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Abstract
Semi-supervised learning improves data efficiency of

deep models by leveraging unlabeled samples to alleviate
the reliance on a large set of labeled samples. These suc-
cesses concentrate on the pixel-wise consistency by using
convolutional neural networks (CNNs) but fail to address
both global learning capability and class-level features for
unlabeled data. Recent works raise a new trend that Trans-
former achieves superior performance on the entire feature
map in various tasks. In this paper, we unify the current
dominant Mean-Teacher approaches by reconciling intra-
model and inter-model properties for semi-supervised seg-
mentation to produce a novel algorithm, SemiCVT, that
absorbs the quintessence of CNNs and Transformer in a
comprehensive way. Specifically, we first design a paral-
lel CNN-Transformer architecture (CVT) with introducing
an intra-model local-global interaction schema (LGI) in
Fourier domain for full integration. The inter-model class-
wise consistency is further presented to complement the
class-level statistics of CNNs and Transformer in a cross-
teaching manner. Extensive empirical evidence shows that
SemiCVT yields consistent improvements over the state-of-
the-art methods in two public benchmarks.

1. Introduction
Semantic segmentation [4, 25, 41, 44] is a foundational

problem in computer vision and has attracted tremendous
interests for assigning pixel-level semantic labels in an im-
age. Despite remarkable successes of convolutional neural
network (CNN), collecting a large quantity of pixel-level
annotations is quite expensive and time-consuming. Re-
cently, semi-supervised learning (SSL) provides an alterna-
tive way to infer labels by learning from a small number of
images annotated to fully explore those unlabeled data.

The main stream of semi-supervised learning relies on
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Figure 1. Visualizations of class activation maps generated by
Grad-CAM [31] and segmentation results of MT [33] and Our
SemiCVT. Current MT-based SSLs suffer from limited global de-
pendency (e.g., incomplete human leg in (a), (c)) and class confu-
sion (e.g., mis-classify bottle as person in (e), (g)). Our SemiCVT
improves the performance from intra-model and inter-model per-
spective, achieving better compactness and accurate localization.

consistency regularization [13, 30, 33, 38], pseudo label-
ing [29, 32], entropy minimization [3, 14] and bootstrap-
ping [15]. For semantic segmentation, a typical approach
is to build a Mean-Teacher (MT) model [33] (in Fig. 2 (a)),
which allows the predictions generated from either teacher
or student model as close as possible. However, such a clas-
sic structure still suffers from two limitations: 1) Most of
MT-based frameworks are built upon stacking convolutional
layers, while the dilemma of CNNs is to capture global rep-
resentations in the limited receptive field [11]. It results in
the neglected ability of aggregating global context and local
features, as depicted in Figs. 1 (a) and (c). 2) These ap-
proaches usually leverage the pixel-wise predictions from
CNNs to enforce consistency regularization with their fo-
cuses on fine-level pair-wise similarity. It may fail to ex-
plore rich information in feature space and also overlook
the global feature distribution, as shown in Figs. 1 (e), (g).

On the other hand, Transformer [34] has achieved no-
table performance on vision tasks [2, 24, 37], owing to their
strong capability in multi-head self-attention for capturing
long-distance dependencies. However, pure Transformer-
based architectures cannot achieve satisfactory perfor-
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Figure 2. Comparison of (a) MT-based SSL with (b) SemiCVT.

mance, due to lack of spatial inductive-bias in modelling
local cues [27]. Despite the combination of Transformer
and CNN has proven to be effective [7, 16, 27, 36], the in-
tegration of Transformer with CNN-based Mean-Teacher
SSLs remains the fundamental problem for several reasons:
(1) Intra-model problem: The feature paradigm of Trans-
former is heterogeneous compared to CNNs. Addition-
ally, Transformer relies on the large-scale pre-trained model
with customized fine-tuning for different downstream tasks,
which consumes enormous time and energy. How to ef-
ficiently combine the complementary of the two-style fea-
tures and train the Transformer with relatively little labeled
data from scratch remains an open question. (2) Inter-
model problem: The existing MT-based SSLs merely
leverage the pixel-wise predictions from the teacher model
for guiding the student model to approximate, which ig-
nores rich class-level information. How to make CNN and
Transformer learn from each other on unlabeled data in
class-level is a problem worthy of exploring.

