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Abstract

We present Reference-guided Super-Resolution Neural
Radiance Field (RefSR-NeRF) that extends NeRF to super
resolution and photorealistic novel view synthesis. Despite
NeRF’s extraordinary success in the neural rendering field,
it suffers from blur in high resolution rendering because
its inherent multilayer perceptron struggles to learn high
frequency details and incurs a computational explosion as
resolution increases. Therefore, we propose RefSR-NeRF,
an end-to-end framework that first learns a low resolution
NeRF representation, and then reconstructs the high fre-
quency details with the help of a high resolution reference
image. We observe that simply introducing the pre-trained
models from the literature tends to produce unsatisfied arti-
facts due to the divergence in the degradation model. To this
end, we design a novel lightweight RefSR model to learn
the inverse degradation process from NeRF renderings to
target HR ones. Extensive experiments on multiple bench-
marks demonstrate that our method exhibits an impressive
trade-off among rendering quality, speed, and memory us-
age, outperforming or on par with NeRF and its variants
while being 52× speedup with minor extra memory usage.
Code will be available at: Mindspore and Pytorch

1. Introduction

Neural Radiance Field (NeRF) [29], which was first pro-
posed by Mildenhall et al. in 2020, is leading a trend
in neural rendering field for its realism and representa-
tion parsimony, showing great potential in various down-
stream industrial applications such as immersive view syn-
thesis [1, 2, 41], 3D scene reconstruction [24, 60], au-
tonomous driving [38, 18, 31, 50], aerial surveying [9, 21],
digital human deformation [47, 62, 52, 36], robot naviga-
tion and environment simulation [38]. In essence, NeRF
synthesizes photorealistic renderings by encoding the volu-
metric density and color of a scene within the weights of
a coordinate-based multilayer perceptron (MLP) [2], and
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its magic manifests in reconstructing an intact 3D spacial
representation from a handful of sparse observations, while
simultaneously retaining a highly compact scene represen-
tation [58].

While this approach works well when the training and
testing images observe the scene content with low resolu-
tion, NeRF, and its follow-ups exhibit significant blurry ef-
fects when the resolution goes up. This can be attributed
to the following two reasons. First of all, MLPs perform
poorly to regress the high frequency details from uniformly-
sampled low-dimension 5D coordinates [39]. Although a
positional encoding that uses Fourier Transformation will
greatly leverage this inherent low frequency bias in neural
networks, there is still a big room for photorealism. In addi-
tion, as the resolution increases, or in other words, when the
scene becomes more complex, NeRF requires a larger MLP
to encode more high frequency information [38]. How-
ever, simply enlarging the MLP only achieves minor gains
in detail restoration [33] and will significantly exacerbate
the rendering efficiency.

Moreover, due to the dense sampling strategy and fre-
quent MLP queries, rendering a NeRF is agonizingly slow.
It takes more than one day to train for a scene and 30
seconds to render an 800 × 800 image even running on a
high-performance desktop GPU, and this issue would be
more unacceptable when the resolution continues to as-
cend. To accelerate the rendering speed, several follow-up
works are proposed from different perspectives. One of the
most strait-forward solutions is introducing voxel-grid rep-
resentation to NeRF to model local properties of geome-
tries [22, 48, 37, 58, 10, 49, 13, 30, 5]. Despite the fact
that this paradigm achieves two or three orders of magni-
tudes of speed up [37, 10], they consume massive storage
and compromise rendering quality, which is unbearable for
resource-limited mobile devices.

To tackle the issue of lacking high frequency details, a
surge of interest is to introduce more advanced positional
encoding algorithms [1, 39]. However, these approaches
brought minor improvements. To this end, we propose
that since MLPs have a natural defect in learning high fre-
quency details, it is better to let MLPs learn low frequency
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information only and introduce a high resolution reference
frame to provide high frequency details in each scene. This
begs our final solution, as shown in Figure 1, an end-to-end
reference-guided super-resolution NeRF framework which
is a deft combination of NeRF and the experience from the
RefSR community. Specifically, We first downsample the
HR training images to low resolution ones, then we opti-
mize the low resolution NeRF with patch shuffle, followed
by a lightweight RefSR model which takes an HR refer-
ence image as its input to execute the upsampling and pro-
duce our final HR renderings. We observe that simply in-
troducing the pre-trained RefSR models from the literature
tends to produce unsatisfied artifacts due to divergence in
the degradation model from HR to NeRF rendering. This
prompted us to design a novel effective and lightweight
RefSR model. To sum up, RefSR-NeRF realizes a well-
exemplified trade-off among rendering quality, speed, and
memory usage, outperforming or on par with NeRF and its
variants while being 52× speedup with minor extra mem-
ory and storage usage. The main contributions of this paper
can be summarized as follows:

• We propose a novel end-to-end RefSR-NeRF frame-
work that extends NeRF to high resolution and photo-
realistic novel view synthesis.

