [35] as the original
PNNs. For the object detection task, we pruned two point-
based detectors (VoteNet [31] and GroupFree3D [25]) on
SUN RGB-D [38] and ScanNetV2 [5].

Implementation details We conducted the classification
and segmentation experiments with OpenPoints [35] and
the object detection experiments with MMdetection3D [3],
all on NVIDIA P100 GPUs. For a fair comparison, we used
the same hyperparameter settings for each group of exper-
iments. We either 1) measured the parameter/FLOP reduc-
tions of the pruned networks with similar performance or
2) measured the performance of the pruned networks with a
similar amount of parameter/FLOP reductions. For all ex-
periments, we reported the number of FLOPs (‘GFLOPs’)
and parameters (‘Params.’), as well as task-specific metrics
to be described in each experiment. More experimental re-
sults are available in the supplementary.

4.2. Results on Classification

ModelNet40 ModelNet40 [47] contains 9843 training
and 2468 testing meshed CAD models belonging to 40 cat-
egories. Following the standard practice [33], we report
the class-average accuracy (mAcc) and the overall accu-
racy (OA) on the testing set. We compared the pruned
networks directly by HRank, ResRep, and CHIP and those
pruned by the three pruning methods with CP3. As shown in
Tab. 1, our CP3 improved the performance of existing CNNs
pruning methods for different PNNs with various pruning

rates. CP3 had higher accuracy scores with a similar (and
mostly higher) pruning rates. Notably, with the pruning rate
of 58%, CP3 usually produced compact PNNs with even
better accuracy scores than the original PNNs, which is dif-
ficult for pruning methods without CP3.

ScanObjectNN We also conducted experiments on the
ScanObjectNN benchmark [43]. ScanObjectNN contains
15000 objects categorized into 15 classes with 2902 unique
object instances in the real world. As reported in Tab. 2, CP3

surpassed existing CNN pruning methods directly appled to
PNNs. For example, comparing with the baseline pruning
method HRank, CP3 boosts the OA score of PointNet++ by
1.14% (85.01→86.15), 1.14% (84.94→86.08), and 0.59%
(84.03→84.62) for the three different pruning rates. Simi-
larly, CP3 obtains much higher OA and mAcc scores than
the three baselines with different pruning rates on Point-
Net++ and PointNeXt-S. With the extensive experimental
results on classification tasks, we show that CP3 surely im-
proved the pruned network’s performance to a distinct ex-
tent compared to direct applications of 2D CNN pruning
methods.

4.3. Results on Semantic Segmentation

S3DIS [1] is a challenging benchmark composed of 6
large-scale indoor areas, 271 rooms, and 13 semantic cate-
gories in total. Following a common protocol [41], we eval-
uated the presented approach in Area-5, which means to test
on Area-5 and to train on the rest. For evaluation metrics,
we used the mean classwise intersection over union (mIoU),
the mean classwise accuracy (mAcc), and the overall point-
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Table 2. Comparisons of classification on the ScanObjectNN [43] test set with PointNet++ [33], PointNeXt-S (C=32) [35], and PointNeXt-
S (C=64). For PointNeXt-S (C=32), we report the baseline results from the original paper. For PointNet++ and PointNeXt-S (C=64), we
report the baseline results obtained by OpenPoints [35] re-implementations trained with the improved strategies.

Method
PointNet++ PointNeXt-S (C=32) PointNeXt-S (C=64)

OA mAcc Params. (M) GFLOPs (↓ %) OA mAcc Params. (M) GFLOPs (↓ %) OA mAcc Params. (M) GFLOPs (↓ %)

Baseline 86.20 84.40 1.47 1.71 (–) 87.40 85.39 1.37 1.64 (–) 88.20 86.84 4.52 6.49 (–)