To tackle these problems, we propose Semi-Supervised
Convolutional Vision Transformer (termed as SemiCVT in
Fig. 2. (b)), which fully combines CNN and Transformer
for semi-supervised segmentation motivated by (1) Intra-
model local-global interaction: Considering the heteroge-
neous paradigm of CNN and Transformer in the spatial do-
main, we alternatively investigate the interaction of CNN
and Transformer in the Fourier domain [28], since learning
on frequency spectrum is able to steer all the frequencies
to capture both long-term and short-term interactions. In
this way, both contextual details in CNN and long-range
dependency in Transformer can be extracted with better
local-global interaction. (2) Inter-model class-wise con-
sistency: CNN and Transformer have different inner fea-
ture flow forms, in which their feature maps with comple-
mentary class-wise statistics creates a potential opportunity
for incorporation. Inspired by such an observation, we uti-
lize the class-wise statistics of unlabeled data generated by
CNN/Transformer (from teacher) to update the parameters
of the Transformer/CNN (from student), respectively. In
a cross-teaching manner, we learn an implicit consistency
regularization with complementary cues in graph domain,
which can produce more stable and accurate pseudo labels.

The ability of SemiCVT in capturing local-global cues
and class-specific characteristics is shown in Fig. 1. Com-

pared with the MT-based SSL, SemiCVT can attend to full
object extent with in various sizes and long-range scenarios
(e.g., full extent of the people’s leg in Fig. 1. (b), as well
as the feature discriminability between different classes
(e.g., activated small-size bottle in Fig. 1. (f)), achieving
accurate segmentation shown in Fig. 1 (d) and (h). In
summary, the main contributions of this work are four-
fold: (i) We analyze the intra-model and inter-model prob-
lems faced by the existing CNN-based Mean-Teacher meth-
ods for semi-supervised segmentation, and propose a novel
scheme, named SemiCVT, to fully capitalize the unlabeled
data. (ii) We introduce an intra-model local-global inter-
action strategy for chaining both CNN and Transformer in
the Fourier domain. (iii) We propose an inter-model class-
wise consistency to learn complementary class-level statis-
tics in a cross-teaching manner. (iv) Extensive experiments
are performed on two public datasets, resulting in the new
state-of-the-art performances consistently.

2. Related Work

Semi-supervised Learning in Segmentation. Semi-
supervised learning improves the representation learning by
leveraging numerous unlabeled data. Consistency regular-
ization methods [1, 13, 38] refer to the consistent outputs
of model under different perturbations, which is usually
adopted by the Mean-Teacher [33] scheme. Based on the
MT-SSL, U2PL [35] further makes full use of the unreli-
able pseudo labels. However, these CNN-based SSLs expe-
rience difficulty to capture long-range dependencies, which
is critical for accurate semantic segmentation.

Hybrid Modeling of CNNs and Transformers. Recent
works [7, 16, 27, 36] show the advantages of combining
CNN and Transformer. CMT [16] designs a local per-
ception unit with a light-weight Transformer block. By
considering the interactions, Mixformer [5] builds spatial
and channel attentions between local window attention and
depthwise convolution, while Conformer [27] designs a
simple down/up sampling technique to eliminate the feature
misalignment. Different from existing methods that learn
the complementary information in spatial domain, we ex-
plore the proper interaction design in Fourier domain.

Fourier Transform in Computer Vision. Recent years
have witnessed increasing research introducing Fourier
transform into deep learning method for vision tasks [8,
23, 28, 40]. For example, FFC [8] proposes a local fourier
unit that utilized both spatial and spectral information for
achieving mixed receptive fields. GFNet [28] explores the
long-term spatial dependencies in the Fourier domain with
log-linear complexity. Inspired by that Fourier transform
has no learnable parameters and its capacity in focusing on
the all locations in spatial domain, we design a simple yet
effective interactive module in Fourier domain.
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Figure 3. An overview of our SemiCVT. The student model takes both labeled images (Il) and unlabeled images (Iu) as input, and
obtains two-style predictions (PS

CNN and PS
Trans) after feature extraction by a parallel CNN-Transformer architecture (CVT), embedded

with the intra-model local-global interaction module (LGI) in each stage for full integration. The student model and teacher model share
the same architecture, and the student learns from the teacher by minimizing the supervised loss (Ls) on labeled data (Il), the pixel-wise
unsupervised loss (Lu) and the inter-model class-wise consistency loss (Lc) on unlabeled data (Iu).