• RefSR-NeRF can act as a novel NeRF acceleration
paradigm, which can significantly alleviate the prob-
lem of NeRF computation and cache exploding as res-
olution increases.

• Extensive experiments show that RefSR-NeRF quali-
tatively and quantitatively outperforms baseline works
by a large margin while being 52× faster.

2. Related Work
There are plenty of follow-up works of NeRF since it

was first proposed and tremendous progress has been made
in its improvements on rendering quality [8, 1, 2, 41, 16], ef-
ficiency [37, 11, 10, 15, 53, 7, 20], controllability [35, 42],
scalability [38, 34], generalization [59, 40, 44], as well
as novel applications [19, 26]. Despite NeRF can render
novel views at any resolution by spatial interpolation, it
suffers from losing detail and intensive computation over-
head. NeRF-SR [43] is somewhat similar to ours, in which
it directly renders HR images using super-sampling and in-
troduces a reference image to further finetune the results.
However, in essence, super-sampling can’t save any com-
putational resources so NeRF-SR is infeasible for resource-
limited mobile devices. We observe that little research
has been engrossed in accelerating NeRF from a resolu-
tion compression perspective. In this section, we briefly
review the advances in efficiency improvement and the field
of reference-based super-resolution.

2.1. Efficient NeRF

The lengthy training and inference time to render a
novel view image has become a long-standing problem
in NeRF community. To leverage this deficiency, KiloN-
eRF [33] splits one big MLP into around one thousand tiny
MLPs and each tiny MLP encodes a partitioned small re-
gion independently. NeX [48] proposes a depth oracle net-
work that predicts ray sample locations for each viewing ray
to reduce the number of samples. Another general method
is to use discretized volumetric representations to store the
geometries feature or properties offline and reload them at
the rendering stage [37, 22, 49, 58]. DIVeR [49] uses a
voxel-based field of features to represent the whole scene
and exploits deterministic rather than stochastic estimates
of the volume rendering integral. NSVF [22] defines a set
of voxel-bounded implicit fields organized in a sparse voxel
octree to guide and reduce sampling. FastNeRF [11] replace
multilayer perceptron by caching the NeRF into dense voxel
grids. PlenOctrees [58] exploit a sparse voxel-based octree
where each node stores both density and appearance values
to model the radiance at a point. Efficient-NeRF [15] fur-
ther pre-tabulates 3D scenes into dense and sparse voxels to
speed up NeRF rendering. In addition to opacity and color
information, SNeRG [13] stores view-dependent learned
feature vectors to sparse voxel grids. By pre-computing
and caching the properties(i.e density, spherical harmonics
coefficients [58, 10] or learned features) into specific data
structures, the rendering can be sped up significantly but
such approach incurs a significant memory overhead and is
prone to suboptimal geometry solutions [37]. Contrastively,
our method achieves orders of magnitudes of speedup and
maintains the simplicity of NeRF.

2.2. Reference-based Image Super-Resolution

Reference-based image super-resolution (RefSR) aims
to exploit auxiliary reference (Ref) images to super-resolve
low resolution (LR) images by transferring high frequency
details of reference frames [17, 23, 54, 51, 56, 57, 32].
CrossNet [63] estimates the optical flow (OF) between Ref
and LR and aligns them into the same resolution by cross-
scale warping. TTSR [55] regards the LR and reference im-
ages as queries and keys in a transformer and proposes hard
and soft attention for texture transfer and synthesis. C2-
Matching [17] proposes a contrastive correspondence net-
work to learn the relationship between LR and reference im-
ages, then exploits a teacher-student correlation distillation
and a residual feature aggregation to synthesize HR images.
To match the correspondence between LR and reference im-
ages with significant differences, Cao et al. [3] propose a
deformable attention Transformer to aggregate features and
relevant textures. Combined with RefSR, NeRF can accel-
erate rendering at low resolution and restore high frequency
information with the assistance of reference frames. How-
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Figure 1. An overview of the proposed RefSR-NeRF framework. RefSR-NeRF first learns a low resolution scene representation and then
reconstructs high frequency details with the help of a pre-determined high resolution reference image. Different from vanilla NeRF [29]
or its variants that randomly sample rays during training process, RefSR-NeRF samples an image patch at a time to be compatible with
end-to-end training with the following RefSR model.

