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Abstract

RGB-T tracking aims to leverage the mutual enhance-
ment and complement ability of RGB and TIR modalities for
improving the tracking process in various scenarios, where
cross-modal interaction is the key component. Some previ-
ous methods concatenate the RGB and TIR search region
features directly to perform a coarse interaction process
with redundant background noises introduced. Many other
methods sample candidate boxes from search frames and
conduct various fusion approaches on isolated pairs of RGB
and TIR boxes, which limits the cross-modal interaction
within local regions and brings about inadequate context
modeling. To alleviate these limitations, we propose a novel
Template-Bridged Search region Interaction (TBSI) module
which exploits templates as the medium to bridge the cross-
modal interaction between RGB and TIR search regions by
gathering and distributing target-relevant object and envi-
ronment contexts. Original templates are also updated with
enriched multimodal contexts from the template medium.
Our TBSI module is inserted into a ViT backbone for joint
feature extraction, search-template matching, and cross-
modal interaction. Extensive experiments on three popu-
lar RGB-T tracking benchmarks demonstrate our method
achieves new state-of-the-art performances. Code is avail-
able at https://github.com/RyanHTR/TBSI.

1. Introduction
Given the initial state of a single target object in the first

frame, the goal of single object tracking (SOT) is to local-
ize the target object in successive frames. As a fundamen-
tal task in the computer vision community, SOT has drawn
the great attention of researchers. However, current SOT
methods built on only visible light (RGB) data become vul-
nerable under extreme imaging conditions (e.g., low illumi-
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Figure 1. Comparison between our cross-modal interaction ap-
proach and previous ones. (a) Features of RGB and TIR search
frames are directly concatenated. (b) Candidate boxes (RoIs) are
sampled from RGB and TIR search frames and fused in pairs with
gating or attention mechanisms. (c) Our approach exploits tem-
plate tokens as the medium to bridge the cross-modal interaction
between RGB and TIR search region tokens.

nation and adverse weather, etc), which motivates the in-
corporation of thermal infrared (TIR or T) data for mutual
enhancement and complement. Benefiting from the strong
nocturnal photosensitivity and penetration ability of thermal
infrared data, RGB-T tracking enjoys wide potential appli-
cations such as video surveillance processing [1], intelligent
robotics [5], and autonomous driving [8].

As a multimodal vision task, the key to RGB-T tracking
is how to perform effective cross-modal interaction. Since
the tracking process occurs in successive frames guided
by the annotated initial frame, cross-modal interaction be-
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tween search frames of RGB and TIR modalities becomes
the main focus. As illustrated in Figure 1 (a), some pre-
vious methods [16, 44] directly concatenate features of the
whole RGB and TIR search frames from the encoders of
strong base trackers [4, 40]. This simple manner tends to
introduce redundant background noise information, making
cross-modal interaction too coarse and hence harming the
model’s discriminative ability. In addition, there are many
other methods [14,27,28,37,39,49] which sample candidate
boxes (RoIs) from the Gaussian distribution in the search
frames and conduct various fusion operators based on at-
tention, gating mechanism, or dataset attributes, etc, to fuse
each pair of RoI features of RGB and TIR modalities as
shown in Figure 1 (b). Then, fused RoI features are sep-
arately fed into a binary classifier to distinguish the target
object. However, each pair of RoIs merely crops a small
portion of local features from the search frames, contain-
ing limited foreground and background information. Thus,
cross-modal interaction between each isolated pair of RoIs
may bring about inadequate modeling of the global envi-
ronment context in the search frame and restrict the mutual
enhancement and complement effect of the two modalities.

Given the above discussion, we argue that direct cross-
modal interaction between RGB and TIR search frames
or candidate RoIs still has limitations in comprehensively
leveraging complementary multimodal clues to facilitate the
tracking process. Therefore, we propose a novel scheme
which exploits the target templates as the medium to bridge
the cross-modal interaction between RGB and TIR search
regions, as illustrated in Figure 1 (c). The major superior-
ity motivating our advocate of this scheme is that the tem-
plates contain original multimodal information of the target
object, which can serve as strong guidance to extract target-
relevant object and environment contexts from search re-
gions for adaptive and precise information enhancement
and complement. The background noises of other distrac-
tors in search regions can also be reduced by template bridg-
ing during the cross-modal interaction process.