3. Method

In the setting of a semi-supervised segmentation task,
two sources of data are available: a labeled set DL =
(Il, Yl)

N
l=1, and a relatively larger unlabeled set DU =

(Iu)
N+M
u=N+1. Our goal is to design a simple yet effective

semi-supervised learning strategy by leveraging both the la-
beled and unlabeled data. The overview of our SemiCVT is
shown in Fig. 3, which consists of two key designs upon the
standard MT-based SSL: (1) A parallel CNN-Transformer
architecture, namely CVT (in Sec. 3.1), is proposed with
the intra-model local-global interaction (LGI) in Fourier do-
main for full integration (in Sec. 3.2); (2) The inter-model
consistency is improved by extracting complementary class
statistics in graph domain (in Sec. 3.3). These two compo-
nents are proposed to explore global learning capability and
class-level features from unlabeled data, respectively.

Our CVT is composed of two branches: a CNN branch
(fCNN ) with local-level details and a Transformer branch
(fTrans) with global-level information. Given the input im-
ages Il and Iu, fCNN and fTrans extract the feature xCNN

and xTrans, respectively. To learn the complementary in-
formation between the two branches, LGI is introduced into
each stage. The module firstly converts xCNN and xTrans

from spatial domain into XCNN and XTrans in Fourier do-
main for full interaction. After that, the enhanced features
are transformed back to the spatial domain. Eventually,
each branch is appended with an individual segmentation
head to yield predictions (PCNN and PTrans).

To fully exploit the complementary class statistics em-
bedded in CNN and Transformer, we propose a class-wise
consistency loss Lc in a cross-teaching manner. It enforces
the class-level distribution of CNN/Transformer from stu-
dent and Transformer/CNN from teacher (G̃T

CNN →G̃S
Trans,

G̃T
Trans →G̃S

CNN ) to be closed in graph domain, which ef-
fectively improves the robustness of our model.

3.1. Architecture of CVT

The proposed CVT exploits the complementary charac-
teristics of CNN and Transformer, as shown in Fig. 4. Each
component of CVT will be introduced in detail as follows.

Stem Module and Segmentation Heads. Our CVT has
a stem module, which consists of three successive 3 × 3
convolution layers followed by a batch normalization (BN)
[20], a ReLU activation function, and a max pooling with
stride of 2, to extract initial features which are fed to the
dual branches. After feature extraction, the segmentation
head proposed by DeepLabV3+ [4] is implemented for each
branch. For inference, we simply average the predictions
from two branches as our final results.

CNN Branch. For CNN branch, we utilize the ResNet-
101 [18] as backbone to extract local-level features with de-
tailed contexture. According to the architecture of ResNet-
101, there are four stages with stacking convolution blocks.
When CNN goes deeper, the number of channel dimensions
gradually increases (256, 512, 1024, 2048 for four stages,
respectively) while the resolution of feature maps decreases
1/4, 1/8, 1/16, 1/16, respectively.

Transformer Branch. The Transformer branch is paral-
lel to the CNN branch, where the size of Transformer fea-
ture is consistent to CNN feature in each stage. In partic-
ular, we employ the SwinUNet [?] (without pre-training)
as the Transformer branch, which is composed of the light-
weight Multi-Head Self-Attention (MHSA) and the Multi-
Layer Perceptron (MLP) for feature extraction. To quickly
train Transformer from scratch, we add the outputs of CNN
and Transformer as the input of the following stage. The
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Figure 4. The overall architecture of CVT. There are four parts in CVT: a Stem Module with successive convolutions to increase the
channels of input image, Dual Branches with Convolution (Conv) and Transformer (Trans) blocks, LGI to interact dual branches in each
stage, and two Segmentation Heads for the dual branches.

stack of feature maps xi
Trans can be represented as:

xi
Trans =

Proj
(
x
(i−1)
CNN

)
, i = ns,

P
(
x
(i−1)
CNN + x

(i−1)
Trans

)
, i = ns + 1, · · · , 4,

(1)
where Proj(·) is the projection function, and P(·) is the
patch embedding mechanism. Both of them are realized by
a 1 × 1 convolution followed by BN and ReLU function.
ns denotes the stage that we start to incorporate the Trans-
former block. Fig. 4 illustrates that we start at the first stage,
i.e., ns = 1. In the experiment, our CVT achieves the best
performance when ns = 2 (in Sec. 4.3).