ever, The off-the-shelf SR methods are for specific down-
sampling degradation models and do not apply to NeRF
whose degradation models are uncertain. To this end, we
propose an aggregation module to fit the downsampling in
NeRF accurately.

3. Methodology
We build our RefSR-NeRF implementation on the

vanilla NeRF [26]. Generally, NeRF and its variants adopt
random batch rays sampling to train for each scene, which
is not compatible with the following RefSR model training.
Instead, we build this end-to-end pipeline by using a patch
rays sampling strategy, so as to provide spatial contextual
information to the RefSR model to make end-to-end train-
ing possible. Another impediment is that NeRF rendering
process exhibits a new degradation model, so introducing
the off-the-shelf RefSR models is prone to producing arti-
facts and is of too many parameters for the scene by scene
optimization paradigm in NeRF.

3.1. NeRF

NeRF approximates the continuous 5D scene represen-
tation with an MLP network by taking a 3D location x =
(x, y, z) and 2D viewing direction d = (θ, φ) as input, and
producing an emitted color c = (r, g, b) and volume density
σ [29]. For parsimony, this mapping process can be written
as: FΘ : (x,d) 7−→ (c, σ). Incorporated with the ray tracing
method, NeRF renders each pixel of a camera as follows: A
ray r(t) = o + td is emitted from the camera’s center pro-
jection o along the direction d such that it passes through
the pixel [1]. A sampling strategy (Monte Caro in most
cases) is adopted to determine a vector of sorted distance
t between the camera’s predefined near and far planes tn
and tf . In vanilla NeRF [29], the MLP consists of two sub-

MLPs: MLPpos to represent the position-dependent com-
ponent density σ, and MLPdir to represent position and
view-dependent RGB color c:

∀tk ∈ t, [σk, fk] = MLPpos(γ
Lx(x(tk)); Θpos), (1)

ck = MLPdir(γLd([d(tk)), fk]; Θdir) (2)

Where Θpos and Θdir denote the weights of these two sub-
MLPs, respectively. The fk is a position-dependent feature
vector generated by positional MLPpos and is provided as
input to the directional MLPdir. γL represents the posi-
tional encoding which is to be discussed in the following
section.

Despite the fact that neural networks are universal func-
tion approximator [14], Ben.Mildenhall et al. found that
MLPs perform poorly to regress the high frequency details
from an uniformly-sampled and low-dimension 5D coor-
dinates, and a simple but non-trivial positional encoding
operation that uses Fourier Transformation principle will
greatly leverage this inherent low frequency bias in neural
networks. Tancik et al. further analyze and prove this point
in [39]. Specifically, the positional encoding used in vanilla
NeRF [29] can be written as:

γ(p) =[sin(20πp), cos(20πp),

.. ...

sin(2L−1πp), cos(2L−1πp)]

(3)

Note that γ(·) is applied to each dimension of the 3D po-
sition x and d scaled by powers of 2 from 0 to 2L−1, where
L is a hyperparameter that determines the bandwidth of the
interpolation kernel (more details can be found in Tancik et
al. [39]). Empirically, L is set to 10 for γ(x) and 4 for γ(d)
in [29] in the context of position x and view direction d are
normalized to lie in [-1, 1].
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Once we obtain the estimated densities and colors along
a ray, we can utilize the volume rendering integral using
numerical quadrature, as per Max [25]:

C(r; Θ; t) =
∑
k

Tk(1− exp(σk(tk+1 − tk)))ck, (4)

Tk = exp(−
∑
k′<k

σk′ (tk′+1 − tk′ )) (5)

Where the C(r; Θ; t) is the final rendered color of the
pixel. The full implementation of NeRF utilizes a coarse-
to-fine sampling of tk along each ray by treating the integral
weights wi = Ti(1− exp(σk(tk+1 − tk))) as a probability
distribution in order to better concentrate samples in areas
of high density.