HRank 85.01 83.33 0.82 0.73 (57.3) 87.02 85.85 0.72 0.69 (57.9) 87.51 85.48 2.22 2.91 (55.2)
HRank+CP3 86.15 84.40 0.80 0.70 (59.1) 87.47 86.21 0.70 0.67 (59.1) 87.95 86.02 2.16 2.82 (56.5)
HRank 84.94 83.43 0.59 0.43 (74.9) 84.79 81.93 0.50 0.39 (76.2) 84.66 81.00 1.33 1.56 (76.0)
HRank+CP3 86.08 84.51 0.59 0.41 (76.0) 86.40 83.94 0.48 0.37 (77.4) 86.43 84.94 1.28 1.50 (76.9)
HRank 84.03 82.16 0.37 0.16 (90.6) 81.33 78.32 0.32 0.17 (89.6) 85.39 83.83 0.73 0.71 (89.1)
HRank+CP3 84.62 82.29 0.36 0.15 (91.2) 84.21 82.13 0.31 0.16 (90.2) 86.26 84.36 0.70 0.67 (89.7)

ResRep 86.77 84.78 0.82 0.76 (55.6) 86.32 84.45 0.69 0.65 (60.4) 86.58 84.02 2.12 2.82 (56.5)
ResRep+CP3 87.11 85.50 0.82 0.71 (58.5) 86.66 84.75 0.67 0.64 (61.0) 88.52 86.00 2.03 2.74 (57.8)
ResRep 83.99 82.34 0.60 0.44 (74.3) 85.28 83.27 0.48 0.38 (76.8) 85.22 82.03 1.39 1.65 (74.6)
ResRep+CP3 84.32 83.68 0.59 0.43 (74.9) 86.22 84.32 0.47 0.37 (77.4) 86.73 84.23 1.32 1.54 (76.3)
ResRep 83.79 81.91 0.40 0.29 (83.0) 83.66 81.66 0.41 0.25 (84.8) 85.02 81.27 0.60 0.68 (89.5)
ResRep+CP3 84.80 82.83 0.40 0.26 (84.8) 85.01 83.03 0.40 0.23 (86.0) 86.13 83.40 0.58 0.52 (92.0)

CHIP 86.14 84.98 0.82 0.73 (57.3) 87.13 85.09 0.70 0.67 (59.1) 88.45 87.40 2.11 2.74 (57.8)
CHIP+CP3 86.25 84.68 0.80 0.70 (59.1) 87.54 85.67 0.69 0.65 (60.4) 88.58 86.45 2.05 2.65 (59.2)
CHIP 84.45 82.25 0.59 0.42 (75.4) 85.28 83.28 0.50 0.4 (75.6) 86.68 85.12 1.37 1.64 (74.7)
CHIP+CP3 85.59 84.42 0.57 0.40 (76.6) 86.29 83.99 0.49 0.38 (76.8) 87.79 86.81 1.32 1.56 (76.0)
CHIP 83.27 81.15 0.36 0.15 (91.2) 81.37 78.99 0.34 0.19 (88.4) 83.90 81.83 0.44 0.32 (95.1)
CHIP+CP3 84.03 82.22 0.35 0.14 (91.8) 82.12 79.41 0.33 0.18 (89.0) 84.25 82.17 0.42 0.29 (95.5)

Table 3. Comparisons of semantic segmentation on the S3DIS dataset (evaluated in Area-5) with PointNeXt-B and PointNeXt-L [35].

Method
PointNeXt-B PointNeXt-L

OA mAcc mIoU Params. (M) GFLOPs (↓ %) OA mAcc mIoU Params. (M) GFLOPs (↓ %)

Baseline 89.40 73.90 67.50 3.83 8.80 (–) 90.10 75.70 69.30 7.13 15.24 (–)

HRank 89.04 72.14 65.66 1.72 4.01 (54.4) 88.88 73.61 66.80 3.20 6.83 (55.2)
HRank+CP3 89.24 73.76 66.95 1.61 3.80 (56.8) 89.44 74.27 67.53 3.00 6.48 (57.5)
HRank 88.81 72.16 65.58 0.85 2.04 (76.8) 88.21 70.93 64.30 1.58 3.47 (77.2)
HRank+CP3 89.02 72.82 66.41 0.78 1.85 (78.9) 88.35 71.26 64.71 1.44 3.14 (79.4)

