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Abstract

In this paper, we consider the face swapping detection
from the perspective of face identity. Face swapping aims
to replace the target face with the source face and gener-
ate the fake face that the human cannot distinguish between
real and fake. We argue that the fake face contains the ex-
plicit identity and implicit identity, which respectively cor-
responds to the identity of the source face and target face
during face swapping. Note that the explicit identities of
faces can be extracted by regular face recognizers. Partic-
ularly, the implicit identity of real face is consistent with
the its explicit identity. Thus the difference between explicit
and implicit identity of face facilitates face swapping detec-
tion. Following this idea, we propose a novel implicit iden-
tity driven framework for face swapping detection. Specifi-
cally, we design an explicit identity contrast (EIC) loss and
an implicit identity exploration (IIE) loss, which supervises
a CNN backbone to embed face images into the implicit
identity space. Under the guidance of EIC, real samples
are pulled closer to their explicit identities, while fake sam-
ples are pushed away from their explicit identities. More-
over, IIE is derived from the margin-based classification
loss function, which encourages the fake faces with known
target identities to enjoy intra-class compactness and inter-
class diversity. Extensive experiments and visualizations
on several datasets demonstrate the generalization of our
method against the state-of-the-art counterparts.

1. Introduction

The development of deep learning has promoted the con-
tinuous progress of face forgery technology [5, 16, 48]. Es-
pecially for face swapping, it can replace the target face
with the source face to generate a fake face that is not distin-
guishable by the human eyes. With this technology, attack-
ers can easily forge high-quality videos of public celebrities
and political figures to achieve illegal political or commer-
cial purposes. To alleviate the abuse of face swapping, it is
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Figure 1. Motivation of our approach. The target face is replaced
by the source face through face swapping to generate a fake face.
In appearance, the fake face looks like the source face instead of
the target face. We resort the general face recognition (FR) model
CosFace [51] to obtain the explicit distance of these faces. Partic-
ularly, since the fake face is synthesized from the source face and
the target face, we aim to explore a implicit face recognition (IFR)
model that can mine the corresponding target face identity based
on the fake face. With the similarity between explicit and implicit
embeddings of the given face, we can significantly distinguish it
as real and fake, which facilitates forgery detection.

urgent to exploit corresponding detection methods.
Early researches [1, 10, 37, 42] usually treat face swap

detection as a binary image classification task. Specifically,
face images are fed into an existing deep convolutional neu-
ral network (CNN) and then classified as real and fake.
Such methods can learn the data distribution of the training
set, resulting in considerable performance in intra-domian
tests. However, the simple classification guidance cannot
incorporate the connotation of face swapping, thus the deep
network lacks the understanding of forgery [50]. Recent
works are devoted to exploring specific forgery patterns,
such as noise analysis [27], local regions [7, 53] and fre-
quency information [19,41]. In this way, fake traces in fake
faces can be better detected. Albeit gaining the benefits,
they still revolve around certain manipulation methods and
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are not conducive to generalize well to unseen real-world
scenarios. Therefore, in practice, many emerging forgery
methods as well as unknown environmental factors bring
serious performance degradation to existing face swapping
detection methods.

To address the above issues, we consider the face swap-
ping detection from the perspective of face identity. As
shown in Figure 1, face swapping aims to replace the tar-
get face with the source face, further generating a fake face
that is even indistinguishable for human eyes. Here, we
introduce two new concepts for fake faces, including ex-
plicit identity and implicit identity. Specifically, the explicit
identity represents what the fake face looks like, that is, the
source face identity. Thus, the explicit distance between the
fake face and the real face can be measured by existing gen-
eral face recognition models [11, 22, 51]. For implicit iden-
tity, we believe that the fake face comes from the source
face and the target face. Although it looks like the source
face, it might contain more or less target face identity in-
formation. We call this potential target face information the
implicit identity of the fake face. It is worth noting that the
implicit identities of the real face are consistent with its ex-
plicit identities. Therefore, given a face image, we embed
it into the explicit and implicit identity feature spaces, re-
spectively. The distance between its explicit and implicit
features is taken as the basis for judging real and fake. Pro-
vided the distance is very close, the given image is real,
otherwise it is a fake image.