3.2. Patch-Based NeRF Training

According to the camera pose, NeRF samples rays cor-
responding to each pixel and renders specific color infor-
mation via MLP and volume rendering integral. However,
the inherent nature of MLP and the training strategy of ran-
dom sampling leads to poor performance of NeRF in high
frequency scenarios. Conversely, RefSR extracts features
of continuous pixels in the reference image to reconstruct
high frequency information of the LR. This becomes a prob-
lem when we combine implicit representation learning with
continuous feature representation, specifically, it makes no
sense for individual rays(randomly sampled by NeRF) to
be rendered to specific colors and then super-resolution to
scale regions. There is a gap between sampling strategies.

Therefore, we present a patch-based NeRF to connect the
NeRF to the SR module in the training stage, as shown in
Figure 2. We first obtain the rays from a continuous region
rather than stochastic selection. The final ray color is then
obtained by the MLP and the volumetric integration. Fi-
nally, rendering regions are sent to the subsequent network
to train the SR module. The formulation can be described
as:

∀r ∈ R, HR = RefSR(C(r; Θ; t)) (6)

where R represents the sampled batching rays from training
images, Θ denotes weights of MLP and t is the sampling
intervals along each ray. We empirically found that feed-
ing fixed-order batching rays that indicate a fixed region in
image space to MLP leads to turbulence during the train-
ing process and falls into a suboptimal solution. Therefore,
we adopt a batch shuffling across the whole training image
after each epoch.

3.3. RefSR Model for NeRF Degradation

Reference-based Super Resolution (RefSR) methods aim
to super-resolve HR images from the LR ones with the
assistance of reference images. Combined with RefSR,
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Figure 2. An overview of the reference-based SR model, which
consists of a two-branch backbone and a fusion module. The back-
bones extract the feature maps from degradation-dominant (LR-
Ref and novel view LR) and detail-dominant information (HR Ref
and novel view LR) respectively. The two feature maps are then
fused and further refined by a fusion module.

NeRF is able to achieve considerable rendering acceleration
and restore high frequency information from reference im-
ages [23, 55]. However, recent works in the RefSR commu-
nity mainly focus on modeling the specific down-sampling
degradation procedure[4], e.g., JEPG compression, bicubic
or bilinear interpolation, none of which has explored this
emerging but sophisticated degradation process caused by
MLPs in NeRF rendering pipeline.

Therefore, as shown in Figure 2, we present a reference-
based SR module to exploit reference images to super-
resolve the LR images generated by NeRF model. The main
considerations of our approach are how to model the down-
sampling degradation procedure between HR and NeRF’s
LR views, and to transfer high frequency details from a
content-consistent but misaligned reference image to the fi-
nal HR image. Specifically, we design a two-branch net-
work that thoroughly exploits detail-dominant (DeT) and
degradation-dominant (DeG) information from the respec-
tive branch and fuses these two outputs effectively. We
build two encoder-decoder networks in two branches to per-
form a down-sampling degradation prediction and a high
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frequency details restoration.
The detail-dominant branch aims to transfer the high fre-

quency details from Ref inputs. For the purpose of effec-
tiveness, an upsampling of NeRF’s output (LRup) is also
sent to assist in detail restoration. In the current branch, in-
puts are transformed by space to depth layer (S2D) and ex-
tracted deep features through a series of convolution layers
and two basic residual blocks(ResBlocks [12]). The out-
puts of the first ResBlock are Fup

LR, FRef , and the second
are F

′up
LR , F

′

Ref , where

Fup
LR, FRef =ResBlk(Conv(S2D((LRup, Ref)))

F
′up
LR , F

′

Ref =ResBlk1(Fup
LR, FRef )

(7)

The details are then initially fused by feeding the F
′

Ref and
Fup
LR into a ResBlock. Finally, the decoder layer upsamples

the fused detail features and F
′up
LR to the target scale, which

generates the output of the detail-dominant branch, where

Outdetail = Decoder(F
′up
LR , ResBlk2(F

′

Ref , F
up
LR)) (8)

For the degradation-dominant branch, we exploit Atten-
tive Auxiliary Feature Block(AAFBlk)[45] as the central
feature extractor because of its excellent adaptive feature
alignment ability. The degradation branch takes the LR and
Ref at low resolution as inputs. The LR view of Ref is syn-
thesized by MLP with the Ref camera pose as input. We
add a skip connection by a conv layer and pixelshuffle layer
for input and the output adds to the result of the main fea-
ture extractor directly. As two outputs are generated, we
fuse them by a fusion module. Note that we select the mid-
dle frame (fixed) in the training set as the reference image
during the training and inference process. So there is only
minor extra disk storage.

