
Unifying Layout Generation with a Decoupled Diffusion Model

Mude Hui1* Zhizheng Zhang2 Xiaoyi Zhang2 Wenxuan Xie2 Yuwang Wang3 Yan Lu2

1Xi’an Jiaotong University 2Microsoft Research Asia 3Tsinghua University
{zhizzhang, xiaoyizhang, wenxie, yanlu}@microsoft.com

theflood@stu.xjtu.edu.cn wang-yuwang@mail.tsinghua.edu.cn

Abstract

Layout generation aims to synthesize realistic graphic
scenes consisting of elements with different attributes in-
cluding category, size, position, and between-element rela-
tion. It is a crucial task for reducing the burden on heavy-
duty graphic design works for formatted scenes, e.g., publi-
cations, documents, and user interfaces (UIs). Diverse ap-
plication scenarios impose a big challenge in unifying var-
ious layout generation subtasks, including conditional and
unconditional generation. In this paper, we propose a Lay-
out Diffusion Generative Model (LDGM) to achieve such
unification with a single decoupled diffusion model. LDGM
views a layout of arbitrary missing or coarse element at-
tributes as an intermediate diffusion status from a com-
pleted layout. Since different attributes have their individ-
ual semantics and characteristics, we propose to decouple
the diffusion processes for them to improve the diversity of
training samples and learn the reverse process jointly to ex-
ploit global-scope contexts for facilitating generation. As a
result, our LDGM can generate layouts either from scratch
or conditional on arbitrary available attributes. Exten-
sive qualitative and quantitative experiments demonstrate
our proposed LDGM outperforms existing layout genera-
tion models in both functionality and performance.

1. Introduction

Layout determines the placements and sizes of primi-

tive elements on a page of formatted scenes (e.g., publica-

tions, documents, UIs), which has critical impacts on how

viewers understand and interact with the information in this

page [13]. Layout generation is an emerging task of syn-

thesizing realistic and attractive graphic scenes with prim-

itive elements of different categories, sizes, positions, and

relations. It is of high demands for reducing the burden

on heavy-duty graphic design works in diverse application

*This work was done when Mude Hui was an intern at MSRA.

Input

Icon at
the top
of Text

Category Left Top Wide Height

Text

Icon

Button

X2

X3

W1 H1

W3 H3

Y2

Y3

W2 H2

Generation
(Denoising)

Diffusion
(Noise adding)

Output
Category Left Top Wide Height

Text

Icon

Button

X1 Y1

X2

X3

W1 H1

W3 H2

Y2

Y3

W2 H2

Ico
nIcon

Text
Button

Target layoutTarget UI

Precise Attribute Coarse Attribute Missing AttributeElement Relation

Relation

Figure 1. The layout generation tasks can be unified into a diffu-

sion (noise-adding) process and a generation (denoising) process.

scenarios. Recently, there have been some research works

studying unconditional generation [1, 7, 10, 16, 28], condi-

tional generation based on user specified inputs (e.g., el-

ement types [12, 13, 15], element types and sizes [13, 16]

or element relations [12, 15]), conditional refinement based

on coarse attributes [24], and conditional completion based

on partially available elements [7], etc. However, none of

them can cope with all these application scenarios simulta-

neously. This imposes a big challenge in unifying various

layout generation subtasks with a single model, including

conditional generation upon various specified attributes and

unconditional generation from scratch. Towards this goal,

the prior work UniLayout [9] takes a further step by propos-

ing a multi-task framework to handle six subtasks for lay-

out generation with a single model. However, the supported

subtasks are pre-defined and could not cover all application

scenarios, e.g., conditional generation based on specified el-

ement sizes. Besides, it does not take into account the com-

binational cases of several subtasks, e.g., the case wherein

some elements have missing attributes to be generated while

the others are with coarse attributes to be refined in the same

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1942

layout simultaneously.

Generally, a layout comprises a series of elements

with multiple attributes, i.e., category, position, size and

between-element relation. Each element attribute has three

possible statuses: precise, coarse or missing. Different lay-

out generation subtasks supported by previous works are

defined as a limited number of cases where the attribute

statuses are fixed upon attribute types, as shown in Fig-

ure 2. From a unified perspective, all missing or coarse

attributes can be viewed as the corrupted results from their

corresponding targets. With this key insight in mind, we

innovatively propose to unify various forms of user inputs

as intermediate statuses of a diffusion (corruption) process

while modeling generation as a reverse (denoising) process.