3.2. Intra-model Local-Global Interaction

According to spectral convolution theorem in Fourier
theory, point-wise update in Fourier domain globally affects
all input features [8]. Hence, learning on frequency spec-
trum is able to steer all the frequencies to capture both long-
term and short-term interactions [28]. Inspired by this, we
explore the interaction in Fourier domain, which is differ-
ent from the previous interactions [7, 16, 27] devoted to the
spatial domain. The overall architecture of LGI is depicted
in Fig. 4, and we will describe each step in the following.

Fast Fourier Transform (FFT). FFT plays an important
role in digital signal processing and is the first step of our
LGI. The original spatial features xCNN (xTrans) are con-
verted into Fourier domain XCNN (XTrans) via:

XCNN = F [xCNN ], XTrans = F [xTrans], (2)

where XCNN (XTrans) is the spectrum of xCNN (xTrans)
with real and imaginary part. Benefiting from the con-
jugate symmetric property of Discrete Fourier Transform
(DFT), we can keep only half of the values in X and triv-
ially remove the other half without losing important infor-
mation [28]. In this way, XCNN (XTrans) has the reduced
size of H × ⌈W/2⌉ ×D for computational efficiency.

Interactive Weights (K). As proved in [28], multiply-
ing the spectrum with a global weight can efficiently ex-
change spatial information. Our LGI follows this trend
and learns the interactive weight KCNN /KTrans from

CNN/Transformer branch to modulate the representation
of Transformer/CNN branch, respectively. As seen in
Fig. 4, we adopt a simple design to generate two interactive
weights KCNN ,KTrans ∈ RH×⌈W/2⌉×1, which consists of
two 1× 1 convolution layers, BN [20], GELU [19] and sig-
moid layers. Following the practice in [8], we only utilize
the real part of the complex to calculate the weight for com-
putational efficiency. We can then modulate the spectrum
XCNN (XTrans) by multiplying KTrans and (KCNN ):

X̃CNN = KTrans ⊙XCNN , X̃Trans = KCNN ⊙XTrans.
(3)

Inverse FFT (IFFT) and MLP. IFFT (F−1) converts
the enhanced features X̃CNN (X̃Trans) with their original
spectrum back into x̃CNN (x̃Trans) in the spatial domain:

x̃CNN = F−1[X̃CNN +XCNN ] ∈ RH×W×D. (4)

Similarly, we can obtain the transferred x̃Trans. Finally,
MLP (M) is used as the channel mixer and combines with
the original input xCNN (xTrans) to form a residual path.

Discussion. We give deep insight of our LGI with Fourier
transform. According to convolutional theorem [28], mul-
tiplication in Fourier domain is equivalent to the circular
convolution with the filter size of H × W in spatial do-
main. Inspired by this theorem, our interactive weight in
Fourier domain can be treated as a global convolution filter
with learned complementary cues in spatial domain, while
multiplication is easier to be implemented brought in less
computational cost than the circular convolution.

3.3. Inter-model Class-wise Consistency

In this section, we investigate the class-wise distribution
in a global level, and thus build a bi-level graph-based pro-
totype, which explores the class-patch and class-class rela-
tions in the graph domain. Equipped with different feature
extractors, CNN and Transformer have distinct class-level
statistics. Hence, we employ the cross teaching strategy
with implicit consistency regularization, which can produce
more stable and accurate pseudo labels [26]. In the follow-
ing, we describe the process in details.
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Figure 5. An illustration of the cross-guided consistency between
Transformer of teacher and CNN of student with the bi-level graph
as the prototype. G̃pc denotes the class-patch graphs, G̃cc repre-
sents the class-class graphs built upon the enhanced G̃pc.

Class Nodes (Nc) and Patch Nodes (Np). The center of
each class can be calculated by taking the average of all
feature pixels of the same class. Given an unlabeled image
Iu, the student network can generate two features xS

CNN ,
xS
Trans from the last stage (before the segmentation head),

and their corresponding predictions PS
CNN , PS

Trans. Then,
we aggregate the representations of all pixels weighted by
their probabilities belonging to the j-th object:

Ncj =
∑
i∈Iu

xiP i
j , (5)

where xi is the feature of the i-th pixel and P i
j is the nor-

malized probability for the i-th pixel belonging to the j-th
class. Note that ∥Nc∥ is the number of class nodes, which
equals to the number of semantic categories. In this way,
we can obtains the class node (Nc)

S
CNN , (Nc)

S
Trans from

the student, and (Nc)
T
CNN , (Nc)

T
Trans from the teacher.

