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Abstract

Exposure correction task aims to correct the underex-

posure and its adverse overexposure images to the normal

exposure in a single network. As well recognized, the opti-

mization flow is the opposite. Despite great advancement,

existing exposure correction methods are usually trained

with a mini-batch of both underexposure and overexposure

mixed samples and have not explored the relationship be-

tween them to solve the optimization inconsistency.

In this paper, we introduce a new perspective to con-

junct their optimization processes by correlating and con-

straining the relationship of correction procedure in a mini-

batch. The core designs of our framework consist of two

steps: 1) formulating the exposure relationship of samples

across the batch dimension via a context-irrelevant pre-

text task. 2) delivering the above sample relationship de-

sign as the regularization term within the loss function to

promote optimization consistency. The proposed sample

relationship design as a general term can be easily inte-

grated into existing exposure correction methods without

any computational burden in inference time. Extensive ex-

periments over multiple representative exposure correction

benchmarks demonstrate consistent performance gains by

introducing our sample relationship design.

1. Introduction

The images captured under non-ideal illumination con-

ditions, i.e., underexposure or overexposure scenes, usually

suffer from unpleasant visual effects and thus count against

the down-streaming vision tasks. To this end, exposure

correction techniques have been developed, which aim to

correct both underexposure and overexposure images to the

normal exposure automatically. It is recognized that a sin-

gle algorithm is challenging to take for exposure correction

since the mapping flows of correcting underexposure and

overexposure are quite different [12].

*Equal contributions.
†Corresponding authors.

Recent years have witnessed explosive advancement

only on the single underexposure correction, including con-

ventional methods that rely on manually designed strate-

gies [2, 8, 10, 20, 28, 31], and deep-learning-driven methods

that account for the powerful learning capability of com-

plicated neural networks [32–34, 39], where deep-learning

methods have achieved improvement in restoring corrup-

tions [25,35–37]. Seldom efforts have been devoted to both

underexposure and overexposure scenes within a single al-

gorithm for meeting the practical application. Very recently,

some promising works [1, 12, 14, 24] attempt to solve the

above issue. Both of them follow the common principle of

alleviating the optimization process inconsistency by con-

jugating their exposure representations in spatial domain

[12, 14, 24, 29] or in frequency transform domain [13].

In fact, most above exposure correction approaches are

trained with a mini-batch that contains both underexposure

and overexposure mixed samples (see Fig. 1). Within the

mini-batch, the optimization process of a single network is

the opposite. On the other hand, correlating the relationship

of samples across the mini-batch could conjunct their opti-

mization processes [11]. Therefore, by constraining the re-

lationship across the batch dimension, the adverse effect of

opposite optimization in the mini-batch could be relieved.

To this end, in this paper, we introduce a new per-

spective that conjuncts the optimization processes across

the batch dimension via sample relationship learning and

further improves the optimization processes of exposure

correction. To achieve this, we construct an exposure-

relationship learning (ERL) framework consisting of two

steps (see Fig. 2). In the first step (see Fig. 3), we devise

a batch-correlation module (BCM) that captures the rela-

tionship of samples across the batch dimension. To enable

such a relationship focusing on the exposure-related repre-

sentations, we train BCM via a pretext task that excludes

context information correlation. Then, in the second step

(see Fig. 4), we deliver the above sample relationship as the

additional training regularization term within the loss func-

tion of exposure correction algorithms, where the relation-

ship of corrected results is optimized on the trained BCM.

In this way, the optimization processes within a mini-batch
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Figure 1. The illustration of optimization flow of underexposure

and overexposure correction. As can be seen, the corrected results

of underexposure samples are still obviously darker than normal

exposure, while the corrected overexposure samples behave oppo-

sitely. This demonstrates the corrected results of underexposure

and overexposure are optimized to approach their corresponding

ground truth in the opposite direction.

are conjunct and the adverse effect of inconsistency opti-

mization can be reduced.