With the above considerations in mind, in this paper, we
propose a novel implicit identity driven (IID) framework to
detect face swapping. Our key motivation is to explore the
implicit identity of the face, which guides deep networks
to make more reasonable detection results. To this end,
we first employ the generic face recognition model to ob-
tain its explicit identity embedding. Subsequently, we pro-
pose the explicit identity contrast (EIC) loss and the implicit
identity exploration (IIE) loss to supervise the off-the-shelf
CNN backbone, aiming to transform the face image into
the implicit identity feature space. Specifically, under the
guidance of EIC, real samples are pulled closer to their ex-
plicit identities, while fake samples are pushed away from
their explicit identities. In this way, the difference between
the real and fake samples in the feature space is enlarged.
It is worth noting that the real sample feature at this time
denotes its implicit identity (close to the explicit identity).
Moreover, to further explore the implicit identity of the fake
sample, we label the identity of the fake face with its cor-
responding target face identity. Particularly, for those fake
faces whose target faces are unknown but come from the
same video, we label their identities as extra and identical to
ensure identity consistency. Inspired by general face recog-
nition algorithms [11,51], our proposed IIE is derived from
the margin-based classification loss function, which guides

fake faces with known target identities to have small intra-
class distances and large inter-class distances. Besides, fake
faces with unknown target identities originating from the
same video have consistent identity embeddings. Thereby,
implicit identities of fake faces can be mined comprehen-
sively. Finally, we use the difference between the implicit
identity and explicit identity of the face as the basis for dis-
tinguishing real and fake.

In brief, the main contributions are as follows:

• From a completely new perspective, we propose the
implicit identity driven framework for face swapping
detection, which explores the implicit identity of fake
faces. This enhances the deep network to distinguish
fake faces with unknown manipulations.

• We specially design explicit identity contrast (EIC)
loss and the implicit identity exploration (IIE) loss.
EIC aims to pull real samples closer to their explicit
identities and push fake samples away from their ex-
plicit identities. IIE is margin-based and guides fake
faces with known target identities to have small intra-
class distances and large inter-class distances.

• Extensive experiments and visualizations demonstrate
the superiority of our method over the state-of-the-art
approaches.

2. Related Work
2.1. Face Swapping

Recent face swapping methods [2,17,23,34,35,39] ben-
efit from advances in deep learning. At the outset, re-
searchers [23] view face swapping as a style transfer prob-
lem. Under the guidance of face landmarks, the CNN can
transfer a face image to the style of another face image with
one specific identity. Since then, the classic DeepFakes
[17] proposes an encoder-decoder face swapping frame-
work. Once trained, it can swap faces between the two
specified identities but cannot generalize to others. On this
basis, several methods [2,34,35] combining latent represen-
tations have emerged. They extract identity features from
the source face and attribute features from the target face.
However, the expression of the target face is often not pre-
served in the output of the decoder. The trickiest problem
with the above approaches is requiring training on the pairs
of faces to be swapped, which is unfriendly in practice. To
overcome the above limitation, Nirkin et al. [39] propose
a novel recurrent neural network based approach for face
reenactment, which can be applied to a single image or a
video sequence. Recent reconstruction-based face swap-
ping methods [6, 15, 26] with GANs have also shown suc-
cess. They are subject agnostic and able to generate high-
quality and realistic fake images. Overall, existing learning-
based face swapping methods claim to decouple the identity
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Figure 2. The outline of our proposed implicit identity driven framework for deepfake face swapping detection. We hybridize real face
samples (green boxes) and fake face samples (red boxes) as training set. It is worth noting that we label the identity of the fake face
with the corresponding target face identity. During training, we employ the generic face recognition model to obtain the explicit identity
embedding of training sample as a contrast. The implicit identity embedding extracted by the backbone is supervised by the implicit
identity exploration (IIE) loss. Besides, real samples are pulled closer to their explicit identities, while fake samples are pushed away from
their explicit identities. The difference between the implicit and explicit identities of face sample is guided by the binary cross-entropy
(BCE) to output predicted confidence.

of the original face and assign it to the target face. However,
there is no pure decoupling method, thus the fake face con-
tains potential target face identity information. To this end,
our method aims to explore this potential cue for face swap-
ping detection.