In order to implement the above scheme, we design a
Template-Bridged Search region Interaction (TBSI) mod-
ule. Concretely, our TBSI module first fuses features of
RGB and TIR templates to obtain the multimodal context
medium. Since the cross-attention mechanism [36] is an
effective and widely-adopted practice for context aggrega-
tion, our TBSI also utilizes it with the fused template as
query and TIR search region feature as key and value to
gather target-relevant TIR context information into the tem-
plate medium. Then, the RGB search region feature serves
as query and the fused template serves as key and value
to distribute target-relevant TIR context from the medium
to the RGB search region. Similarly, target-relevant RGB
context is also gathered and distributed to the TIR search
region through the template medium in a reverse direction.

Finally, comprehensive multimodal information aggregated
in the fused template is transferred back to the original RGB
and TIR templates to update them with the enriched multi-
modal contexts gathered from search regions.

In addition, most existing RGB-T tracking methods [14,
27,28,37,39,49] employ MDNet [32] with VGG-M [34] as
the base tracker, whose number of classification branches
equals the number of training sequences, which largely lim-
its their capacity and scalability. Inspired by the powerful
ability of Vision Transformer (ViT) [12] to capture long-
range dependencies and its recent success on SOT [7, 24,
42], we also extend ViT to RGB-T tracking for joint fea-
ture extraction, search-template matching, and cross-modal
interaction. Our TBSI module is inserted into the ViT base
tracker to bridge the intra-modal information flow within
the Transformer layers for effective RGB-T tracking.

Our contributions are summarized as follows: (1) We
propose a novel Template-Bridged Search region Interac-
tion (TBSI) module which exploits the fused target tem-
plate as the medium to bridge the cross-modal interaction
between RGB and TIR search regions and update original
templates as well, forming adaptive and precise information
enhancement. (2) We extend the ViT architecture with the
proposed TBSI module to RGB-T tracking for joint feature
extraction, search-template matching, and cross-modal in-
teraction, which has not been explored by previous methods
to our best knowledge. (3) Extensive experiments demon-
strate that our method achieves new state-of-the-art perfor-
mances on three popular RGB-T tracking benchmarks.

2. Related Work
2.1. Single Object Tracking

As one of the fundamental vision tasks, notable progress
has been achieved on SOT for accurate and stable target
object tracking in various scenarios. Siamese-based meth-
ods [3, 17, 18, 40, 52] utilize correlation operator to com-
pute matching responses between template and search re-
gion with the Siamese network. Some online updating
methods [4, 9, 10, 29, 32] learn a target-dependent discrim-
inative classifier to distinguish the target object from the
background in search frames. Recently, some Transformer-
based methods [6, 38, 41] leverage self-attention and cross-
attention to integrate search region and template informa-
tion for matching relationship modeling, and explore to
jointly extract their features via ViT backbones [7, 24, 42].
In this paper, we extend ViT to a multimodal base tracker
equipped with our TBSI module for joint feature extraction,
search-template matching, and cross-modal interaction.

2.2. RGB-T Tracking

General SOT methods are trained only on visible light
data so that they are inclined to encounter failures under
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Figure 2. The overall framework of our method. RGB and TIR image patches are embedded as tokens and fed into Transformer blocks
for joint feature extraction and intra-modal search-template matching. In our proposed TBSI module, bidirectional RGB and TIR search
region interaction are bridged by the fused template, which serves as a medium to gather and distribute target-relevant contexts to enhance
RGB and TIR search region features. The two original templates are also updated with the enriched contexts of the template medium.
Finally, RGB and TIR search region features are concatenated and fed into the tracking head to predict the target’s current state.