Instead of directly regarding each pixel as a patch node,
we use the parameter-free average-pooling with stride r on
the feature map (e.g., xS

CNN ). Hence, the number of patch
nodes ∥Np∥ is reduced into H/r ×W/r. Accordingly, we
can obtain the patch nodes (Np)

S
CNN , (Np)

S
Trans from the

student, and (Np)
T
CNN , (Np)

T
Trans from the teacher.

Class-Patch Graph Construction. To capture the correla-
tions among class centers and patch nodes, we construct a
graph Gpc to model the class-patch dependencies, which is
a flexible way to capture the topological structure. Specif-
ically, for each class (e.g., the j-th class), we combine
their class node Ncj with all patch nodes Np to diffuse the
class-specific information (as depicted in the top left cor-
ner of Fig. 5). Hence, a lightweight fully-connected graph
Gpcj =

{[
Np,Ncj

]}
with an adjacency matrix Apcj ∈

R(∥Np∥+1)×(∥Np∥+1) is generated for the j-th class, where
[·] is the concatenation operation. The adjacency matrix is
defined as the similarity between nodes [43] by:

Apcj = softmax
(
xpcj ⊗ xT

pcj

)
, (6)

where xpcj is the representation of graph Gpcj and ⊗ is the
matrix multiplication. The softmax (·) operation is uti-

lized to yield a normalized adjacency matrix. Then we con-
duct graph convolution [22] to diffuse information by:

G̃pcj = ApcjxpcjWpcj , (7)

where Wpcj ∈ RD×D is a weight matrix. The G̃pcj is the
enhanced feature map after graph convolution.

Class-Class Graph Construction. Since the dependencies
among semantic categories are essential for context model-
ing, we further construct a graph Gcc to explore the corre-
lations among class centers. As shown in Fig. 5, the graph
Gcc is built over the enhanced class nodes Ñc extracted from
graph G̃pc. Similarly, we also calculate the adjacency matrix
Acc in Eq. (6) and adopt the graph convolution in Eq. (7) to
learn the relations and thus obtain an enhance graph G̃cc.

Cross-guided Class-wise Consistency Loss Lc. Based on
the enhanced graphs from either student or teacher, we sim-
ply employ the Mean Squared Error (MSE) loss to learn the
complementary information as follows:

LTrans→CNN
pc = MSE

(
(G̃pc)

T
Trans, (G̃pc)

S
CNN

)
, (8)

LTrans→CNN
cc = MSE

(
(G̃cc)

T
Trans, (G̃cc)

S
CNN

)
. (9)

In this process, the gradient of the teacher model is re-
strained. After that, we obtain LTrans→CNN

c by adding
LTrans→CNN
pc and LTrans→CNN

cc . Similarly, we can get
LCNN→Trans
c . The final Lc can be further calculated by

averaging LTrans→CNN
c and LCNN→Trans

c .

3.4. SemiCVT Framework

The overview of our SemiCVT is presented in Fig. 3,
which follows the Mean-Teacher scheme and is optimized
using the following loss: L = λsLs+λuLu+λcLc, where
Ls is a supervised loss on labeled data, Lu is a unsupervised
loss and Lc is our proposed inter-model class-wise consis-
tent loss (in Sec. 3.3). Both Lu and Lc are applied on unla-
beled data. λs, λu and λc are corresponding constraints for
balancing the training. We employ the Cross-Entropy (CE)
loss to calculate Ls and Lu, which can be formulated as:

Ls = CE (M(Il), Yl) , Lu = CE
(
M(Iu), Ŷu

)
. (10)

where Yl is the ground truth of labeled data, and Ŷu is the
pseudo-label of unlabeled data. We apply Ls and Lu on
both two predictions from CNN and Transformer branches.

4. Experiments
4.1. Setup

Datasets. Experiments are conducted on two public
datasets: (1) PASCAL VOC [12] is a natural scene dataset
with 21 semantic classes. It originally consists of 1, 464
training and 1, 449 validation images. The training set can
be augmented via adopting coarsely annotated 9, 118 im-
ages from the SBD dataset [17], resulting in 10, 582 training
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Table 1. Comparison with SOTA methods on classic PASCAL VOC dataset under different partitions.