2.2. Face Forgery Detection

Nowadays, many studies [1, 20, 27, 33, 33, 36, 46, 50, 56]
are proposed to boost the performance of face forgery de-
tection. Early works [1, 10, 37, 42] usually utilize existing
image classification networks [8, 43] to transform cropped
face images into feature vectors and perform binary clas-
sification. However, classification methods alone tend to
overfit the training data and fail to explore the subtle dif-
ferences between real and fake images. Therefore, a num-
ber of methods based on face forgery patterns have been
proposed to discriminate between real and fake. Zhou et
al. [54] present a two-stream deep network to detect fake
faces by focusing on visual appearance and local noise in
two branches, respectively. Zhao et al. [53] propose a multi-
attentional network architecture to capture local discrimina-
tive features from multiple face attentive regions. Besides,
frequency information [14, 25, 41] is also verified to pro-
vide clues for face forgery detection. Recent researches
[3, 46, 55] increasingly tend to improve the generalization
of detectors for unseen forgeries. Sun et al. [46] propose
a dual contrastive learning (DCL) for general face forgery
detection. Despite the improved performance, DCL mainly

rely on the generation of paired images, which is usually
unpredictable in practice. To further improve the general-
ization for the detection model, we consider the face swap-
ping detection from the perspective of face identity. More-
over, we introduce the implicit identity driven method for
general face swapping detection.

3. Proposed Method

In this section, we introduce our implicit identity driven
(IID) framework for general face swapping detection, which
consists of two main schemes, i.e., explicit identity contrast
(EIC) and the implicit identity exploration (IIE), as illus-
trated in Figure 2. EIC loss pulls real samples closer to
their explicit identities, while pushing fake samples away
from their explicit identities. As such, real samples con-
verge to their implicit identities (same as explicit identities),
and fake samples are mined for explicit identities irrelevant
features. Moreover, to further clarify the implicit identity
for fake samples, the IIE loss constrains the identity of the
fake samples to be attributed to their corresponding target
faces (implicit identities). Particularly, fake faces with un-
known target face originating from the same video are em-
bedded into the consistent identity space. Thereby, the dif-
ference between the implicit identity and explicit identity
of the face is used as the basis for distinguishing real and
fake. In the following, we will elaborate on the individual
schemes.
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3.1. Explicit Identity Contrast

Since the fake face is derived from the source and the
target face, we argue that the fake face contains more or
less the identity information of the target face. As such, we
propose to use the explicit identity of the face as a contrast
to enlarge the difference between the real and fake samples
in the feature space. To be specific, given an aligned face
image xi ∈ Rh×w×3, we employ the generic face recog-
nition model Fex to obtain its explicit identity feature, de-
noted as Fex (xi). Subsequently, we train a backbone as
implicit identity embedding network Fim, which transform
the input image xi into the feature vector Fim (xi). Fol-
lowing the characteristics of our proposed implicit identity,
the implicit identity of a real face needs to be consistent
with its corresponding explicit identity, while the fake face
is just the opposite. To this end, we adopt explicit identities
as contrasts to initially guide the representation of implicit
identities. The designed explicit identity contrast loss is

Leic =
1

NF

∑
i∈F

δ (Fim (xi) ,Fem (xi))−

1

NR

∑
i∈R

δ (Fim (xi) ,Fem (xi)) ,
(1)

where R and F indicate the set of real and fake samples,
respectively. NR and NF denote the number of real sam-
ples and fake samples, respectively. δ (·, ·) represents the
cosine similarity calculation function, which is defined as
δ(u, v) = u

∥u∥ ·
v

∥v∥ .
Our proposed EIC loss works on fake and real face sam-

ples, respectively. On the one hand, it encourages fake sam-
ples to move away from their explicit identities in the im-
plicit feature space. Because the implicit identity of the fake
face corresponds to the target face rather than the source
face (explicit identity). In this way, it is guaranteed that fake
faces are extracted with explicit identity irrelevant features.
On the other hand, real samples are guided towards their ex-
plicit identities in the implicit feature space. This conforms
to the assumption of explicit and implicit identity consis-
tency for real samples. Note that, the existing contrastive-
learning based methods [3,4,46] usually directly act on real
and fake samples to seek difference, while our proposed loss
takes the explicit identity as a reference, which is more rea-
sonable to explore the essential forgery clues.