Our proposed ERL framework is general and could be in-

tegrated with existing exposure correction approaches. The

above sample relationship regularization is only adopted

during the training procedure and does not introduce any

computation burden in inference time. Extensive experi-

ments on exposure correction datasets demonstrate consis-

tent gains by applying our ERL framework. Moreover, it

can also be extended to the mixed image enhancement task,

demonstrating the extensive capability of our method.

We summarize the main contributions of this work as:

• This work is the first time to solve inconsistency opti-

mization of exposure correction from a new perspec-

tive of batch dimension. By exploring the relationship

of samples within a mini-batch, their optimization pro-

cesses are conjunct to relieve the adverse inconsistency

optimization effect.

• We propose an exposure relationship learning (ERL)

framework to correlate and constrain the relation-

ship of corrected samples across the mini-batch. The

learned sample relationship acts as an additional reg-

ularization term within the loss function to assist the

model optimization.

• Our ERL framework is general and can be integrated

into the existing exposure correction methods without

introducing any computation burden during inference.

• Extensive experiments over multiple exposure cor-

rection datasets demonstrate consistent performance

gains by introducing our sample relationship learning

mechanism.

2. Related Work

2.1. Conventional Methods

In the past decades, various methods have been pro-

posed for correcting the exposure of images with poor il-

lumination. Conventional works mainly rely on manually

designed models and strategies. A line of work is based

on histogram-based techniques [2,3,15,16], which improve

the lightness and contrast of an improper exposure image.

While another line of work is based on Retinex theory [18],

which decomposes an image into the reflectance compo-

nent and the illumination component. By enhancing the

illumination component that improves the lightness, while

regularizing the reflectance component that suppresses the

noises, these methods have achieved prominent effect for

exposure correction [8, 10, 20, 30].

2.2. Learning­based Methods

In recent years, deep-learning-based methods have at-

tracted more attention [41–44] which is also adopted for

adjusting images with poor illumination, which are learned

to correct exposures in a data-driven manner. Some of

these approaches are also based on the Retinex theory [30,

32, 33, 38, 39]. As a representative, RetinexNet [32] and

KIND [39] decompose an image into illumination and

reflectance components, which enhances the illumination

and the reflectance components to approach corresponding

components of ground truth. Alternatively, another kind of

components decomposed method is designed to divide the

representation into different frequency bands and then en-

hance them progressively [21, 27, 34], such as DRBN [34].

Additionally, a few methods are also developed based on a

self-supervised manner [9, 22, 23, 40]. For instance, Zero-

DCE [9] formulates exposure adjustment as a task of image-

specific curve estimation with a deep network. However,

most of these methods are not dedicated to correcting vari-

ous exposures, limiting their wide-range applications under

various light conditions.

More recently, a few works have been developed for cor-

recting both underexposure and overexposure images. This

is challenging since the optimization flows of underexpo-

sure and overexposure correction are opposite. As a pio-

neer work, MSEC [1] proposes to correct varieties of ex-

posures with a Laplacian pyramid architecture, which re-

stores lightness and details in a coarse-to-fine manner. To

ease the correction of wide-range exposures with inconsis-

tency optimization flows, Huang et al. proposed to nar-

row the distribution of exposure representation with expo-

sure normalization [12]. Similarly, CMEC [24] proposes

to map different exposures to an exposure-invariant space

with the assistance of a transformer for exposure correc-

tion, while ECLNet [14] derives exposure-consistency rep-

resentations with the bilateral activation mechanism to as-
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Figure 2. The overview of our proposed ERL framework, consist-

ing of two steps. In the first step (Sec. 3.2), we formulate the ex-

posure relationship of samples across the batch dimension on the

BCM via a pretext task. In the second step (Sec. 3.3), the above-

trained BCM serves as a regularization function to constrain the

sample relationship of exposure correction.

sist exposure correction. To solve this problem in other

viewpoints, Wang et al. proposed a local color distribu-

tion operator for exposure correction to meet the problem of

non-uniform illumination problem [29], while FECNet [13]

corrects lightness and structures progressively in a Fourier-

based perspective. Although these algorithms have defi-

nitely achieved remarkable progress, there remains room

for improving the optimization process across the batch di-

mension that contains both underexposure and overexpo-

sure corrections. In this work, we introduce a new perspec-

tive that explores the sample relationships within a mini-

batch to conjunct their optimization processes, which re-

duces the adverse effect of opposite optimization flows.