Method 1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464)

Suponly (Sup) Baseline 45.77 54.92 65.88 71.69 72.50
CVT 46.96 59.74 68.38 73.68 74.55

Semi-supervised
(SSL)

MT [33] 51.72 58.93 63.86 69.51 70.96
CutMix [42] 52.16 63.47 69.46 73.73 76.54
PseudoSeg [47] 57.60 65.50 69.14 72.41 73.23
PC2Seg [45] 57.00 66.28 69.78 73.05 74.15
ST++ [39] 65.22 67.45 72.33 75.37 78.06
U2PL [35] 67.98 69.15 73.66 76.16 79.49
SemiCVT− 68.21 70.32 74.02 77.23 79.96
SemiCVT 68.56 71.26 74.99 78.54 80.32

Table 2. Comparison with SOTA methods on blender dataset.

Method
1/16
(662)

1/8
(1323)

1/4
(2646)

1/2
(5291)

Sup
Baseline 67.87 71.55 75.80 77.13
CVT 72.36 74.32 77.88 78.89

SSL

MT [33] 70.51 71.53 73.02 76.58
CutMix [42] 71.66 75.51 77.33 78.21
CCT [26] 71.86 73.68 76.51 77.40
GCT [21] 70.90 73.29 76.66 77.98
CPS [6] 74.48 76.44 77.68 78.64
ST++ [39] 73.85 76.55 78.23 79.51
U2PL [35] 77.21 79.01 79.30 80.50
SemiCVT− 77.50 79.43 79.77 80.69
SemiCVT 78.20 79.95 80.20 80.92

images. Following [35], we evaluate our method on both the
classic dataset (1, 464 labeled images with 9, 118 unlabeled
images), and the blender dataset (10, 582 labeled images).
(2) Cityscapes dataset [9] finely annotates 19 object cate-
gories in real urban scenes, with 2, 975 and 500 images for
training and validation, respectively.

Each dataset is divided into 1/16, 1/8, 1/4, 1/2 images
as labeled, and the rest of training images as the unlabeled
data, following the same settings as U2PL [35]. Note that
in the classic dataset, the labeled data is only sampled from
1, 464 labeled images, while the rest of images is combined
with 9, 118 additional images as the unlabeled data.

Implementation Details. We itemize the crop size (cs),
batch size (bs), learning rate (lr), training epochs (ep), op-
timizer (opt) for each dataset: (1) Classic and blender
PASCAL VOC: cs=513 × 513; bs=16; lr=0.001; ep=80;
opt=SGD. (2) Cityscapes dataset: cs=769 × 769; bs=16;
lr=0.01; ep=200; opt=SGD. Following the common prac-
tice [35], the base learning rate of the decoder is ten times
that of the backbone, and we also utilize the CutMix [42]
strategy. The weight of supervised loss λs and unsuper-
vised loss λu are set to 1. The number of patch nodes ∥Np∥
is set to 100, while the number of class nodes ∥Nc∥ is the
same as the semantic categories in each dataset.

Evaluation. We leverage the mean Intersection-over-Union
(mIOU) as our evaluation metric. Following the previous

Table 3. Comparison with SOTA methods on Cityscapes dataset.

Method
1/16
(186)

1/8
(372)

1/4
(744)

1/2
(1488)

Sup
Baseline 65.74 72.53 74.43 77.83
CVT 67.17 73.10 75.12 78.55

SSL

MT [33] 69.03 72.06 74.20 78.15
CutMix [42] 67.06 71.83 76.36 78.25
CCT [26] 69.32 74.12 75.99 78.10
GCT [21] 66.75 72.66 76.11 78.34
CPS [6] 69.78 74.31 74.58 76.81
ST++ [39] 67.64 73.43 74.64 77.78
U2PL [35] 70.30 74.37 76.47 79.05
SemiCVT− 71.24 74.94 76.82 79.18
SemiCVT 72.19 75.41 77.17 79.55

methods [13,26,35,46], our models are evaluated on the val-
idation set of PASCAL VOC and Cityscapes. To reduce the
randomness, all hyper-parameters (in Sec. 4.3) and ablation
studies (in Sec. 4.4) are conducted under two proportions,
i.e., 1/2 and 1/4, on the classic PASCAL VOC.