3.2. Implicit Identity Exploration

The aforementioned EIC loss enlarges the difference be-
tween the real and fake samples in the feature space. At this
point, the fake samples are only distinguished from their
explicit identities in the feature space. To further clarify
the implicit identities of fake samples, we design an im-
plicit identity exploration loss, which uses the target face

as a guide to refine the implicit identities of fake faces. In
particular, for fake samples with unknown target faces and
originating from the same video, we maintain their identity
consistency to ensure that there is no large detection dif-
ference between the frames of the same video during face
swapping detection.

Specifically, since the mainstream fake face datasets,
such as FF++ [42], contain source images and fake images,
we can further label the fake face with its target face identity
yi (implicit identity). Whereas the real face is labeled with
its explicit identity. In other words, the fake face and its cor-
responding target face are labeled as a category and both as
the training sample. We define real samples and fake sam-
ples with known implicit identities as a set K. Given a face
sample xi ∈ K, its extracted feature vector Fim (xi) is fur-
ther normalized to Fim(xi)

∥Fim(xi)∥ . Subsequently, our designed
IIE loss closes the identity distance between the fake face
and its corresponding target face, which can be derived as:

L+
iie = −Exi,yi∼K

log es(cos(θyi)−m)

es(cos(θyi)−m) +
∑

j ̸=yi
es cos θj

 .

(2)
Here, θj represents the angle between normalized Fim (xi)
and the normalized proxy of j-th identity on the hyper-
sphere. s and m stand for feature rescale and margin hy-
perparameter, respectively. The margin can simultaneously
enhance the intra-class compactness and inter-class discrep-
ancy. Different from the popular face recognition loss Cos-
Face [51] which sets a fixed margin, we assign different
margin values to real and fake samples respectively. Specif-
ically, the margin mreal for the real sample is set to a fixed
value of 0.4. Particularly, we use the identity fitting progress
of real samples to obtain a progressive margin for fake sam-
ples, calculated as

mfake = α · 1

Nr

∑
i∈Rmini

cos (θyi), (3)

where Rmini denotes the set of real samples for a mini-
batch. Nr represents the number of samples in Rmini. α is
a hyperparameter to limit the maximum value of the margin,
which is empirically set to 0.5.

It can be observed that the mfake at this time varies with
the fit of the real samples. Therefore, in the early stage of
model training, mfake is so small that the real samples are
concerned. After the real samples (target faces) are fully
fitted, the margin for the fake samples starts to work. Fur-
thermore, the fake face keeps approaching its corresponding
target face. With this progressive learning strategy, the deep
network first explores the implicit identity (same as the ex-
plicit identity) of the real face (target face), and then fits the
fake face. Compared to fitting the implicit identities of real
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and fake samples in one go, progressive learning makes it
easier for the network to converge and achieve better per-
formance.

To comprehensively cover the actual situation, we take
the fake samples of unknown target faces into considera-
tion. The key idea is to maintain the identity consistency
of frames in the same fake video. Specifically, the set of
unknown fake samples is defined as U . For a fake sample
xi ∈ U , we label its unknown implicit identity as y∗i . Mean-
while, other frames from the same video as xi also have
the same implicit identity. We embed xi into the feature
space Fim (xi) ∈ RD by the implicit identity embedding
network, where D is the feature dimension. We establish a
lookup table V ∈ RD×Q to store the normalized features
of all the unknown implicit identities. During the implicit
identity embedding network forward propagation, we cal-
culate the distance between sample xi and unknown iden-
tities in the lookup table by cosine similarity, denoted as
V T Fim (xi). During backward, we update the y∗i -th col-
umn in the lookup table by vy∗

i
← βvy∗

i
+ (1− β)Fim (xi),

where β ∈ [0, 1]. Moreover, we define the probability that
sample xi is classified as y∗i by the Softmax function and
maximize the expected log-likelihood

L−
iie = −Exi,y∗

i ∼U

log e

(
vT
y∗
i

Fim(xi)/τ
)

∑Q
j=1 e

(vT
j Fim(xi)/τ)

 . (4)

The higher temperature τ leads to softer probability distri-
bution.