extreme imaging conditions. Therefore, thermal infrared
data has become a widely-adopted information source [14,
16, 20, 27, 28, 37, 39, 44, 46, 47, 49] for mutual complement
with visible light data to enhance the robustness of track-
ers. To deploy the complementarity of features in all layers,
Zhu et al. [49] propose a recursive strategy to densely ag-
gregate these features that yield robust representations of
target objects in each modality. mfDiMP [44] embeds the
multimodal feature concatenation process into the frame-
work of a strong tracker DiMP [4] for RGB-T tracking.
Zhang et al. [46] propose a late fusion method to obtain both
global and local weights for multimodal fusion, taking both
appearance and motion information into account and dy-
namically switching between appearance and motion cues.
SiamCDA [47] presents a complementarity-aware multi-
modal feature fusion module to enhance the discriminabil-
ity of the fused features by first reducing the modality dif-
ferences between unimodal features and then fusing them.
To make full use of training data and cope with different
challenges (e.g., illumination variation, occlusion, thermal
crossover, fast motion, etc), CAT [20] mines modal-shared
information and modal-specific information with different
challenges, and all challenge-aware branches are embedded
into the backbone to form more discriminative target rep-
resentations. APFNet [39] designs an attribute-based ag-
gregation fusion model to adaptively aggregate all attribute-
specific fused features and proposes an attribute-based pro-
gressive fusion network to disentangle the fusion process
via the challenge attributes and increase the fusion capacity.
However, previous RGB-T tracking methods conduct fusion
between RGB and TIR search frames or candidate RoIs,
which inevitably introduces background noises and restricts
the multimodal complementary effect, yielding coarse and

insufficient cross-modal interaction. To alleviate these lim-
itations, we propose a TBSI module that exploits the target
templates as the medium to bridge the cross-modal interac-
tion between RGB and TIR search regions, achieving adap-
tive and precise information enhancement and complement
using the target-relevant object and environment contexts.

3. Method
The overall framework of our method is shown in Fig-

ure 2. The input RGB and TIR search region and template
images are first split and flattened as sequences of patches
(tokens), then fed into a series of shared Transformer blocks
for joint feature extraction and search-template matching
within each modality. Our proposed TBSI module is in-
serted between Transformer blocks to bridge the cross-
modal search region interaction with the fused template to-
kens as the medium for target-relevant context gathering
and distribution. Finally, the tracking head takes the con-
catenated RGB and TIR search region features from the
backbone as input to predict the target’s current state.

3.1. Multimodal ViT for RGB-T Tracking

Considering the powerful ability of ViT to capture
long-range dependencies, we follow recent SOT meth-
ods [7, 24, 42] to extend ViT as a multimodal backbone
of our base tracker for jointly extracting features and per-
forming search-template matching within the Transformer
blocks. Let Ix

r , I
x
t ∈ RHx×Wx×3 denote the RGB and TIR

search region images and Iz
r , I

z
t ∈ RHz×Wz×3 denote the

RGB and TIR template images respectively, where differ-
ent modalities have the same image resolutions. We first
spatially partition these images into patches with the size
of P × P and flatten them as four sequences of patches
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P x
r ,P

x
t ∈ RNx×(3P 2) and P z

r ,P
z
t ∈ RNz×(3P 2), where

Nx = HxWx/P
2, Nz = HzWz/P

2 denote the number
of search region patches and template patches. Then, the
patch embedding layers with linear projections are applied
to these sequences to obtain the initial features of RGB and
TIR search regions and templates as follows:

X0
r = P x

r W
0
r ,Z

0
r = P z

r W
0
r ,

X0
t = P x

t W
0
t ,Z

0
t = P z

t W
0
t ,

(1)

where W 0
r ,W

0
t ∈ R(3P 2)×C are learnable parameters of

linear projections, X0
r ,X

0
t ∈ RNx×C denote the embedded

features of RGB and TIR search region patches (referred as
tokens in the following text), Z0

r ,Z
0
t ∈ RNz×C denote the

embedded features of RGB and TIR template tokens, C is
the number of feature channels. Following [12], we also add
the learnable positional encoding matrices Ex ∈ RNx×C

and Ez ∈ RNz×C with the token features X0
r ,X

0
t and

Z0
r ,Z

0
t to provide positional prior information. Note that

we share the same positional encoding matrices between
RGB and TIR modalities since the raw frames are carefully
aligned by dataset constructors.