3. Method

In this section, we first present an overview of the ex-

posure relationship learning framework. We then introduce

the proposed BCM in detail via its pretext task learning that

captures sample relationships. Finally, we detail the above

sample relationship as the regularization term to train expo-

sure correction approaches.

3.1. Motivation and Overview

Given images with incorrect exposure settings, the ex-

posure correction task aims to correct underexposure and

its adverse overexposure images to normal exposure in a

single network. Previous works are usually trained with

a mini-batch containing both underexposure and overex-

posure samples, which enables the network to learn to

correct various exposures simultaneously. However, the

large discrepancies between underexposure and overexpo-

sure corrections would inevitably lead to opposite opti-

mization flows across the batch dimension. As depicted in

Fig. 1, the underexposure and overexposure corrected re-

sults across the mini-batch are optimized oppositely. Such

a large inconsistency optimization leads to a sub-optimal

optimization process, which has rarely been explored for

exposure correction.

To this end, we start a new perspective for exposure cor-

rection that conjuncts the optimization of samples within a

mini-batch to reduce the adverse effect of inconsistency op-

timization, which is built upon learning the sample relation-

ship [11]. To achieve this, we correlate and constrain the

relationship of correction procedures on the corrected re-

sults and design an ERL framework with a two-step mech-

anism (see Fig. 2). In the first step, it correlates the expo-

sure relationship of samples within a mini-batch by employ-

ing the BCM. To exclude the influence of context informa-

tion on the relationship, the BCM is trained with a context-

irrelevant pretext task. While in the second step, the above

sample relationship built upon BCM acts as an additional

regularization term within the loss function of exposure cor-

rection methods, which constrains the relationship of sam-

ples. In this way, their optimization processes across the

batch dimension are conjunct during training, and it would

not introduce any computation burden in inference time.

3.2. Sample Relationship Correlation

As the first step of the ERL framework, we propose

to correlate the sample relationship across the batch di-

mension, which is implemented by BCM via a context-

irrelevant task.

Batch-correlation module (BCM). We design the BCM

to capture the sample relationship in feature space. Its ar-

chitecture is shown in Fig. 3, which consists of a feature

encoder fe with several CNN-based layers, and a sample

relationship part with a transformer encoder te. In addition,

the decoder fd consists of several CNN-based layers are set

to follow the transformer encoder that reconstructs the input

image, which assists the training of BCM (see Sec. 3.3).

We then describe the workflow of BCM that captures

sample relationships as follows. Let I ∈ RB×3×H×W de-

note a sequence of input images in a mini-batch, where B

indicates the length of the sequence, and H and W are the

spatial dimensions. The CNN-based encoder fe first ex-

tracts feature from images as F ∈ RB×C×H×W , where C

is the channel dimension. Then these features are resized to

the resolution of 16× 16, which can filter out most content-

relevant information since low-resolution contains less con-

tent. After that, these features are reshaped to the dimension

of RB×C′

that transfers the dimension of the feature as C ′.

Finally, we correlate the relationship of these features in the

batch dimension with the transformer encoder te, and ob-

tain the features F ′ ∈ RB×C′

that are correlated across the

batch dimension. The whole above process is expressed as:

F ′ = te(fe(I)), (1)
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Figure 3. The illustration of our proposed BCM, which correlates the exposure relationship of samples across the batch dimension.