4.2. Comparison with the State-of-the-Arts

We compare our SemiCVT with the following SOTA
methods: MT [33], CCT [26], GCT [21], PseudoSeg [47],
Cut-Mix [42], CPS [6], PC2Seg [45], ST++ [39] and U2PL
[35]. We re-implement ST++ for a fair comparison. In these
methods, we use the same ResNet-101 backbone pretrained
on ImageNet [10] with DeepLabV3+ as decoder, termed as
Baseline, which is consistent with our CNN branch.

Results on classic PASCAL VOC Dataset. Table 1 lists
the performance of different comparison methods on the
classic dataset. We first show the fully-supervised per-
formance achieved by training on the limited labeled data,
namely SupOnly (Sup). As seen, our CVT outperforms
the CNN-based supervised baseline by +1.19%, +4.82%,
+2.5%, +1.99% and +2.05% under 1/16, 1/8, 1/4, 1/2 parti-
tions and full supervision, respectively. Interestingly, CVT
even surpasses the MT-based SSL (trained with additional
unlabeled data), under 1/16, 1/8, 1/4 and 1/2 partitions. It
demonstrates that our CVT can extract the complementary
information from CNN and Transformer, which achieves
satisfactory performance even with limited labeled data.
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Figure 6. Visual comparisons on PASCAL VOC 2012 dataset.

Figure 7. (a) Impact of the insertion location of Transformer block
at different stages. (b) Performance of SemiCVT w.r.t. λc.

In the semi-supervised setting, we compare with the
methods that were evaluated on the classic dataset in their
paper. As seen, our SemiCVT without inter-model class-
wise consistency (SemiCVT−) already outperforms exist-
ing methods in all partitions. Moreover, by considering
the class statistics, SemiCVT further boosts the perfor-
mance consistently, establishing a new SOTA. In particular,
compared with the MT-based SSL, our SemiCVT achieves
impressive improvements in five partitions: +16.84%,
+12.33%, +11.13%, +9.03% and +9.36%, respectively.

Results on blender PASCAL VOC Dataset. Table 2 re-
ports the comparison results on blender PASCAL VOC.
More semi-supervised approaches are compared, for exam-
ple, CCT [26], GCT [21], CPS [6], and ST++ [39]. We can
see that our method still achieves the best segmentation per-
formance, with improvements of +0.99%, +0.94%, +0.90%,
and +0.42% over the previous best model U2PL.

Results on Cityscapes Dataset. Table 3 presents the com-
parison results on the Cityscapes dataset. Benefited from
the powerful capability of feature extraction, SemiCVT
achieves the highest performance. The improvements of
our method over the previous best U2PL are 1.89%, 1.04%,
0.70% and 0.50% under the partition of 1/16, 1/8, 1/4
and 1/2, respectively. These quantitative results on three
datasets substantiate the fine robustness of our SemiCVT.

Visual Comparison. Fig. 6 illustrates the qualitative re-
sults on PASCAL VOC. As seen, our SemiCVT− is able
to segment both tiny objects with touching boundaries and
large object with fine structures, by learning both local and
global information. By considering the class statistics, our
SemiCVT can distinguish cluttered foreground and back-

Figure 8. Ablation of the interactions in the LGI Module.

Figure 9. Comparison of directly-teaching strategy with cross-
teaching strategy between Transformer (Trans) and CNN.

ground, which achieves much neater and cleaner results.

4.3. Hyper-Parameters

Start Stage of Transformer ns. We explore the influ-
ence of integrating CNN and Transformer blocks at differ-
ent stages under two partitions on the classic dataset. In
Fig. 7 (a), the accuracy is improved by stacking the Trans-
former blocks with interacted LGI, which achieves the high-
est results when extracting complementary cues on three
successive stages (Stage 2, 3 and 4). However, applying the
Transformer block on Stage 1 may affect the genuine char-
acteristics and increase the computational cost. Therefore,
in our experiments, we start by introducing the Transform-
ers block on Stage 2, which provides the best results within
a reasonable computational complexity.

Adjustment of λc. As mentioned in Sec. 3.4, λc is a coef-
ficient that controls the inter-model class-wise consistency.
In Fig. 7 (b), mIoU is improved with the increase of λc.
However, the accuracy starts to decline at λc=0.1 under both
partitions. Such results indicate that the larger λc may hin-
der the feature learning in semi-supervised segmentation.