Afterward, the RGB and TIR tokens are concatenated as
H0

r = [X0
r ;Z

0
r ] ∈ R(Nx+Nz)×C and H0

t = [X0
t ;Z

0
t ] ∈

R(Nx+Nz)×C to separately fed into a series of Trans-
former [36] blocks for multimodal joint feature extraction
and search-template matching. Since the operations on
RGB and TIR modalities are similar, here we take the RGB
tokens as an example to elaborate on how the ViT back-
bone works for the tracking process. The subscript r and su-
perscript 0 are omitted for simplicity. In each Transformer
block, three projections are first performed on H to obtain
the query Q, key K, and value V . Then, matrix multipli-
cations are conducted to aggregate features, in which the
attention weights are generated as follows:

A = Softmax(
QKT

√
C

) = Softmax(
[Xq;Zq][Xk;Zk]

T

√
C

)

= Softmax(
[XqX

T
k ,XqZ

T
k ;ZqX

T
k ,ZqZ

T
k ]√

C
).

(2)

From the above formulation, we can observe that search re-
gion tokens and template tokens simultaneously refine their
own features and aggregate features from each other based
on the joint attention weights. Through successive Trans-
former blocks, features of search region and template to-
kens are gradually extracted and the matching relationships
between them are captured as well to locate the target object
in each modality respectively. The parameters of the Trans-
former blocks are shared between RGB and TIR tokens to
avoid redundancy.
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Figure 3. Conceptual illustration of the TIR→Medium→RGB
search region interaction process in our TBSI module. Interaction
in the reverse direction is conducted similarly. We omit template
updating and operations like LN and MLP for clear presentation.

3.2. Template-Bridged Search Region Interaction

Our proposed TBSI module aims to bridge the cross-
modal interaction between RGB and TIR search regions
with the templates as the medium, where target-relevant
object and environment contexts are mutually comple-
mented to each modality. We insert TBSI module between
the Transformer blocks of ViT backbone multiple times
for joint feature extraction, search-template matching, and
cross-modal interaction. We take the i-th Transformer block
to elaborate the bridging process of our TBSI module. Let
Xi

r, Zi
r, Xi

t , Zi
t denote the search region and template to-

ken features of RGB and TIR modalities respectively, and
we omit the superscript i for simplicity. Figure 3 concep-
tually illustrates the TIR→Medium→RGB search region in-
teraction with detailed operations omitted.

Template Fusion. We first fuse the features of two tem-
plates to obtain a sequence of multimodal template tokens
as the bridging medium Zm ∈ RNz×C :

Zm = [Zr;Zt]Wm, (3)

where Wm ∈ R2C×C is the parameter of a linear layer.
Zm contains the target object clues of both RGB and TIR
modalities, thus serving as an appropriate medium to exca-
vate target-relevant contexts in a bidirectional manner.

Bidirectional Template-Bridged Interaction. Since
cross-attention [36] is a common and widely-adopted prac-
tice for information aggregation, we also apply it as cross-
modal attention between TIR search region tokens Xt and
template medium tokens Zm to first gather target-relevant
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TIR context as follows:

Dt = Softmax(
(ZmW 1

q )(XtW
1
k )

T

√
C

)(XtW
1
v ), (4)

where W 1
q , W 1

k , W 1
v denote parameters of the query, key,

value projection layers. Then, the target-relevant TIR con-
text Dt is refined and integrated with Zm to enrich the
medium with the required TIR information:

Z ′
m = LN(Zm +Dt),

Z̃m = LN(Z ′
m +MLP(Z ′

m)),
(5)

where LN and MLP represent LayerNorm [2] and Multi-
layer Perceptron. Afterward, the gathered target-relevant
context from TIR search region tokens, along with the mul-
timodal target prior information contained in the bridging
template medium, are further distributed to the RGB search
region tokens adaptively for enhancing RGB target features.
Concretely, RGB search region tokens serve as query and
the template medium serves as key and value to distribute
information via similar cross-modal attention:

Dmt = Softmax(
(XrW

2
q )(Z̃mW 2

k )
T

√
C

)(Z̃mW 2
v ). (6)

Then, Dmt is further refined and integrated with Xr to en-
hance the corresponding target-relevant RGB search region
tokens as follows:

X ′
r = LN(Xr +Dmt),

Xmtr = LN(X ′
r +MLP(X ′

r)).
(7)

In the reverse direction, target-relevant RGB context is simi-
larly gathered from the RGB search region tokens Xr to the
enriched template medium Z̃m, then distributed to the TIR
search region tokens Xr along with the target prior infor-
mation to obtain the enhanced TIR search features Xmrt.

Template Updating. Instead of only enhancing the
search region tokens with template-bridged target-relevant
contexts, we also transfer features of the template medium
back to the original RGB and TIR templates to update them
with enriched multimodal target information. For the ar-
chitecture consistency in our TBSI module, we also adopt
the cross-modal attention mechanism to implement this in-
formation transfer process. Let Ẑm denote the multimodal
template medium after the bidirectional search region inter-
action, we use Ẑm as key and value, and original templates
Zr and Zt as queries to perform the information transfer.
The outputs Z ′

r and Z ′
t are then refined and integrated with

Zr and Zt using similar LN and MLP layers. The updated
template tokens Zmr and Zmt along with interacted search
region tokens Xmtr and Xmrt serve as the input data of the
next (i+ 1)-th Transformer block in our ViT backbone.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on three RGB-T tracking
benchmarks including LasHeR [22], RGBT234 [19], and
RGBT210 [23]. Following prior works [22, 39, 44], we uti-
lize three widely-adopted metrics to evaluate our method.
Precision rate measures the percentage of frames whose dis-
tance between the predicted position and the ground-truth
is less than a certain threshold. Considering the sensitiv-
ity to target size, normalized precision rate is calculated
by normalizing the precision rate on the size of the ground
truth bounding box. Success rate is the ratio of successfully
tracked frames whose IoU overlaps are larger than thresh-
olds. The area under the curve plotted by different thresh-
olds measures the representative success score.

4.2. Implementation Details

Our model is implemented using PyTorch [33] and ex-
periments are conducted on four NVIDIA A100 GPUs.
The total training batch size is 128 image pairs. We train
our model for 15 epochs on LasHeR dataset with 60k im-
age pairs per epoch and directly evaluate our model on
RGBT234 and RGBT210 datasets without further finetun-
ing. The learning rate is set as 4e-5 for the backbone and
4e-4 for other parameters, which is decayed by 10× after
10 epochs. We adopt AdamW [26] as the optimizer with
1e-4 weight decay. The search regions are resized to 256
× 256 and templates are resized to 128 × 128. Our TBSI
module is inserted in the 4-th, 7-th, and 10-th layers of the
ViT backbone. As a common practice, the threshold is set
to 20 pixels to compute the representative precision score.

4.3. Comparison with State-of-the-art Methods

We compare our method with previous state-of-the-art
RGB-T tracking methods on three benchmarks including
LasHeR [22], RGBT234 [19], and RGBT210 [23]. As
shown in Table 1, our methods with different ViT back-
bones consistently outperform previous RGB-T trackers on
all metrics. Since mfDiMP [44] exploits pretraining on
the joint splits of COCO [25], LaSOT [13], GOT-10k [15],
and TrackingNet [31] as SOT methods do (referred as SOT
pretraining), we also adopt this setting for a fair compar-
ison. Our ViT-Base model with SOT pretraining achieves
significant performance improvements over previous meth-
ods and our ViT-Tiny model with ImageNet [11] pretraining
still outperforms mfDiMP, demonstrating the effectiveness
of our template-bridged search region interaction scheme.
However, previous MDNet-based [32] methods with VGG-
M [34] backbones could not benefit from the powerful pre-
trained SOT models since the number of binary classifi-
cation branches in MDNet equals the number of training
sequences to conduct multi-domain learning. Therefore,
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Method Backbone Pretraining Precision NormPrec Success FPS