Specifically, it consists of an encoder part fe that extracts features and a decoder part fd that reconstructs the image, both of which have

been trained in a self-reconstruction manner. We then apply a transformer encoder te between the encoder and decoder parts to explore the

sample relationship. Furthermore, we train the BCM with a pretext task that reconstructs the content-related phase information, leading to

it focusing more on correlating exposure-related information.

where the resize and reshape operations are omitted here.

We further detail how the transformer encoder te ex-

plores the sample relationship across the batch dimension.

Transformer usually contains a multihead self-attention

layer that models the relationship of spatial and channel di-

mensions [7]. By transposing the feature into the dimen-

sion that the transformer layer can operate on the batch

dimension, the self-attention mechanism of the multi-head

self-attention layer could cross attention samples in a mini-

batch, thus correlating their relationships.

Train the BCM via a context-irrelevant task. In pre-

liminary, the encoder and decoder parts of the BCM are first

trained in a self-reconstruction manner that can reconstruct

input images of themselves, then these parts are fixed and

a transformer encoder te is incorporated between them to

construct BCM. Thus, when training BCM, only the trans-

former encoder te is trained to learn the sample relationship.

Since the optimization processes of the correction are

mainly affected by the exposure condition, we hope the

sample relationship learning correlates more with exposure-

related components. To this end, the context relationship

across the batch dimension should not be focused, and we

now need to construct a pretext task that trains BCM to ex-

clude the influences of context relationships.

As shown in Fig. 3, we train a context-irrelevant pre-

text task on the BCM via a self-reconstruction manner. For

a sample correlating with other samples, it is hard to re-

construct itself since the information of other samples is

introduced. Therefore, we construct the pretext task to

reconstruct content-relevant information, which suppresses

the correlation of the content component, thus driving the

content-irrelevant information to be more correlated across

the mini-batch. Specifically, a mini-batch containing nor-

mal exposure samples I ∈ RB×3×H×W are sent to the

BCM, which are substantially derived correlated feature F ′

as depicted in Eq. 1. Then F ′ are reshaped and resized to the

dimension of F ′ ∈ RB×C×H×W , which are further fused

with F . Finally, the decoder fd reconstructs the integrated

features to the image space as Irec. This procedure is ex-

pressed as:

I ′ = fd(W (cat([F, F ′]))), (2)

where W denotes the 1 × 1 convolution operation, and [·]
means the concatenate operation.

We then introduce a phase component constraint as the

learning objective of the BCM. Based on FECNet [13], the

amplitude component reflects the exposure-related informa-

tion, while the phase component corresponds more to con-

tent information. Therefore, we construct the learning ob-

jective Lpre to constrain the phase component of the recon-

structed images I ′ to be closed with that of the input images

I:

Lpre = ||P(F(I))− P(F(I ′))||1, (3)

where || · ||1 denotes the mean absolutely error, F is the

Fourier transform operation, and P(·) represents getting the

phase component. Based on this regularization, the BCM

reduces the content information correlation across the mini-

batch which would put a negative effect on content recon-

struction, thus leading to BCM focusing more on correlat-

ing exposure-related information.

3.3. Sample Relationship Constraining

Deliver the sample relationship as regularization. Af-

ter correlating the sample relationship across batch dimen-

sions, we further deliver the sample relationship as an ad-

ditional regularization term that conjuncts the optimization

within a mini-batch. For implementation, when training the

exposure correction network, we constrain the relationship
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Figure 4. The illustration of delivering the sample relationship as

regularization for exposure correction. We employ the encoder

and transformer parts of the trained BCM as the regularization

function, and integrate this regularization term Lr with the con-

ventional loss functions Lc of exposure correction methods to op-

timize the exposure correction model.

of the corrected samples to be closed to that of the ground

truth.

Specifically, we employ the trained BCM to construct the

sample relationship within a mini-batch, where we discard

its decoder part and deploy the correlated feature F ′ as the

sample relationships representation. To this end, we apply

the sample relationship regularization on the F ′ during the

training of exposure correction, and its learning objective

Lr is expressed as:

Lr = ||F ′

res − F ′

gt||1 (4)

where F ′

res and F ′

gt denote the sample relationships repre-

sentation of corrected results and ground truth, respectively.