Furthermore, attributes with different corruption degrees

are likely to appear at once in user inputs. And different at-

tributes have their own semantics and characteristics. These

in fact impose a challenge for the diffusion process to cre-

ate diverse training samples as comprehensive simulation

for various user inputs. In this work, we propose a de-

coupled diffusion model LDGM to address this challenge.

The meaning of “decoupled” here is twofold: (i) we design

attribute-specific forward diffusion processes upon the at-

tribute types; (ii) we decouple the forward diffusion process

with the reverse denoising process, wherein the forward

processes are individual for different types of attributes,

whereas the reverse processes are integrated into one to be

jointly performed. In this way, our proposed LDGM in-

cludes not only attribute-aware forward diffusion processes

for different attributes to ensure the diversity of generation

results, but also a joint denoising process with fully mes-

sage passing over the global-scope elements for improving

the generation quality. Our contributions can be summa-

rized in the following:

• We present that various layout generation subtasks can be

comprehensively unified with a single diffusion model.

• We propose the Layout Diffusion Generative Model

(LDGM), which allows parallel decoupled diffusion pro-

cesses for different attributes and a joint denoising pro-

cess for generation with sufficient global message passing

and context exploitation. It conforms to the characteris-

tics of layouts and achieves high generation qualities.

• Extensive qualitative and quantitative experiment results

demonstrate that our proposed scheme outperforms exist-

ing layout generation models in terms of functionality and

performance on different benchmark datasets.

2. Related Works

2.1. Layout Generation

Layout generation is a burgeoning research topic of syn-

thesizing graphic scenes upon user requirements, facilitat-

ing manual design works in diverse applications. Early

Precise

Coarse

Missing

Relation

Missing / Precise

Missing / Coarse

Precise / Coarse

Missing / Precise / Coarse

General layout generation task settings

Gen-PM : ×/ Element Relation

×Gen-PCM :
Element Relation/

Gen-CM : ×/ Element Relation

Gen-PC : ×C X Y W H/ Element Relation

C X Y W H

C X Y W H

C X Y W H

Typical subtasks defined in previous works

UGen : ×
CGen-T : ×
C W HGen-TS : ×
CGen-TR : ×

X YC W HRefinement : ×
X YC W HCompletion : ×

Element Relation

+ ×

C Y WX H

Y WX H

YX

Y WX H

C Y WX H

Figure 2. General task settings. The typical layout generation sub-

tasks (left) can be covered by more general task definitions (right).

works in this area are commonly based on GAN [12, 16,

17, 29] or VAE [10, 11, 15, 22]. Recently, transformer mod-

els [1, 7] are emerging in this field to improve the genera-

tion diversity and quality. They are still difficult to achieve

controllable generation since they predict attributes sequen-

tially. To address this problem, BLT [13] employs a bidi-

rectional transformer to achieve parallel decoding.

In this field, the versatility across different generation

subtasks is critical to make this technology practical in in-

dustry. Towards this goal, multi-task schemes [9, 13] are

studied. They are able to handle multiple subtasks simulta-

neously, but are limited to these pre-defined subtasks only.

They do not consider the deep connection among various

subtasks, and are thus unable to cover all task types in prac-

tical layout generation applications. In this work, we study

a versatile framework giving consideration to both the per-

formance and functionality.

2.2. Diffusion Models

Diffusion generative models [8, 20, 31] have recently

emerged as a new class of generative models of high per-

formance. They use variational inference to produce train-

ing samples by adding noises until the signal is corrupted

corresponding to a forward diffusion process, and learns

to generate the signal through multi-step denoising corre-

sponding to a reverse denoising process. It is firstly pro-

posed by Sohl-Dickstein et al. [26] and regains widespread

attention due to its rather impressive performance in gener-

ating images [2,6,8,20,27], texts [2,5,18], audio [3,14,23],

and more. In these works, the signal generation process

is decomposed into multiple denoising steps where noises

are added during training without distinction on different

components/attributes of signals. In this work, considering

that elements in a layout include attributes that are of dif-

ferent semantics, we propose a decoupled diffusion model

for layout generation to decouple these attributes in noise

adding strategies. It comprehensively unifies diverse gener-

ation subtasks with a single diffusion model.