3.4. Loss Function

The total loss function in our experiment mainly consists
of two parts, the rendering loss between the LR rendering of
NeRF and the LR ground truth images and the reconstruc-
tion loss LRec between the super-resolved HR images and
the HR ground truth. The formulation can be denoted as:

LRen = ||ILR − (ILR)||1 (9)

in which LRen denotes the LR rendering loss. In order to
maintain the spatial structure information while improving
the resolved HR quality, we use a Charbonier loss function
to better deal with outliers.

LRec =

√
||IHR − IHR||2 + ε2 (10)

in which LRec denotes the HR reconstruction loss and ε is
a hyperparameter and is set to 1e-12 default.

Ltotal = λ1 · LRen + λ2 · LRec (11)

3.5. Implementation Details

We built our LR NeRF based on vanilla NeRF and im-
plement our RefSR model using Pytorch and train it on a
V100 NVIDIA GPU with 32GB memory. During training,
Adam is selected as the optimizer. The batch size of rays
sampled across the images in the training set is set to 1024,
which means the LR NeRF renders a 32×32 image patch
in each iteration and is sent to the following RefSR model
for super resolving HR rendering. Our loss is simply the
sum of the rendering loss (the mean squared error between
the rendered LR image and ground truth LR image) and the
reconstruction loss (the mean squared error between the re-
solved HR image and ground truth HR image).

4. Experiments
We provide a quantitative and qualitative comparison of

both the synthetic scenes from [29] and real-world forward-
facing scenes from [27] to demonstrate the superior perfor-
mance and trade-offs in our algorithm. We evaluate the ren-
dering quality of the renderings via the widely used met-
rics including PSNR, SSIM [46] , and VGG LPIPS [61].
Furthermore, we also report the rendering Frame Per Sec-
ond (FPS) and storage usage for efficiency evaluation.
Quantitative comparison are shown in Table 1 and Table 2,
and visual results are depicted in Figure 3 and Figure 4.
Note that in most experimental settings, our approach shows
higher image quality while achieving two orders of magni-
tudes of speed up. We provide extensive ablation studies to
verify the contribution of each component of our proposed
framework.

4.1. The Real World Forward-Facing Dataset

The Local Light Field Fusion (LLFF) [28] dataset con-
sists of 8 real-world scenes captured from lots of forward-
facing views. Each scene has 20 to 62 images with a
resolution of 4032×3024. We follow the same training
and testing data split strategy as the original NeRF [29].
Each scene uses 7/8 of the images for training and takes
the remaining 1/8 for testing. Compared with the NeRF
synthetic dataset, e.g., the synthesis 360◦ dataset [29], the
LLFF dataset has more complex scenes that present the real-
world application of NeRF, thus can be extremely challeng-
ing for such high resolution and complex view synthetic.
We set the input resolution as 504×378 and super-resolve
this LR rendering under the scale of×4 and×8. The down-
sampling method is the same as the one provided in the of-
ficial LLFF [28] code.

We compared with bicubic interpolation, vanilla NeRF,
and NeRF-SR [43] approaches. For vanilla NeRF, in addi-
tion to training and testing models at high resolution, termed
NeRF-HR, we also provide the model trained at low res-
olution and render at high resolution using spacial super-
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Figure 3. Qualitative comparison of our method with bicubic interpolation and NeRF on the dataset of LLFF with the input resolution at
504×378 with×4 super-resolving to 2016×1512. Our method can restore the high frequency details meanwhile the render time of our
method is over two orders of magnitude faster than NeRF.

sampling (NeRF-LR). Table 1 demonstrates that our ap-
proach can outperform NeRF-LR and NeRF-HR in render
quality, and be comparable with NeRF-based methods (e.g.
NeRF-SR [43]) while achieving considerable rendering ac-
celeration. Specifically, for the test scale ×2, our approach
achieves at least 5× render acceleration with a slight degra-
dation in render quality. For the test scale ×4, our approach
achieves over 30× speed up while keeping the comparable
result of the state-of-the-art method. For the test scale ×8,
the rendering quality of our method is superior to NeRF-HR
(0.66 dB), and the rendering speed is over 50× faster than
NeRF-HR. Note that the rendering quality of our method
decreases slowly as the test scale increases, which means
that our method is more robust when synthesizing high res-
olution views.