O
nl

in
e

DAPNet [49] VGG-M ImageNet 43.1 38.3 31.4 -
FANet [50] VGG-M ImageNet 44.1 38.4 30.9 -

DAFNet [14] VGG-M ImageNet 44.8 39.0 31.1 20.5
CAT [20] VGG-M ImageNet 45.0 39.5 31.4 -

MANet [21] VGG-M ImageNet 45.5 - 32.6 2.1
MANet++ [27] VGG-M ImageNet 46.7 40.4 31.4 -
MaCNet [43] VGG-M ImageNet 48.2 42.0 35.0 1.6
DMCNet [28] VGG-M ImageNet 49.0 43.1 35.5 -
APFNet [39] VGG-M ImageNet 50.0 43.9 36.2 1.9
mfDiMP [44] ResNet-50 SOT 59.9 - 46.7 34.6

O
ffl

in
e TBSI ViT-Tiny ImageNet 61.7 57.8 48.9 40.3

TBSI ViT-Small ImageNet 62.4 58.6 49.4 39.1
TBSI ViT-Base ImageNet 63.8 60.2 50.6 36.2
TBSI ViT-Base SOT 69.2 65.7 55.6 36.2

Table 1. Comparison with state-of-the-art methods on LasHeR testing set. “SOT” denotes pretraining on the joint splits of COCO, LaSOT,
GOT-10k, and TrackingNet, which is a common practice for training SOT methods. We also adopt this setting for a fair comparison. We
only report the inference speeds of previous methods whose codes are available.

Method Precision Success

O
nl

in
e

MDNet+RGBT [32] 72.2 49.5
MaCNet [43] 76.4 53.2
DAPNet [49] 76.6 53.7
MANet [21] 77.7 53.9
HDINet [30] 78.3 55.9
FANet [50] 78.7 55.3

JMMAC [46] 79.0 57.3
M5L [35] 79.5 54.2

MANet++ [27] 79.5 55.9
DAFNet [14] 79.6 54.4

CAT [20] 80.4 56.1
ADRNet [45] 80.7 57.0
CMPP [37] 82.3 57.5

APFNet [39] 82.7 57.9
DMCNet [28] 83.9 59.3
mfDiMP [44] 84.2 59.1

O
ffl

in
e SiamCDA [47] 76.0 56.9

SiamIVFN [16] 81.1 63.2
TBSI 87.1 63.7

Table 2. Comparison with state-of-the-art methods on RGBT234
dataset. Our method outperforms both online and offline ones.

Method Precision Success

O
nl

in
e

TFNet [51] 77.7 52.9
CAT [20] 79.2 53.3

DMCNet [28] 79.7 55.5
mfDiMP* [44] 84.9 59.3

O
ffl

in
e DSiamMFT [48] 64.2 43.2

TBSI 85.3 62.5

Table 3. Comparison with state-of-the-art methods on RGBT210
dataset. * means results are reproduced by us.

the scalability of MDNet-based methods on modern large-
scale SOT datasets is severely limited, thus causing their
performance to lag behind. In terms of efficiency, we re-
port the FPS values of our method and previous ones on the
same machine with an NVIDIA RTX 3080Ti GPU. Previ-
ous MDNet-based methods tend to have slower inference
speeds since they all rely on heavy online updating oper-
ations to finetune the testing sequences, while our offline-
learned models possess high efficiency with real-time infer-
ence speeds. In Table 2 and 3, our performance superiority
on RGBT234 and RGBT210 datasets also demonstrates the
generalization ability of our method on small datasets.

4.4. Ablation Studies

Component Analysis. In Table 4, we conduct ablation
studies on the LasHeR dataset to evaluate different designs
of our TBSI module with ImageNet pretraining.

RGB Baseline denotes feeding only RGB image pairs as
input to the ViT-Base backbone and tracking head to per-
form single-modal tracking.