1943

3. Problem Definition
A layout l consisting of N elements could be represented

as a fully connected graph, where the edges denote rela-

tions between elements. Each element has five attributes

described by (c, x, y, w, h). c stands for the category of each

element such as the text, image, button, etc. (x, y) are the

coordinates of the left-top corner of each element bounding

box, denoting the information of location. (w, h) describe

the element size, corresponding to width and height, respec-

tively. We denote pairwise relations between elements as a

matrix E ∈ R
N×N . As a result, such a layout could be for-

mulated as l = [c1, x1, y1, w1, h1, c2, x2, y2, · · · , hN , E].
Layout generation aims to predict all variables in l upon

user requirements. For conditional layout generation, only

partial attribute variables are available as conditions to gen-

erate the others. Unconditional layout generation requires

the generation of all variables in l with only their total num-

ber N given. Existing multi-task layout generators [9, 13]

split the attribute variables in l into conditions and the ones

to be predicted with rather limited number of protocols (3

in [13] while 6 in [9]) according to the types of predefined

subtasks. In this work, we make the first endeavour to elim-

inate this limitation towards comprehensive versatility.

4. Layout Diffusion Generative Model
Our goal is to design a versatile framework that allows

to take arbitrary attribute variables in l as conditions to pre-

dict the missing ones or refine the coarse ones. All ele-

ments after generation shall be able to be composed into a

graphic layout that is functional and aesthetically pleasing.

A big challenge for this lies in unifying multiple generation

subtasks with a single model. Our key insight for address-

ing this is that the process from a completed layout to fully
corruption can be modeled as a diffusion process, wherein
partially available attribute variables in l can be viewed as
corrupted results of the corresponding targets.

With the above key insight, we propose Layout Diffu-

sion Generative Model (LDGM). Similar with prior diffu-

sion generative models, LDGM decomposes a generation

process into successive denoising steps from noisy signals.

It destroys training samples by successively adding noises

to them, and then learns to recover them by reversing the

noise addition process. Considering the characteristic of

layout that different attributes have their own semantics in

LDGM, we innovatively propose decoupled diffusion pro-

cesses with an attribute-specific noise-adding strategy and a

joint reverse denoising process.

4.1. Unification with Diffusion Modeling

We pinpoint that a missing or coarse attribute in layouts

could be viewed as the corrupted result of a complete one

through a forward Markov diffusion process. In this sec-

tion, we first give a unified formulation of the diffusion at-

tributes and then elaborate our proposed decoupled corrup-

tion (noise-adding) strategy for different attributes.

For problem simplification, we quantize geometric at-

tributes x, y, w, h as integers following the common prac-

tices [9, 13] in this field. So, attributes in l are all discrete

variables. Like VQ-diffusion [6], we model a discrete dif-

fusion process with a status transition matrix. Given an at-

tribute x ∈ {1, 2, · · · ,K} at time t−1, denoted by xt−1, the

probabilities that xt−1 transits to xt could be represented by

the matrix [Qt]ij = q(xt = i|xt−1 = j) ∈ R
K×K . The for-

ward Markov diffusion process can be formulated as:

q(xt|xt−1) = x�
t Qtxt−1, (1)

where x ∈ R
K×1 is the corresponded one-hot vector of x.

According to the property of Markov chains, the probability

of xt from x0 can be directly marginalized out as:

q(xt|x0) = x�
t Qtx0,where Qt = Q1Q2 · · ·Qt. (2)

Conditioned on x0, we can infer the posterior of this dif-

fusion process by:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)

=

(
x�
t Qtxt−1

) (
x�
t−1Qt−1x0

)

x�
t Qtx0

.

(3)

Decoupled corruption (noise-adding) strategy. Layout

is a graphic representation whose different attributes have

their own semantics. A unified framework of the compre-

hensive versatility requires that the model can condition on

any available precise attributes to generate or refine the re-

maining ones. To ensure the diversity of training samples,

as shown in Algorithm 1, we propose to decouple the en-

tire forward diffusion process into three with their individ-

ual timelines for the attributes of category c, position (x, y)
and size (w, h) and corrupt these three groups with different

noises. Considering they are all discrete variables, similar

to [6], we adopt mask-and-replace strategies for their diffu-

sion processes, which has a unified formulation as:

Qt =

⎡
⎢⎢⎢⎢⎢⎣

αt βt βt · · · 0
βt αt βt · · · 0
βt βt αt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

⎤
⎥⎥⎥⎥⎥⎦
, (4)

where αt, βt, γt ∈ [0, 1]. In the diffusion process, the prob-

abilities for each attribute variable to remain its original

value, to be replaced with another value, and to be masked

to be an absorbing status at the current time step are αt,

βt, and γt, respectively. Such absorbing status is easy to be

1944

identified by networks and appears more as time t increases,

playing the role of embedding the temporal information

about t in each decoupled diffusion process. With this uni-

fied formulation, we adopt different instantiations for cate-

gory attribute c and geometry-related attributes x, y, w, h.