Integrate the above regularization term to existing

methods. The above sample relationship regularization

term is general and could be plugged into the training

paradigm of existing exposure correction algorithms as an

additional optimization objective. As shown in Fig. 4, the

total learning objective for training existing exposure cor-

rection method is the combination of the conventional loss

Lc and the relationship regularization term Lr:

L = Lc + αLr (5)

where α is the weight factor and we set it to 0.1 empiri-

cally, and the selection of α will be discussed in the abla-

tion study. The conventional loss denotes the original loss

function employed in these exposure correction methods.

3.4. Discussion

To better understand how the proposed ERL framework

conjunct the optimization processes by modeling sample re-

lationships across the batch dimension, we provide an in-

tuitive explanation as demonstrated in Fig. 5. Given the

𝑋𝑖 𝑌𝑖
𝑋N 𝑌N

𝑌1𝑋1
…

…

…
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Corrected Results Ground-Truth

Constraint
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Figure 5. With the regularization of sample relationship, besides

being optimized to the ground truth Yi, the corrected results Xi

are also implicitly constrained with other samples to keep their

relationships to be closed with those of the ground truth.

corrected results X(X = X1, .., Xi, ..XN ) and their cor-

responding ground truth Y (Y = Y1, .., Yi, ..YN ) in a mini-

batch, when the network is only optimized with the conven-

tional loss, the sample Xi is only optimized to approach the

corresponding ground truth Yi, and their optimization flows

are separated and often opposite in exposure correction.

While with the employ of sample relationship constrain-

ing, the corrected result Xi are further constrained to other

corrected results Xj (where j ̸= i) in a mini-batch, which

drives their relationships to be closed to those of Yi and Yj

(where j ̸= i). To this end, the optimization flow of Xi is

also affected by other samples, which could lead to a more

consistent exposure correction effect across the mini-batch.

In CMEC [24], it models consistency learning of different

exposures that regularize the underexposure and overexpo-

sure representations to be similar in the network. Similarly,

we consider our sample relationship regularization is an-

other form of consistency learning, and it implicitly regu-

larizes the results’ exposure representation to be correlated

and constrained in a mini-batch.

4. Experiments

4.1. Experimental Settings

Datasets. To evaluate the performance of our pro-

posed method, we conduct experiments on two represen-

tative datasets, including the MSEC dataset proposed in

MSEC [1] and SICE dataset [5] proposed in SICE. The

MSEC dataset is rendered from the MIT-Adobe FiveK

dataset [4], consisting of five exposure levels, where its

retouched version by experts of middle exposure is set as

ground truth. Finally, it consists of 17675 images for train-

ing, 750 images for validation, and 5905 images for test-

ing. While for the SICE dataset, the middle exposure sub-

set of this dataset is selected as the ground truth, and the

second and last second exposure subsets are set as the un-

derexposed and overexposed images, respectively. Finally,

the SICE dataset contains 512 images for training and 30

images for testing.

9908



MSEC SICE

#ParamMethod Under Over Average Under Over Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HE [26] 16.52 0.6918 16.53 0.6991 16.53 0.6959 14.69 0.5651 12.87 0.4991 13.78 0.5376 -

CLAHE [28] 16.77 0.6211 14.45 0.5842 15.38 0.5990 12.69 0.5037 10.21 0.4847 11.45 0.4942 -

RetinexNet [32] 12.13 0.6209 10.47 0.5953 11.14 0.6048 12.94 0.5171 12.87 0.5252 12.90 0.5212 0.84M

URetinexNet [33] 13.85 0.7371 9.81 0.6733 11.42 0.6988 17.39 0.6448 7.40 0.4543 12.40 0.5496 1.32M

Zero-DCE [9] 14.55 0.5887 10.40 0.5142 12.06 0.5441 16.92 0.6330 7.11 0.4292 12.02 0.5311 0.079M