RGB-T Baseline denotes both RGB and TIR image pairs
are embedded as patches and fed into the shared ViT-Base
backbone for joint feature extraction and search-template
matching without cross-modal interaction. RGB and TIR
search region features outputted from the backbone are
concatenated to serve as the input of the tracking head.
We can observe the simple RGB-T baseline without com-
plicated cross-modal interaction yields better performance
than the RGB-only baseline, showing that introducing the
TIR modality is beneficial to the tracking process.

w/o Template Bridging denotes directly conducting bidi-
rectional cross-modal search region interaction between
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Method Precision NormPrec Success
RGB Baseline 50.1 45.4 40.1

RGB-T Baseline 53.5 49.1 42.5
w/o Template Bridging 59.6 55.9 47.4
w/o RGB→TM→TIR 58.7 55.1 46.6

w/o Template Updating 62.7 58.9 49.7
Full Model (TBSI) 63.8 60.2 50.6

Table 4. Ablation studies of our proposed TBSI module. “TM”
denotes the template medium for bridging interaction.

RGB and TIR modality by the cross-attention mechanism
without using the fused template as a medium. Compared
with the RGB-T baseline, large performance gains are wit-
nessed to show the importance of cross-modal interaction.
Compared with our full model with TBSI module, we can
also observe that template bridging is able to further no-
tably improve the performance of cross-modal interaction
by enhancing search region features with target-relevant
contexts gathered by the template medium. The background
noises of other distractors in the search region are also re-
duced through template bridging to highlight the target area.
These results well demonstrate the effectiveness of our pro-
posed template-bridged search region interaction scheme.

w/o RGB→TM→TIR denotes the uni-directional version
of our TBSI module where only the target-relevant TIR con-
texts are gathered by the template medium to enhance the
RGB search region features. This experiment shows that
uni-directional interaction can outperform the baseline but
bi-directional interaction is able to further boost the perfor-
mance by RGB-TIR mutual enhancement.

w/o Template Updating denotes removing the template
updating step after bidirectional template-bridged search re-
gion interaction. The performance drops compared with our
full model (TBSI), which indicates that updating original
templates with enriched multimodal contexts from the tem-
plate medium also benefits the tracking process.

Layers
4 7 10 Precision NormPrec Success

53.5 49.1 42.5
✓ 60.5 56.9 47.8
✓ ✓ 62.7 59.2 49.8
✓ ✓ ✓ 63.8 60.2 50.6

Table 5. Inserting layers of the proposed TBSI module.

Inserting Layers of TBSI module. We evaluate dif-
ferent inserting layers of our proposed TBSI module and
summarize the experimental results in Table 5. It can be
observed that inserting the TBSI module in the 4-th layer
of ViT backbone yields a large performance boost against
the RGB-T baseline model, which shows the importance

of proper cross-modal interaction between search regions.
When inserting the TBSI module into the 7-th and 10-th
layers of ViT backbone, tracking performance is further el-
evated by interacting with deep semantic features. Marginal
improvements are found by inserting more layers so we
adopt the setting of three TBSI modules as our final model.

APFNet† [39] CMPP [37] mfDiMP* [44] TBSI
NO 93.4/66.4 95.6/67.8 96.2/69.4 96.1/72.8
PO 85.0/58.7 85.5/60.1 86.6/60.9 88.7/64.7
HO 72.9/49.0 73.2/50.3 76.1/53.2 81.5/58.6
LI 82.3/54.4 86.2/58.4 84.2/58.0 89.2/63.6
LR 82.9/54.8 86.5/57.1 82.1/53.0 85.1/60.0
TC 82.1/57.3 83.5/58.3 84.8/58.9 85.8/63.2

DEF 77.1/54.6 75.0/54.1 81.5/60.2 84.1/63.7
FM 78.2/49.2 78.6/50.8 77.3/54.8 81.4/58.7
SV 82.1/56.5 81.5/57.2 87.1/63.7 89.9/66.8
MB 72.8/53.0 75.4/54.1 80.1/58.0 88.1/64.9
CM 76.3/54.5 75.6/54.1 84.0/60.3 88.0/65.0
BC 80.6/52.4 83.2/53.8 82.8/53.7 83.4/57.8

Table 6. Attribute-based Precision/Success scores on RGBT234
dataset. † denotes that the values are obtained by evaluating the
authors’ released raw tracking results. * means results are repro-
duced by us since raw results are unavailable.