For category c, we adopt noises of a uniform distribution

for its diffusion, corresponding to a transition matrix Qc
t .

In Qc
t , αc

t , β
c
t , γ

c
t are all constants for a given t and satisfy

that αc
t + (Kc−1)βc

t (1 − γc
t) + γc

t = 1. The βc
t and γc

t

increase linearly as time t increases. Here, Kc is the number

of element categories in layouts, which varies for different

datasets. (Detailed introduction is in the supplementary.)

For position (x, y) and size (w, h), we adopt discretized

Gaussian noises [2] for their diffusion processes. Here, we

introduce the formulation of their transition matrices, with

the one for h as an example. Other attribute variables follow

the same formation with different value ranges. For h, the

adopted discretized Gaussian noises correspond to a transi-

tion matrix Qh
t wherein γh

t is a scalar that increases linearly

as time t increases, and αh
t and βh

t at the position (i, j) are:

[αh
t]ij = 1−∑Kh

j=0,j �=i[Q
h
t]ij , (5)

[βh
t]ij =

(1− γh
t) exp

(
− 4|i−j|2

(Kh−1)2σh
t

)

∑Kh−1
n=−(Kh−1) exp

(
− 4n2

(Kh−1)2σh
t

) , (6)

where Kh is the number of values for h. And σh
t is a lin-

early increasing hyper-parameter as time t increases, which

influences but is not equal to the variance of the discretized

Gaussian noises.

4.2. Generation with a Joint Denoising Process

Similar with other diffusion generative models [2, 6, 8],

we train a denoising model as the generator to reverse the

diffusion processes. In notable contrast to them, as pre-

sented in Algorithm 1, our diffusion processes are decou-

pled for enhancing sample diversities, in which different

types of attributes do not share a diffusion timeline. Lay-

outs are highly structured representations. Thus, we pro-

pose a joint reverse denoising process for generation from

scratch or corrupted layouts that consists of attributes with

different degrees of corruption. Besides the exploitation of

global-scope contexts, a joint reverse process enables the

generation conditional on given relations between elements.

To achieve these, we design a transformer-based model as

shown in Figure 3. We introduce the formulation, model

architecture and inference in the following.

Mathematically, the generator pθ(xt−1|xt, g(xt)) learns

the reverse denoising process by estimating the transition

posterior q(xt−1|xt,x0). The g(xt) denotes the global-

scope contexts of xt including other attributes in the cur-

rent layout and the given relations between elements. This

model is trained by optimizing the variational upper bound

Algorithm 1 Training of the LDGM

Require: Transition matrices {Qc
t , Q

p
t , Q

s
t}, initial net-

work parameters θ, loss weight λ, and learning rate η.

1: repeat
2: l ← sample a layout from the training set

3: timsteps = zeros(len(l)) 	 Record t of attributes.

4: l̂ = RandSelect(l) 	 Select attributes for diffusion.

5: l̂ = [C,P, S] 	 Group l̂ upon the semantics.

6: for g in [C,P, S] do
7: sample t ∼ Uniform({1, · · · , T})
8: for x in g do
9: timsteps[x.index] = t

10: x = xt ← sample from q(xt|x0) 	 Eqn. 2

11: end for
12: end for

13: Lx =

⎧⎪⎨
⎪⎩

λLrec, if timsteps[x.index] = 0

L0, if timsteps[x.index] = 1

Lt−1, otherwise

14: L =
∑

x∈l Lx

15: θ ← θ − η∇θL 	 Update network parameters.

16: until converged

on corrupted (missing or coarse) attributes, i.e., Lvlb =

Eq(x0)

[∑T
t=0 Lt

]
, and a reconstruction objective Lrec on

precise attributes. The Lt in the variational upper bound

can be detailed as:

Lt=

⎧⎪⎨
⎪⎩

− log pθ(x0|x1, g(x1)), t=0

Dkl(q(xt|xt+1, x0)||pθ(xt|xt+1,g(xt+1))), t ∈ [1, T)

Dkl(q(xT |x0)||p(xT)), t=T
(7)

where T is the maximum timestep in the diffusion process.