We also compare the performance of our method with
baselines. As illustrated in Figure 3 and Figure 4 , which
show the visualization of different methods at the render-
ing resolution of 2K and 4K. Our method produces accu-
rate and clear textures on all tested scales, for instance in
the orchids scene, Bicubic and NeRF tend to produce noisy
and blurry renderings in cropped flower patch (the red rect-
angle) and leaves patch (the yellow rectangle), indicating
that our method outperforms NeRF in high frequency infor-

mation restoration.

4.2. Synthetic 360 ◦ Dataset

The NeRF Synthetic 360◦ dataset [29] contains 8 syn-
thetic scenes, each of which includes 100 ground truth im-
ages and 200 testing images. All images are of 800×800
resolution with calibrated camera positions. For the NeRF
synthesis 360◦ dataset, we report two experimental: scales
×4 with 100×100 LR resolution and scales ×4 with
100×100 LR resolution. The down-sampling strategy from
HR to LR is Mogrify algorithm from the ImageMagic
toolkit. We attach the quantitative comparisons and visual
comparisons in supplementary material.

4.3. Quality, Speed, and Memory Trade-off

In Table 2 and Figure 6, we compare the render-
ing quality, rendering speed, and memory usage of our
method along with MLP-based methods (LLFF, NeRF, Jax-
NeRF) and caching-based methods (Plenoxel, FastNeRF,
Efficient-NeRF, SNeRG, Mobile-NeRF). We can see that
non-caching methods except LLFF have a slower inference
speed (at least 600×) compared to the caching-based meth-
ods, while caching-based methods have a considerably high
memory overhead (at least 62×). LLFF meets both high
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Figure 4. Qualitative comparison of our method with bicubic interpolation and NeRF on the dataset of LLFF with the input resolution at
504×378 with×8 super-resolving to 4032×3024. Our method can restore the high frequency details meanwhile the render time of our
method is over two orders of magnitude faster than NeRF.

Ground Truth TTSR DATSR OursOur wo Ref 

Figure 5. Qualitative comparison to the state-of-the-art RefSR method DATSR [3] and TTSR [55], which exhibit unpredictable artifacts or
blurry effect. However, our method presents accurate and clear texture information in these challenging real-world scenes.

rendering speed and low memory consumption but per-
forms poorly. Therefore, there is a clear trade-off between
the memory consumption of a model and its inference speed
and quality. We can see that our method exhibits an impres-
sive trade-off among rendering quality, speed, and memory
usage, outperforming or on par with NeRF and its variants
while being 5× speedup with minor extra memory and stor-

age usage. Note that with the increase in resolution, our ap-
proach maintains high rendering speed and low consump-
tion, while rendering quality decreases slightly.

4.4. Ablation Study

In this section, we present extensive ablation studies of
our method on the LLFF dataset for test scale×4, as shown
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Table 1. Quantitative comparison for novel view synthesis on
the real forward-facing dataset [27]. With the input resolution
504×378, we report the quantitative metrics for upsampling scale
at ×2, ×4 and ×8. In addition to considerable acceleration, our
method achieves more robust performance with increasing render-
ing scales.