CHIP 88.89 73.26 66.57 1.66 3.93 (55.3) 89.16 73.72 67.09 3.09 6.68 (56.2)
CHIP+CP3 89.68 73.14 66.80 1.56 3.65 (58.5) 89.47 74.20 67.28 2.91 6.22 (59.2)
CHIP 88.67 73.24 66.68 0.81 1.92 (78.2) 88.58 71.58 65.18 1.50 3.27 (78.5)
CHIP+CP3 89.81 73.36 66.95 0.74 1.79 (79.7) 89.20 71.66 65.24 1.38 3.04 (80.1)

Table 4. Comparisons of object detection on the ScanNet dataset.

Method mAP@0.25 mAP@0.50 Params. (K) GFLOPs (↓%)

Baseline (VoteNet) 62.34 40.82 641.92 5.78 (–)

ResRep 62.45 40.95 251.23 2.45 (57.6)
ResRep+CP3 63.92 41.47 242.26 2.41 (58.1)

ResRep 61.78 40.54 180.49 1.83 (68.3)
ResRep+CP3 62.98 40.94 160.48 1.78 (69.2)

wise accuracy (OA). As the segmentation task is relatively
difficult and the segmentation network structures are rel-
atively complex, we pruned only the encoder part of the
network and kept the original decoder part. The results
are presented in Tab. 3. As expected, the performance of
the pruned networks degraded more from the original net-
works than those in the classification experiments, but the
performance was acceptable. Meanwhile, in all cases, with
our CP3, PNNs have a higher accuracy at a higher prun-
ing rate than without CP3. For example, for PointNeXt-B,
comparing with directly applying CHIP, incorporating CP3

Table 5. Comparisons of object detection on SUN RGB-D.

Method mAP@0.25 mAP@0.50 Params. (K) GFLOPs (↓%)

Baseline (VoteNet) 59.78 35.77 641.92 5.78 (–)

ResRep 59.37 36.80 179.91 2.42 (58.13)
ResRep+CP3 60.10 37.37 172.35 2.20 (61.93)

ResRep 59.01 35.91 135.13 1.84 (68.17)
ResRep+CP3 59.18 36.24 129.64 1.83 (68.34)

obtained much higher OA, mAcc and mIoU scores (1.2%
on OA and 0.3% on mIoU). The results about segmentation
have well validated the generalization of CP3 to new and
difficult tasks.

4.4. Results on 3D Object Detection

4.4.1 Evaluation and Comparison of VoteNet

Tabs. 4 and 5 show the results of the pruned VoteNet models
on the ScanNetV2 and SUN RGB-D datasets, respectively.
We evaluated the performance of our proposed method in

5308



Table 6. Comparisons of object detection on the ScanNet dataset.
The baseline PNN model is GroupFree3D.

Method mAP@0.25 mAP@0.50 Params. (K) GFLOPs (↓%)

Baseline 68.22 52.61 2438.34 21.78 (–)

ResRep 68.24 51.48 1910.73 10.90 (49.95)
ResRep+CP3 68.86 52.08 1654.35 10.88 (50.05)

ResRep 67.21 51.28 1703.34 8.71 (60.01)
ResRep+CP3 68.57 51.85 1501.46 8.68 (60.14)

terms of the mean average precision at IOU threshods of
0.25 and 0.50 (mAP@25 and mAP@50).