Zero-DCE++ [19] 13.82 0.5887 9.74 0.5142 11.37 0.5583 11.93 0.4755 6.88 0.4088 9.41 0.4422 0.010M

DPED [17] 20.06 0.6826 13.14 0.5812 15.91 0.6219 16.83 0.6133 7.99 0.4300 12.41 0.5217 0.39M

KIND [39] 15.51 0.7115 11.66 0.7300 13.20 0.7424 13.43 0.4837 7.85 0.4779 10.64 0.4808 8.54M

SID [6] 19.37 0.8103 18.83 0.8055 19.04 0.8074 19.51 0.6635 16.79 0.6444 18.15 0.6540 7.40M

RUAS [22] 13.43 0.6807 6.39 0.4655 9.20 0.5515 16.63 0.5589 4.54 0.3196 10.59 0.4393 0.0014M

SCI [23] 9.965 0.6681 5.837 0.5190 7.49 0.5786 17.86 0.6401 4.45 0.3629 12.49 0.5051 0.0003M

MSEC [1] 20.52 0.8129 19.79 0.8156 20.08 0.8210 19.62 0.6512 17.59 0.6560 18.58 0.6536 7.04M

CMEC [24] 22.23 0.8140 22.75 0.8336 22.54 0.8257 17.68 0.6592 18.17 0.6811 17.93 0.6702 5.40M

SID-ENC [12] 22.59 0.8423 22.36 0.8519 22.45 0.8481 21.36 0.6652 19.38 0.6843 20.37 0.6748 7.45M

LCDPNet [29] 22.35 0.8650 22.17 0.8476 22.30 0.8552 17.45 0.5622 17.04 0.6463 17.25 0.6043 0.96M

DRBN [34] 19.74 0.8290 19.37 0.8321 19.52 0.8309 17.96 0.6767 17.33 0.6828 17.65 0.6798 0.53M

DRBN+ERL 19.91 0.8305 19.60 0.8384 19.73 0.8355 18.09 0.6735 17.93 0.6866 18.01 0.6796 0.53M

DRBN-ENC [12] 22.72 0.8544 22.11 0.8521 22.35 0.8530 21.89 0.7071 19.09 0.7229 20.49 0.7150 0.58M

DRBN-ENC+ERL 22.92 0.8704 22.45 0.8724 22.67 0.8716 22.06 0.7053 19.50 0.7205 20.78 0.7129 0.58M

ECLNet [14] 22.37 0.8566 22.70 0.8673 22.57 0.8631 22.05 0.6893 19.25 0.6872 20.65 0.6861 0.018M

ECLNet+ERL 22.90 0.8624 22.58 0.8676 22.70 0.8655 22.14 0.6908 19.47 0.6982 20.81 0.6945 0.018M

FECNet [13] 22.96 0.8598 23.22 0.8748 23.12 0.8688 22.01 0.6737 19.91 0.6961 20.96 0.6849 0.15M

FECNet+ERL 23.10 0.8639 23.18 0.8759 23.15 0.8711 22.35 0.6671 20.10 0.6891 21.22 0.6781 0.15M

Table 1. Quantitative results of different methods on the MSEC and the SICE datasets in terms of PSNR and SSIM. Bold denotes the

results that are improved by incorporating ERL. The underline denotes the best result.

Implementation details. We implement our proposed

model with PyTorch on a single NVIDIA GTX 3090 GPU.

Firstly, we train the BCM on the normal exposure images

for 100 epochs that captures the exposure sample relation-

ship. Then, to couple the above sample relationship as ad-

ditional regularization of existing methods, we select sev-

eral methods as equipped methods, including DRBN [34],

DRBN-ENC-4 [12], ECLNet [14] and FECNet [13]. After

the integration, we add + between their names and ERL to

denote the improved method (such as DRBN+ERL).