It can be seen that our L−
iie effectively compares the

mini-batch unknown fake sample with all the unknown im-
plicit identities, driving the identity consistency between
different frames of the same video. The overall IIE loss
Liie can be derived as

Liie = L+
iie + L

−
iie. (5)

3.3. Overall Loss Function

With the difference between the implicit and explicit
identities of face samples, we insert a fully connected clas-
sifier to perform classification and make full use of label
information. Therefore, the overall loss function L of the
IID framework includes the EIC and the IIE loss, as well as
the binary cross-entropy loss:

L = Lbce + λ1Leic + λ2Liie, (6)

where λ1 and λ2 are weight parameters for trading off the
losses.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our proposed method on five chal-
lenging datasets, including FaceForensics++ (FF++) [42],
Celeb-DF [29], FaceShifter [26], DFD [38] and DFDC [13].
FF++ is the most widely used forgery dataset, covering 720
videos for training and 280 videos for validation or testing.
It contains four manipulation methods, including identity
swapping methods (DeepFakes [17], FaceSwap [18]) and
expression swapping methods (Face2Face [49], and Neu-
ralTexture [48]), which is suitable for evaluating the gen-
eralization of the model. Note that Face2Face and Neural-
Texture are based on expression swapping rather than iden-
tity swapping, thus in the following experiments, we only
use IIE constraints instead of EIC constraints for the sam-
ples in Face2Face and NeuralTexture. Particularly, there are
two types of video quality in FF++, including high quality
(C23) and low quality (C40). Celeb-DF is generated by
face swapping for 59 pairs of subjects, it contains 590 real
videos and 5,639 high-quality fake videos. FaceShifter is
a new forgery dataset obtained by applying the FaceShifter
[26] manipulation method to the original video of FF++,
which is more realistic and more difficult to detect real and
fake. DFD is a Deepfake based dataset that has 363 real
videos and 3,068 fake videos. DFDC is currently the largest
publicly available face swapping video dataset, containing
1,133 real videos and 4,080 fake videos for testing. It is
very challenging for existing forgery detection due to the di-
verse and unknown manipulation methods. For all datasets,
we randomly select 50 frames by FFmpeg from each video
as training and testing. Particularly, we adopt open-source
RetinaFace [12] to detect and align faces from raw images.
In this way, all face images are cropped and normalized to
224 × 224.
Evaluation Metrics. We employ common metrics to eval-
uate our method, including Area Under the Receiver Oper-
ating Characteristic Curve (AUC), Equal Error Rate (EER)
and Accuracy (ACC).
Implementation Details. Our proposed IID method is im-
plemented by Pytorch deep learning framework [40], with
the batch size of 64 on two NVIDIA GTX 3090 GPUs. To
improve the robustness of the model, we perform data aug-
mentation such as flipping on the training set. The initial
learning rate is set to 0.1 and divided by 10 at the 8-th
and 14-th epochs. The entire deep network is optimized
by the SGD with momentum 0.9 and weight decay 5e-4.
Moreover, we use CosFace [51] trained on the WebFace
dataset to extract face explicit identity features during train-
ing. The implicit identity embedding network is based on
ResNet18 [21]. The temperature parameter τ in Equation 4
is set to 0.1. Besides, λ1 and λ2 in Equation 6 are empiri-
cally set to 0.05 and 0.1, respectively.
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Model Leic Liie
Celeb-DF DFDC

ACC (%) AUC (%) ACC (%) AUC (%)
A 70.34 74.09 69.85 72.65
B ✓ 77.76 82.24 76.39 78.80
C ✓ 76.40 81.46 74.95 77.22
D ✓ ✓ 79.16 83.80 79.37 81.23

Table 1. Effectiveness of the proposed constraints in our method
on the Celeb-DF and DFDC datasets. Specifically, Leic and Liie

denote the EIC loss and IIE loss, respectively.