Note that p(xT) is the prior noise distribution that can be

computed in advance during training. For the precise at-

tributes without corruption, we adopt a reconstruction loss

as below to ensure their preservation:

Lrec = − log pθ(x̂|x, g(x)), (8)

Where x̂ refers to the output of our generative model for x.

The overall loss is a weighted sum of Lvlb and λLrec with

a hyperparameter λ:

L = Lvlb + λLrec. (9)

Model architecture. In LDGM, as illustrated in Fig-

ure 3, we adopt a transformer-based model to implement

pθ(xt−1|xt, g(xt)). We tokenize each attribute of elements

in the layout l with its relevant information including the

value, type, position embedding and condition flag. Here,

the type is an index to identify the category of this attribute

while the position embedding is the embedding of element-

level indexes indicating which layout element this attribute

1945

Attribute Type:

Position Embedding:

Attribute Value:

Condition Flag:

C X ĤŴŶ

Transformer-based Model (LDGM)Elements
Relation

C

1

PE
+

T
+

+
X

2

PE
+

T
+

+
Y

3

PE
+

F
+

+
W

4

PE
+

F
+

+
H

5

PE
+

F
+

+

Figure 3. Overall framework of our method. The input attributes

of different subtasks can be considered as different xt. LDGM

gradually denoise them to x0 as the final generation results.

belongs to. The condition flag is a binary scalar to tell this

attribute is precise or corrupted. All information is vector-

ized and then fused into one attribute token by a summation

operation. Tokens in l are taken as the inputs of the gen-

erator pθ to infer the denoising result for each attribute, in

which a global-scope message passing over all layout ele-

ments and their attributes is performed via self-attention.

As introduced in Section 3, LDGM supports the gener-

ation conditional on given relations. Given N elements in

layout l, the pairwise relations can be represented by a ma-

trix E ∈ RN×N . Each element in this matrix has nine pos-

sible discrete values, including three on size (i.e., smaller,

larger, and equal), five on location (i.e., above, bottom, left,
right, and overlapped) and another one to denote “unavail-
able”. We embed each value to be two vectors of the same

dimension with the input token with two different embed-

ding layers for query tokens and key tokens, respectively,

yielding V K
r , V Q

r ∈ R
N×N×d. We integrate such relation

information into the generation process via relative position

embedding proposed in [25], formulated by:

ei,j =
(xiW

Q + [V Q
r]i,j)(xjW

K + [V K
r]i,j)√

d
, (10)

where i and j are token indexes, x ∈ R
1×d is the vector of

x. The final attention weight between these two tokens is:

ai,j = exp(ei,j)/
∑N

k=1 exp(ei,k). (11)

Model inference. We propose a confidence-based infer-

ence strategy for LDGM in Algorithm 2, which can prevent

generation errors from spreading across tokens via trans-

former in successive denoising steps. For missing attributes,

their corresponding probabilities can be taken as confidence

scores. At each denoising step, we merely preserve the pre-

dicted results of missing attributes with top-k high confi-

dences and re-mark the remaining ones as absorbing status

until all missing attributes are predicted. This operation is

denoted by Top-kKeep(·) in Algorithm 2 for brevity. For

coarse attributes, they are continuously refined until the end

of denoising. More details are in Algorithm 2.

Algorithm 2 Inference of the LDGM

Require: Initial layout lT , condition flags, and maximum

denoising steps T .

1: lT ← tokenize lT with condition flags

2: lmT ← GetMiss(lT) 	 Get missing attributes from lT .

3: Nm ← len(lmT)
4: k ← �Nm/T �
5: for t = T, · · · , 1 do
6: pθ(lt−1|lt) = LDGM(lt)
7: lt−1,pt−1 ← sample from pθ(lt−1|lt)
8: if Nm > 0 then
9: lmt−1,p

m
t−1 ← GetMiss(lt−1,pt−1)

10: lmt−1 ← Top-kKeep(lmt−1,p
m
t−1)