4.5. Analysis and Visualization

Attribute-Based Performance. We analyze the perfor-
mance of our method in various scenarios by evaluating it
on different attributes of RGBT234 dataset, including no
occlusion (NO), partial occlusion (PO), heavy occlusion
(HO), low illumination (LI), low resolution (LR), thermal
crossover (TC), deformation (DEF), fast motion (FM), scale
variation (SV), motion blur (MB), camera moving (CM)
and background clutter (BC). Table 6 summarizes the ex-
perimental results. Our method outperforms previous state-
of-the-art trackers on most attributes. Particularly, in the
scenarios of heavy occlusion, deformation, scale variation,
motion blur, and camera moving, the target object is dras-
tically deformed or even temporarily invisible, making pre-
vious methods less robust. Benefiting from the informa-
tion enhancement and complement brought by the template
bridging in our TBSI module and the long-range depen-
dency modeling ability of Transformer blocks, our method
could interact RGB and TIR features more comprehensively
and yield better performance.

Qualitative Comparison. As shown in Figure 4, we
conduct a qualitative comparison between our method and
eight other deep RGB-T trackers. Four representative se-
quences which include various challenges such as occlu-
sion, high illumination, deformation, scale variation, fast
movement, etc, are selected from the LasHeR dataset to
compare different methods’ performances. For example,
the target man in the second sequence walks from dark areas
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Figure 4. Qualitative comparison between our method and other RGB-T trackers on four representative sequences from LasHeR dataset.

to light areas, where our method can sufficiently leverage
the mutual enhancement and complement ability of RGB
and TIR modalities to track the target stably. In other se-
quences, our method also well tackles some common chal-
lenges like scale variation, fast movement, and occlusion.
These results indicate our proposed ViT tracker with TBSI
module embodies a stronger discriminative ability, which is
also verified in Table 6 with more attributes (challenges).

(a) (b) (c) (d)

Figure 5. Visualization of attention maps between template
medium tokens and search region tokens in our TBSI module. (a)
RGB search region. (b) RGB attention map. (c) TIR search re-
gion. (d) TIR attention map.

Visualization of Attention Map. To understand how
the template medium bridges the search region interaction
between RGB and TIR modalities, we visualize the cross-
attention maps between template medium tokens and search
region tokens in Figure 5. We can observe that in differ-
ent challenging scenarios such as high illumination, rainy
weather, and dark night, the template medium can correctly
attend to the target areas in both RGB and TIR search
regions. Through concentrated attentions of the template
medium in our TBSI module, target-relevant RGB and TIR
contexts are gathered and distributed to enhance search re-

gion features of the other modality, meanwhile reducing the
background noisy information to form a more adaptive and
precise cross-modal interaction process.

5. Conclusion
In this paper, we explore a more effective cross-modal

interaction scheme for RGB-T tracking. Most previous
methods conduct simple concatenation of search frame fea-
tures or various fusion operations on pairs of local candidate
boxes, yielding either coarse or insufficient cross-modal in-
teraction. To alleviate these limitations, we propose a TBSI
module that bridges the RGB and TIR search region inter-
action using the fused template as a medium so that target-
relevant contexts can be excavated to enhance search region
features of both modalities, meanwhile reducing the back-
ground noises. The original templates are also updated with
enriched multimodal contexts from the template medium.
Extensive experiments on three RGB-T benchmarks show
our method achieves state-of-the-art performances.

Limitation. Our TBSI module is implemented with the
cross-modal attention mechanism since it is a common and
wide-adopted practice in multimodal learning to aggregate
relevant features. Thus, we also utilize it to verify the feasi-
bility of our template-bridged interaction scheme. Though
proven effective, cross-attention may not be optimally tai-
lored for RGB-T tracking due to various task-specific chal-
lenges a tracker could encounter. In the future, we plan to
explore new feature aggregation approaches in TBSI.
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