ScanNetV2 ScanNetV2 [5] is a richly annotated dataset
of 3D reconstructed meshes of indoor scenes. It contains
about 1200 training examples collected from hundreds of
different rooms and is annotated with semantic and instance
segmentation for 18 object categories. Tab. 4 shows the re-
sults of directly applying ResRep and with CP3. As can
be seen from the table, the accuracy of the 2D method di-
rectly applied to the 3D network decreased by a flops drop
of about 60%, while our method achieves 1.58% and 0.65%
improvements at mAP@0.25 and mAP@0.5 with a drop
rate of 58.13% FLOPS. When FLOPs drop to about 70%,
the accuracy of the direct porting CNNs pruning method
works poorly, while the improvement of mAP@0.25 and
mAP@0.5 of our method is 0.64% and 0.12%, respectively.

SUN RGB-D The SUN RGB-D dataset [38] consists of
10355 single-view indoor RGB-D images annotated with
over 64000 3D bounding boxes and semantic labels for 37
categories. We conducted experiments on SUN RGB-D
with the same setup as those on ScanNetV2. The findings
are also similar to those in ScanNetV2. It can be observed
from Tab. 5 that the accuracy of directly transplanted CNNs
pruning method is reduced to some extent (mAP@0.25 re-
duced by 0.41) when FLOPs drop by 58.13%, while CP3

improved the detection model by 0.32% mAP@0.25 and
1.60% mAP@0.5 with a FLOPs drop of 61.93%. Even
when FLOPs drop to 70%, our method’s mAP@0.25 drop
only 0.6%, which is obviously better.

4.4.2 Evaluation and Comparison on GroupFree3D

We also conducted experiments on another point-based 3D
detection model, GroupFree3D, on ScanNetV2. Tab. 6
summarizes the pruning performance of our approach
for GroupFree3D on the ScanNetV2 dataset. When tar-
geting a moderate compression ratio, our approach can
achieve 32.15% and 50.05% storage and computation re-
ductions, respectively, with a 0.64% accuracy increase for
mAP@0.25 over the baseline model. In the case of higher
compression ratio, CP3 still achieves superior performance
to other methods. Specifically, the ResRep loses accuracy

Table 7. Ablation study of different components in CP3. Results
are of classification on the ScanObjectNN dataset with PointNeXt-
S (C=32) as the baseline. ‘CE’ represents the coordinate-enhanced
module, and ‘KR’ represents the knowledge recycling module.

Setting CE KR Pruning Rate OA mAcc

Baseline – 88.20 86.40

HRank 0.75 84.79 81.93
✓ 0.75 85.63 82.97

✓ 0.75 85.11 82.13
HRank+CP3 ✓ ✓ 0.75 86.63 83.63

HRank 0.90 81.33 78.32
✓ 0.90 83.66 81.32

✓ 0.90 83.10 80.47
HRank+CP3 ✓ ✓ 0.90 84.83 82.74

by 1.01% mAP@0.25 when the parameters and flops drop
by 30.14% and 60.01%, while in our method, the accuracy
increases 0.35% for mAP@0.25.

4.5. Ablation Studies

We conducted ablation studies to validate the
Coordinate-Enhancement (CE) module and the Knowledge-
Recycling (KR) module in CP3. All results provided in
the section are tested on ScanObjectNN with PointNeXt-
S (C=32) as the baseline and HRank as the pruning method.
We evaluated the pruned networks’ performance with the
FLOPs drop of 75% and 90%, and with/without the CE
and KR modules to the pruning method. From Tab. 7,
we find that KR improves OA of 0.84% and 2.33% when
pruning rate is 75% and 90%, respectively, while CE
improves OA of 0.32% and 1.77% at 75% and 90% pruning
rates, respectively. Bringing the two modules together, the
OA improvement is 1.84% and 3.50% at 75% and 90%
pruning rates, respectively. The ablation study results have
validated the effectiveness of all designs in CP3.

5. Conclusion
In this paper, we focus on 3D point-based network prun-

ing and design a 3D channel pruning plug-in (CP3) that can
be used with existing 2D CNN pruning methods. To the
best of our knowledge, this is the first pruning work ex-
plicitly considering the characteristics of point cloud data
and point-based networks. Empirically, we show that the
proposed CP3 is universally effective for a wide range of
point-based networks and 3D tasks.
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