4.4. Ablation Study

Ablation of Interactions in LGI Module. We begin by
assessing the influence of interactions in our LGI mod-
ule. In Fig. 8, the consistent improvements (366: +1.51%,
732: +0.72%) are achieved when introducing the interac-
tion from Transformer to CNN. Interestingly, a better per-
formance is achieved when using the interaction from CNN
to Transformer. By combining two interactions, we obtain
the best results (366: 68.38%, 732: 73.68%) through inter-
acting fine-grained details and coarse-grained semantics.

Effectiveness of Our LGI Module. We compare our LGI
module with two interaction modules proposed by Con-
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Table 4. Comparison of our LGI module (in Fourier domain) with
other interaction methods (in spatial domain).

Methods (Supervised) 1/4(366) 1/2(732)
baseline (ResNet101) 65.88 71.69
+ Interaction in Conformer [27] 66.35 72.37
+ Interaction in MixFormer [5] 66.63 72.56
+ our LGI 68.38 73.68

Table 5. Ablation study of bi-level graph-based prototypes in Lc.

# class-patch class-class 1/4 1/2
Gpc G̃pc Gcc G̃cc (366) (732)

1 × × × × 74.02 77.23
2 ✓ × × × 74.42 77.72
3 × ✓ × × 74.63 78.04
4 × × ✓ × 74.34 77.58
5 × × × ✓ 74.46 77.91
6 × ✓ × ✓ 74.99 78.54

Former and MixFormer in Table 4. These are two typical
works that perform feature interaction in the spatial domain.
Comparatively, our method achieves the best accuracy on
both partitions. It indicates the superiority of LGI Module
via interacting two-style features in Fourier domain.

Ablation of Bi-level Graphs in Lc. In Table. 5, we explore
the influence of bi-level graph-based prototypes in the class-
wise consistency loss Lc. We observe that using the original
class-patch graphs Gpc (#2) and class-class graphs Gcc (#4)
to SemiCVT can achieve consistent improvements, due to
the introduction of the class-wise statistics. In addition, the
enhanced G̃pc (#3) and G̃cc (#5) with the assistance of graph
convolution can further boost the performance. By combin-
ing both G̃pc and G̃cc (#6), the best results are achieved with
+1.31% and +0.97% under 1/2 and 1/4 partitions.

Effectiveness of Cross-Teaching Strategy. We provide
a comprehensive ablation study to assess the effectiveness
of the proposed cross-teaching strategy, which consists of
T → C (from Transformer to CNN), C → T and both. Dif-
ferent from the cross-teaching strategy, the direct-teaching
strategy performs the explicit consistency regularization, in-
cluding C → C, T → T and both. As a result, the best
performance can be achieved when cross-guidance imple-
mented in both C → T and T → C, which demonstrates
that CNN and Transformer with different learning paradigm
can compensate each other in the training stage.

4.5. Interpretation of SemiCVT

Distribution of Deeply Learned Features. As shown in
Fig. 10, the learned pixel embeddings by SemiCVT become
more compact and well separated, which indicates that the
designed class-wise consistency benefits the discriminative
power of deeply learned features, which is crucial for semi-
supervised segmentation.

Figure 10. t-SNE visualization of deep feature representations ex-
tracted from MT (a) and Our SemiCVT(b) on PASCAL VOC.

Figure 11. Visualizations of class activation maps on different
methods by using Grad-CAM [31].

Visualization of Feature Maps. We visualize the class
activation maps of different methods in Fig. 11. Com-
pared with CNN-based MT and U2PL, SemiCVT inherits
the advantages of both retaining local features and captur-
ing global dependency (e.g., fully extent of rider) and tiny
objects (e.g., activated bottle in the last row).

5. Conclusion
In this paper, we proposed a novel semi-supervised

learning scheme, termed as SemiCVT, which tackles intra-
model and inter-model problems faced by MT-based SSL.
Specifically, we designed a novel interaction module by in-
corporating both local representations and global cues in
Fourier domain. Further, an implicit class-wise consistency
regularization modeled in graph domain was introduced
to make the pseudo label more accurate and stable. Our
method was extensively evaluated on two public datasets
and consistently outperformed other SSL approaches.
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