4.2. Ablation Study

Since our proposed framework is composed of several
collaborative components, including the EIC loss and IIE
loss, we conduct ablation experiments on Celeb-DF and
DFDC datasets to verify the effects of these strategies.
Specifically, we first construct the baseline model A without
the EIC and IIE, which is actually a simple binary classifi-
cation model. Subsequently, several variants are designed
as: 1) baseline with the EIC, 2) baseline with the IIE, 3)
baseline with the EIC and IIE.

The quantitative results on Celeb-DF and DFDC are re-
ported in Table 1. Compared with the model A, model B
achieves 7.42%, 6.54% ACC and 8.15%, 6.15% AUC gains
on Celeb-DF and DFDC, respectively. This is attributed
to EIC taking the explicit identities of real and fake sam-
ples as clues rather than simple classification. It is feasible
for real samples to be close to their explicit identities and
fake samples away from their explicit identities. Particu-
larly, the drop in the accuracy of model C demonstrates that
the supervision of IIE is meaningless without EIC. Because
IIE binds the explicit and implicit identities of real samples
together, without it the implicit identities of real samples
are unknown. IIE aims to explore the implicit identities of
fake faces and therefore cannot distinguish the real and fake
well alone. The best performance is achieved when com-
bining all the proposed constraints with 79.16%, 83.80%
ACC and 79.37%, 81.23% AUC on Celeb-DF and DFDC,
respectively.

4.3. Quantitative Results

Cross-dataset evaluation. To verify the generalizability of
our proposed IID for cross-dataset, we conduct comprehen-
sive experiments on representative datasets. Specifically,
the models are trained on the FF++(C23) and evaluated
on the Celeb-DF, DFD and DFDC, respectively. Besides,
we select the classic and recent state-of-the-art methods for
comparison, including Xception [42], Face X-ray [27], F3-
Net [52], DCL [46] and UIA-ViT [55], etc.

Quantitative evaluation results of the above models are
tabulated in Table 2. From the table, we can see that our
proposed IID generally outperforms all counterparts on un-
seen test data, even achieving significant improvements on

some datasets. For instance, the AUC scores of previous
methods drop significantly on the unknown dataset DFDC.
In contrast, IID reaches an AUC of 81.23%, which exceeds
DCL [46] by 4.52%. The gains mainly benefits our pro-
posed IID framework, which learns the implicit identities
of real and fake samples under the guidance of EIC and IIE.
It is worth noting that our model is not the most superior on
the Intra-testing dataset (FF++). That is because our IID fo-
cuses more on exploring generalization differences between
real and fake samples rather than simply fitting the training
data distribution.

We further conduct a low-quality cross-dataset experi-
ment by training on FF++(C40) and testing on Deepfakes
class and Celeb-DF. We compare our model with state-
of-the-art approaches in Table 3. Similar to high-quality
cross-datasets, our IID achieves sub-superior performance
on intra-testing, but outperforms by 4.69% compared with
the recent ITA [55] on Celeb-DF.
Cross-manipulation evaluation. We further conduct ex-
periments across manipulation methods to further explore
the generalization ability of the model for different manip-
ulation methods. Specifically, we choose the DeepFakes
(DF) and FaceSwap (FS) methods of FF++(C23), and the
FaceShifter (FST) dataset, which have the same face swap-
ping objects. The model is trained on one of the datasets
and tested on the other two.

As tabulated in Table 4, our method generally outper-
forms competitors in terms of mean AUC on unseen ma-
nipulation types. Specifically for our model trained on DF
and tested on FST, it achieves an AUC gain of 5.04% ver-
sus DCL. In contrast, DF requires training on the pairs of
faces to be swapped while FST can arbitrarily swap faces
for a single face image. In principle they are extremely
different manipulation methods. Therefore, this case of
cross-manipulation methods requires detection methods to
mine the most essential differences between real and fake
faces. Experiments across manipulation methods effec-
tively demonstrate the strong generalization ability of our
method, which takes the implicit identity of the face as a
clue to exploit fake-invariant features for discriminating real
and fake faces.
Multi-source manipulation evaluation. In practice, it is
usually necessary to train on multiple manipulated datasets
and test on unknown samples. To demonstrate the effec-
tiveness of our model in this multi-source manipulation sce-
nario, we conduct experiments on the benchmark proposed
by Sun et al. [45, 46]. Specifically, the model is trained
on the three manipulated methods of FF++ and tested on
the other one. In particular, we use EfficientNet-b0 as the
backbone to ensure fair comparisons. The results are pre-
sented in Table 5. Our method generally outperforms oth-
ers in terms of ACC and AUC on both high-quality and
low-quality evaluations. The performance mainly benefits
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Method FF++ Celeb-DF DFD DFDC
AUC (%) EER (%) AUC (%) EER (%) AUC (%) EER (%) AUC (%) EER (%)