11: Nm ← Nm − k
12: end if
13: end for
14: return l0

5. Experiments
5.1. Experiment Setup

Datasets. We conduct ablation and comparison experi-

ments on three public datasets, i.e., Magazine [29], Rico [4]

and PubLayNet [30]. Magazine [29] is a dataset of mag-

azine pages with 6 layout element categories, contain-

ing 4K+ images. Rico [4] contains 66K+ images of UIs

for mobile applications with 27 element categories. Pub-

LayNet [30] comprises 360K+ machine annotated docu-

ment images with 5 element categories. Following the com-

mon practices in previous studies [12, 15, 16], we clean the

datasets to improve the quality of the datasets. For Rico

dataset, only 13 most frequent categories are remained and

the elements out of these categories are removed from the

dataset. For both Rico and PubLayNet datasets, we remove

the samples containing more than 25 elements. Since the

splitting protocols for training and testing are not consistent

over different publications, we re-implement their proposed

methods and report evaluation results with the same data

splitting protocol for fair comparison in the following sec-

tions. Detailed introduction for datasets and their configu-

rations can be found in our supplementary.

Evaluation metrics. We adopt four widely-used evalua-

tion metrics (↑: the bigger the better. ↓: the smaller the

better). They are introduced in the following. Maximum
Intersection-over-Union (MaxIoU) (↑) [12] measures the

similarity of the elements in bounding boxes of the same

category label between the collections of generated layouts

and ground-truth layouts. Frechet Inception Distance (FID)
(↓) measures the distributional distance between the feature

representations of generated layouts and their ground truth.

Following [12], we train a model to classify whether the

input layout is corrupted or not, and use the output of the

1946

penultimate layer for FID computation. Alignment (↓) [17]

is used to measure the alignment of elements in generated

layouts for aesthetics assessment. We compute this met-

ric with respect to six items: left border, center at x-axis,
right border, top border, center at y-axis, and bottom bor-
der. Overlap (↓) [17] measures the overlapping degrees be-

tween each element pair inside generated layouts. A well-

designed layout typically has less element overlaps.

Evaluation subtasks. We evaluate our LDGM on six

existing layout generation subtasks previously defined in

[7,9,13,24] for performance comparison. Besides, we unify

them into four more general settings and evaluate LDGM

on these settings to demonstrate our proposed scheme can

provide more comprehensive versatility.

• Unconditional generation (U-Gen) aims at generating a

layout with no input conditions provided by users.

• Generation conditioned on types (Gen-T) is to generate a

layout conditioned on specified element types.

• Generation conditioned on types and sizes (Gen-TS) gen-

erates a layout with specified element types and sizes.

• Generation conditioned on types and relations (Gen-TR)
generates a layout conditioned on specified element types

and pairwise element relations.*

• Refinement updates coarse attributes of elements in a lay-

out to be more reasonable and realistic. †

• Completion aims at generating the missing attributes in a

logout from the given/specified ones.

As we discuss in Section 3, each element in a layout can

be described with five attributes, i.e., (c, x, y, h, w). Each

attribute has three possible statuses in total: precise (P),

coarse (C), or missing (M). When two of these three sta-

tuses may appear for any attribute, there are three combined

settings, i.e., Gen-PM, Gen-CM, and Gen-PC. When these

three statuses are all allowed, it corresponds to a most gen-

eral setting, i.e., Gen-PCM. Note that all subtasks including

six previously defined ones, Gen-PM, Gen-CM, and Gen-
PC can be viewed as the instantiations of Gen-PCM.

Implementation detail. We set both maximum diffusion

steps and denoising steps to 100. For the network in LDGM,

we use 8 eight-head transformer layers. The embedding di-

mension is and the feed-forward dimension is 2048. We im-

plement our proposed LDGM with PyTorch [21] and adopt

the AdamW optimizer [19] with β1 = 0.9 and β2 = 0.98
for model training on NVIDIA V100 GPUs. The batch size

is set to 128, and the learning rate is 5e-5. Linear warmup

schedule is adopted and the warmup proportion is set to 0.1.

The λ for loss weighting is set to 0.1. More implementation

details (e.g., hyper-parameters) are in our supplementary.

*Like CLG-LO [12], we randomly sample 10% relations as the inputs.
†Following RUITE [24], we synthesize an input layout by turning the

precise attributes in real layout into coarse attributes, with the noise sam-

pled from a normal distribution (mean: 0, standard deviation: 0.01).