Method Metrics (NeRF-LLFF×2)
PSNR↑ SSIM↑ LPIPS↓ Speed (sec) ↓

Bicubic 24.90 0.844 0.301 8.0
NeRF-LR [29] 23.30 0.663 0.296 38.9
NeRF-SR [43] 27.26 0.842 0.103 39.1
NeRF-HR [29] 26.50 0.811 0.251 38.9
Ours 26.23 0.874 0.243 8.5

Method Metrics (NeRF-LLFF×4)
PSNR↑ SSIM↑ LPIPS↓ Speed (sec) ↓

Bicubic 24.19 0.815 0.438 8.0
NeRF-LR [29] 24.47 0.701 0.388 155.3
NeRF-SR [43] 25.59 0.759 0.165 245.5
NeRF-HR [29] 25.33 0.842 0.397 155.3
Ours 25.37 0.847 0.398 8.8

Method Metrics (NeRF-LLFF×8)
PSNR↑ SSIM↑ LPIPS↓ Speed (sec) ↓

Bicubic 23.29 0.823 0.518 8.0
NeRF-LR [29] 21.71 0.800 0.514 468.4
NeRF-HR [29] 24.22 0.840 0.490 468.4
Ours 24.88 0.850 0.466 8.9

Table 2. A comparison with NeRF acceleration counterpart, all
figures are reported on LLFF [28] dataset with render resolution
1008×756.

Method Metrics (NeRF-LLFF×2) Speed (FPS) Disk
StoragePSNR↑ SSIM↑ LPIPS↓

Plenoxel [10] 26.29 0.839 0.210 - 19.3 GB
FastNeRF [11] 26.04 0.856 0.085 ∼200 57.0 GB
Effi-NeRF [15] 27.39 0.912 0.082 218.83 4.3 GB
SNeRG [13] 25.63 0.818 0.183 27.38 310 MB
Mobile-NeRF [6] 25.91 0.825 0.183 - 451 MB
LLFF [27] 24.13 0.798 0.212 60 5.0 MB
NeRF [29] 26.50 0.811 0.250 0.030 5.0 MB
Jax-NeRF [8] 26.92 0.831 0.173 0.040 5.0 MB
Ours 26.23 0.874 0.243 0.153 38.3 MB

Table 3. The ablations of the proposed RefSR model. Metrics are
reported on NeRF-LLFF ×4 experiment setting. Scratch repre-
sents training the initial model while pre-trained represents using
the trained model for inference(fine-tuned).

Method Scratch Pre-trained Fine-tuned
Metrics (NeRF-LLFF×4)
PSNR↑ SSIM↑

NeRF-LR X 24.47 0.701
NeRF+TTSR X 23.43 0.720
NeRF+DATSR X 24.34 0.826
NeRF+DATSR X 24.71 0.834
NeRF+DATSR X X 25.21 0.851
Ours wo Ref X 24.93 0.824
Ours X 25.37 0.849

in Table 3. We report rendering quality for a more compre-
hensive comparison. In addition, we ablate the contribution
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Figure 6. RefSR-NeRF surpasses NeRF by a large margin (as
shown in Figure 6 (right)) and simultaneously gets a more than
52× speedup (as shown in Figure 6 (left)) at×8 upsampling scale.
In addition, our method achieves competitive quality and speed ac-
celeration at ×2 and ×4 upsampling scale. NeRF-SR [43] is an-
other reference based scheme based on super-sampling, but their
rendering speed is much slower than ours.

of the proposed RefSR module by comparing it with exist-
ing SOTA RefSR models.

The baseline model is low resolution NeRF, which is di-
rectly trained on input images (504×378) and renders high
resolution outputs. With the analysis of the results, we draw
the following conclusions: First, our method without the
reference module achieved a slight improvement over the
baseline. Second, our Ref-based module is beneficial for
restoring high frequency details. To prove the second con-
clusion, we add ablation experiments from recent RefSR
methods. DATSR [3] and TTSR [55] are excellent methods
in the RefSR task, while the former achieves state-of-the-art
performance. However, these two methods are not suitable
for down-sampling degradation caused by MLP.

In Figure 5 , we also provide a visual comparison of
ablation experiments. The results show that DATSR and
TTSR do not generate results well, while our method with-
out Ref can reconstruct scenes clearly. With the assistance
of the Ref, the output of our method is more approximate to
ground truth in high frequency detail.

5. Discussion and Conclusion

In this paper, we present a straightforward yet non-trivial
RefSR-NeRF framework for high fidelity and super reso-
lution view synthesis. The proposed low resolution NeRF
parametrization accompanied by our RefSR model is able
to achieve an impressive render acceleration and meanwhile
preserve fine details. In addition, this paradigm can be
well generalized across a wide range of NeRF methods and
benefits the community. Extensive experiments and results
demonstrate the effectiveness of our RefSR-NeRF method.
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