Xception [42] 99.09 3.77 65.27 38.77 87.86 21.04 69.90 35.41
EN-b4 [47] 99.22 3.36 68.52 35.61 87.37 21.99 70.12 34.54

Face X-ray [27] 87.40 - 74.20 - 85.60 - 70.00 -
MLDG [24] 98.99 3.46 74.56 30.81 88.14 21.34 71.86 34.44
F3-Net [52] 98.10 3.58 71.21 34.03 86.10 26.17 72.88 33.38

MAT(EN-b4) [53] 99.27 3.35 76.65 32.83 87.58 21.73 67.34 38.31
GFF [32] 98.36 3.85 75.31 32.48 85.51 25.64 71.58 34.77
LTW [45] 99.17 3.32 77.14 29.34 88.56 20.57 74.58 33.81

Local-relation [7] 99.46 3.01 78.26 29.67 89.24 20.32 76.53 32.41
DCL [46] 99.30 3.26 82.30 26.53 91.66 16.63 76.71 31.97

UIA-ViT [55] 99.33 - 82.41 - 94.68 - 75.80 -
Ours 99.32 2.99 83.80 24.85 93.92 14.01 81.23 26.80

Table 2. Cross-database evaluation from FF++(C23) to Celeb-DF, DFD, and DFDC in terms of AUC and EER. The FF++ belongs to the
intra-testing results while others represent to the unseen dataset testing.

Method FF++ (%) Celeb-DF (%)
Meso-4 [1] 84.70 54.80

Mesoinception4s [1] 83.00 53.60
FWA [28] 80.10 56.90

Xception [42] 95.50 65.50
Multi-task [36] 76.30 54.30

SMIL [31] 96.80 56.30
Two Branch [33] 93.18 73.41

EN-b4 [47] 96.39 71.10
MAT [53] 96.41 72.50
GFF [32] 95.73 74.12
SPSL [20] 96.91 76.88
ITA [44] 96.94 77.35

Ours 96.79 82.04

Table 3. Cross-dataset evaluation from FF++(C40) to deepfake
class of FF++ and Celeb-DF in terms of AUC.

from the unique perspective of our proposed IID frame-
work, which explores essential forgery clues so as to be
robust to multiple manipulation methods.

4.4. Visualization

Visualization of explicit identity contrast. To visualize
the effectiveness of our proposed EIC, we conduct visu-
alization analysis on FF++(C23) and FaceShifter. Specif-
ically, given a face image (real or fake), we use our implicit
identity embedding network trained on FF++(C23) to ex-
tract its features as an implicit identity. Besides, CosFace
[51] is employed to extract the features of its face images
as explicit identities. The cosine similarity between explicit
and implicit identities serves as the explicit-implicit iden-
tity similarity (EIIS) for such images. For the preprocessed
DeepFakes of FF++(C23) and FaceShifter video frames, we

Train Method DF FS FST Mean

DF

EN-b4 99.97 46.24 51.26 65.82
MAT 99.92 40.61 45.39 61.97
GFF 99.87 47.21 51.93 66.34
DCL 99.98 61.01 68.45 76.48
Ours 99.51 63.83 73.49 78.94

FS

EN-b4 69.25 99.89 60.76 76.63
MAT 64.13 99.67 57.37 73.72
GFF 70.21 99.85 61.29 77.12
DCL 74.80 99.90 64.86 79.85
Ours 75.39 99.73 66.18 80.43