During training, we employ an Adam optimizer with

β1 = 0.9, β2 = 0.99 to update the model. We set the

training settings following the original settings of the above-

equipped methods, including the update of the learning rate,

the number of training epochs, and the patch size. All of the

loss functions for exposure correction are optimized in an

end-to-end manner. During the evaluation, we implement

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-

ity Index (SSIM) for numerical evaluation.

4.2. Comparison with State­of­the­Art Methods

To evaluate the performance with existing expo-

sure correction methods, several methods are adopted

as a comparison, including two traditional methods

HE [26] and CLAHE [28]. Additionally, several deep-

learning-based methods are involved as well, includ-

ing RetinexNet [32], DPED [17], SID [6], KinD [39],

DRBN [34], URetinexNet [33], Zero-DCE [9], Zero-

DCE++ [19], RUAS [22] and SCI [23]. We further in-

clude several specific approaches for exposure correction:

MSEC [1], CMEC [24], SID-ENC [12], DRBN-ENC [12],

ECLNet [14], LCDPNet [29] and FECNet [13].

Quantitative results. The quantitative results are shown

in Table 1. For the MSEC dataset, following MSEC, we

average the results of the exposures of the first two lev-

els and the remaining levels of exposure as underexposure

and overexposure results, respectively. As can be observed,

recently proposed exposure correction approaches (such as

FECNet and ECLNet) achieve excellent performance on the

two datasets. With the incorporation of the ERL framework,

their overall quantitative results are further improved on

most subsets and metrics. It substantiates the effectiveness

and flexibility of our proposed sample relationship regular-

ization. Note that the introducing of our sample relationship

regularization would not increase parameters or computa-

tion costs. In addition, the effectiveness of our framework

can also be verified to improve the performance during the

training procedure as shown in Fig. 7. As can be seen, our

ERL framework improves performance during most train-

ing time with higher PSNR, demonstrating it improves op-

timization processes and thus lead to better performance.

Qualitative results. We provide visual comparisons on

the MSEC dataset in Fig. 6, and visual comparisons on the

SICE dataset in Fig. 8, respectively. As can be seen, with

the employ of the sample relationship regularization term,

the global lightness or local structures and details of the en-
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(a) Input (b) CMEC (c) LCDPNet (d) DRBN (e) ECLNet (f) FECNet

(g) GT (h) MSEC (i) Zero-DCE++ (j) DRBN+ERL (k) ECLNet+ERL (l) FECNet+ERL

(m) Input (n) CMEC (o) LCDPNet (p) DRBN (q) ECLNet (r) DRBN-ENC

(s) GT (t) MSEC (u) Zero-DCE++ (v) DRBN+ERL (w) ECLNet+ERL (x) DRBN-ENC+ERL

Figure 6. Visualization results on the MSEC dataset of (top) underexposure correction and (bottom) overexposure correction.

(a) Training of ECLNet (b) Training of DRBN-ENC

Figure 7. Graph of PSNR with/without ERL framework during the

training process of the ECLNet and DRBN-ENC.

hanced results are further improved. Therefore, these re-

sults prove our method could improve existing methods to

generate better visual results. We provide more visual re-

sults in the supplementary materials.

4.3. Ablation Studies

We conduct ablation studies on the SICE dataset to fur-

ther investigate the effectiveness of our proposed sample re-

lationship modeling under different configurations, and we

set the baseline as training the exposure correction method

ECLNet on its original settings.

Investigation of the BCM. To validate the effectiveness

of the BCM design, we perform ablations with different

configurations of the BCM and present the results in Ta-

ble 2. As can be seen, without the employ of the pretext

task (which means the te in the BCM is randomly initial-

ized) or training the pretext task using pixel L1 loss, the

performance can also be improved compared with the base-

Option Baseline w/o pretext task with L1 with Lpre

PSNR 20.65 20.76 20.72 20.81

SSIM 0.6861 0.6912 0.6897 0.6945

Table 2. Ablation study of investigating the configuration of the

BCM based on the ECLNet in SICE dataset.

line. This demonstrates that the sample relationship regular-

ization mechanism itself is effective for improving perfor-

mance, while the designing of our pretext task can further

elevate the exposure correction effect.