FST

EN-b4 61.11 56.19 99.52 72.27
MAT 58.15 55.03 99.16 70.78
GFF 61.48 56.17 99.41 72.35
DCL 63.98 58.43 99.49 73.97
Ours 65.42 59.50 99.50 74.81

Table 4. Cross-manipulation evaluation in terms of AUC. Diag-
onal results indicate the intra-testing performance. DF, FS and
FST denote the DeepFakes, FaceSwap and FaceShifter datasets,
respectively.

calculate the EIIS for each face image in them according
to the above method. The cosine similarity distribution is
shown in Figure 3. Overall, real and fake faces have a dis-
tinct boundary in terms of EIIS. Specifically, the EIIS of
fake faces is about -0.3 to 0.5, while the EIIS of real faces
is about 0.5 to 1.0. Note that there are still some samples
that are obfuscated, especially for FaceShifter as it is across
datasets.

Visualization of implicit identity exploration. To demon-
strate that our method effectively explores the implicit iden-
tity, we also conduct a visual analysis of FF++(C23) and
FaceShifter. Specifically, the fake face dataset consists of
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Method GID-DF (C23) GID-DF (C40) GID-F2F (C23) GID-F2F (C40)
ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)

EfficientNet [47] 82.40 91.11 67.60 75.30 63.32 80.10 61.41 67.40
Focalloss [30] 81.33 90.31 67.47 74.95 60.80 79.80 61.00 67.21

ForensicTransfer [9] 72.01 - 68.20 - 64.50 - 55.00 -
Multi-task [36] 70.30 - 66.76 - 58.74 - 56.50 -

MLDG [24] 84.21 91.82 67.15 73.12 63.46 77.10 58.12 61.70
LTW [45] 85.60 92.70 69.15 75.60 65.60 80.20 65.70 72.40
DCL [46] 87.70 94.9 75.90 83.82 68.40 82.93 67.85 75.07

Ours 88.21 95.03 76.90 84.55 69.36 84.37 67.99 74.80

Table 5. Performance on multi-source manipulation evaluation. GID-DF means traning on the other three manipulated methods of FF++
and test on DeepFakes. The same for the others.
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Figure 3. Cosine similarity distribution of explicit and implicit
identities for real and fake samples. We respectively extract the
explicit and implicit identity features of face images and calculate
the cosine similarity between them.

several source-target-fake face video triples. We organize
the fake face and the target face as positive sample (same
implicit identity), the fake face and source face as negative
sample (different implicit identities). In this way, we con-
struct the corresponding fake face verification datasets for
DeepFakes of FF++(C23) and FaceShifter. Subsequently,
we resort our implicit identity embedding network trained
on FF++(C23) to extract the implicit identity features of
each pair of samples respectively. The cosine distance of
each pair of face features is used as their identity similar-
ity. The cosine similarity distribution is shown in Figure 4,
which basically conforms to the normal distribution for pos-
itive and negative samples. We observe that positive sample
pairs and negative sample pairs are distinguishable in terms
of cosine similarity. Moreover, the distribution variance of
positive samples is significantly smaller than that of nega-
tive samples, which implies that the implicit identities we
extract are relatively stable. The results explain the effec-
tiveness of our IID from the implicit identity perspective.

5. Conclusion

In this paper, we consider a new perspective for face
swapping detection that focuses on the implicit identity of
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Figure 4. Cosine similarity distribution for positive and negative
samples. For a fake face dataset, the fake face and the target face
are organized as positive sample (same implicit identity), the fake
face and source face are organized as negative sample (different
implicit identities). We resort our implicit identity embedding net-
work trained on FF++(C23) to extract the implicit identity features
of each pair of samples respectively.

face. Specifically, we propose a novel implicit identity
driven framework for face swapping detection. Particularly,
we design an explicit identity contrast (EIC) loss and an im-
plicit identity exploration (IIE) loss to guide a CNN back-
bone, which can embed face images into the implicit iden-
tity space. EIC aims to pull real samples closer to their
explicit identities and push fake samples away from their
explicit identities. Moreover, IIE is margin-based and guide
fake faces with known target identities to have small intra-
class distances and large inter-class distances. Extensive
experiments and visualizations on several datasets demon-
strate the superiority and generalization capability of our
method over the state-of-the-art competitors.
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