Investigation of weight coefficient. To investigate the

influences of the weight coefficient α on sample relation-

ship regularization term, we perform experiment experi-

ments with setting different coefficients α. As shown in

Fig. 9 (a), larger α could lead to a slight performance de-

crease. Overall, the performance remains stable and is ro-

bust to the weight coefficient changes.

Investigation of batch size. We perform ablation stud-

ies to investigate the batch size of sample relationship reg-

ularization for optimizing exposure correction in Fig. 9 (b).

The results show that setting the batch size of 4 improves

more performance than other settings, while a larger batch

size can not improve performance significantly. This may

be caused by the sample relationship of large batch size be-

ing hard to optimize due to the high variance.

4.4. Extension on the Mixed Enhancement Task

To further demonstrate the extensive ability of our

method, we further train and test the method on an image
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(a) Input (b) CMEC (c) LCDPNet (d) DRBN (e) ECLNet (f) FECNet

(g) GT (h) MSEC (i) Zero-DCE++ (j) DRBN+ERL (k) ECLNet+ERL (l) FECNet+ERL

(m) Input (n) CMEC (o) LCDPNet (p) DRBN (q) ECLNet (r) DRBN-ENC

(s) GT (t) MSEC (u) Zero-DCE++ (v) DRBN+ERL (w) ECLNet+ERL (x) DRBN-ENC+ERL

Figure 8. Visualization results on the SICE dataset of (top) underexposure correction and (bottom) overexposure correction.

(a) Ablation of weight coefficient α (b) Ablation of batch size

Figure 9. Ablation study for investigating the factors of (a) the

weight coefficient α and (b) the batch size of our method based on

the ECLNet network.

Method LOL SICE (over) FiveK Average

DRBN 19.39/0.817 19.46/0.729 21.77/0.859 20.21/0.801

DRBN+ERL 19.84/0.824 19.34/0.730 22.14/0.873 20.44/0.809

ECLNet 21.54/0.806 19.98/0.728 23.54/0.851 21.69/0.795

ECLNet+ERL 22.01/0.827 19.73/0.714 23.71/0.853 21.82/0.798

FECNet 22.03/0.836 19.78/0.718 23.82/0.849 21.88/0.800

FECNet+ERL 21.08/0.829 20.57/0.722 24.18/0.864 21.94/0.805

Table 3. Quantitative results of applying our framework on ex-

posure correction methods for multiple enhancement tasks. Bold

denotes the results that are improved by incorporating the ERL.

mixed enhancement task containing different enhancement

tasks, where the optimization flows of them are quite differ-

ent. Specifically, we blend the LOL dataset [32] designed

for low-light enhancement, MIT-FiveK dataset [4] collected

for image retouching, and the overexposure subset from the

SICE dataset to build a Task-mix dataset. As shown in Ta-

ble 3, with the equipped with our sample relationship regu-

larization, the overall performance is improved. We provide

visual results in the supplementary materials.

5. Conclusion

In this paper, for the first time, we explore the sam-

ple relationship within a mini-batch to meet the optimiza-

tion inconsistency problem of exposure correction. Thus,

we introduce a framework that conjunct the optimization

process of exposure correction with two steps. The first

step correlates the exposure relationship of samples via a

context-irrelevant pretext task, while the second step con-

strains the relationship of corrected results by delivering the

above sample relationship as a regularization term within

the loss function. Our sample relationship design is compat-

ible with existing exposure correction approaches that serve

as a general regularization term. Extensive experiments

demonstrate our framework consistently boosts representa-

tive methods’ performance on exposure correction datasets.

Although the performance improvement is not very signifi-

cant in some cases, we hope our approach would shed light

on investigating the sample relationship for improving the

performance of low-level vision problems in the future.
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