5.2. Quantitative Results

We compare our proposed LDGM to state-of-the-art

(SOTA) methods on the six previously defined subtasks

introduced in Section 5.1 to demonstrate its performance

superiority. In addition, we also evaluate LDGM on our

newly proposed task settings to show the extended func-

tionality towards comprehensive versatility. For fair com-

parison and convincing evaluation, we generate 1K layouts

for each model and report the result averaged over five runs

with random seeds for each experiment. The results are

shown in Table 1. Their standard deviations are placed in

the supplementary.

As can be seen from Table 1, LDGM achieves superior

performance to SOTA layout generators across the three

public datasets. It suggests that by unifying various layout

generation subtasks with diffusion modeling, our proposed

LDGM is impressively effective in simultaneously handling

multiple layout generation subtasks. Moreover, the quanti-

tative results on newly proposed task settings demonstrate

that our LDGM is able to achieve more comprehensive ver-

satility. We thus believe that it can support more diverse

user requirements in practical applications.

5.3. Qualitative Comparisons

We compare visualizations of generated layouts from our

LDGM and other recent layout generators in Figure 4. It can

be observed that LDGM achieves superior generation per-

formance to others with better alignment, less overlaps, and

more realistic details. More visualization results, rendered

images and analysis can be found in our supplementary.

5.4. Ablation Studies

To validate the effectiveness of our proposed technical

components in LDGM, we conduct a series of ablation stud-

ies on the most general generation task Gen-PCM.

Decoupled corruption strategy. Corruption strategy is

crucial for diffusion models [2], which is indiscriminate

for different components of signals in previous works while

LDGM adopts an attribute-decoupled corruption strategy.

We demonstrate the effectiveness of this design by compar-

ing four different diffusion strategies‡: (i) Non-decoupled
strategy: adding noises for different types of attributes with

a shared diffusion timeline. (ii) Partial-decoupled strat-
egy: the three types of attributes (i.e., category, size and

position) are involved in diffusion processes in order with

three individual and partially overlapped diffusion time-

lines. (iii) Sequential-decoupled strategy: adding noises for

three types of attributes sequentially with three individual

and non-overlapped diffusion timelines. (iv) our Parallel-
decoupled strategy (ours): adding noises for three types of

‡More details and illustrations are in our supplementary.

1947

Table 1. Experiment results on different layout generation subtasks. Align. denotes the alignment metric.

Subtasks Methods
Magazine Rico PubLayNet

MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓ MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓ MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓

U-Gen

LayoutTrans. [7] 0.18 47.84 0.59 47.98 0.46 46.64 0.66 64.10 0.32 49.72 0.37 36.63

BLT [13] 0.20 44.91 0.55 55.56 0.51 33.81 0.59 67.33 0.34 48.24 0.27 42.79

UniLayout [9] 0.31 36.61 0.49 44.50 0.62 26.68 0.40 59.26 0.33 32.29 0.22 22.19

LDGM (Ours) 0.38 32.73 0.47 46.43 0.62 26.06 0.36 56.35 0.46 25.94 0.25 19.83

Gen-T

LayoutGAN++ [12] 0.26 36.35 0.54 58.44 0.46 34.43 0.58 59.85 0.36 30.48 0.19 32.80

BLT [13] 0.22 48.26 0.69 64.01 0.44 39.64 0.57 56.83 0.37 44.86 0.21 38.21

UniLayout [9] 0.32 28.37 0.51 53.56 0.55 18.06 0.48 57.92 0.41 27.34 0.20 20.98

LDGM (Ours) 0.36 24.67 0.45 45.11 0.58 16.64 0.39 55.87 0.44 20.69 0.15 16.88

Gen-TS

BLT [13] 0.33 22.72 0.59 61.94 0.51 42.88 0.46 57.74 0.40 24.32 0.16 31.06

UniLayout [9] 0.35 19.35 0.58 56.43 0.55 20.42 0.49 58.72 0.43 27.47 0.16 23.82

LDGM (Ours) 0.37 17.65 0.45 44.25 0.62 12.59 0.35 55.92 0.47 19.02 0.16 10.09

Gen-TR

CLG-LO [12] 0.27 33.88 0.59 59.43 0.38 38.89 0.54 56.51 0.38 31.87 0.21 34.39

UniLayout [9] 0.36 19.24 0.54 49.61 0.57 26.38 0.46 66.93 0.46 27.73 0.17 27.35

LDGM (Ours) 0.39 20.58 0.48 47.27 0.61 16.98 0.39 58.75 0.44 19.54 0.16 21.28

Refinement

RUITE [24] 0.24 44.27 0.64 54.26 0.46 36.70 0.57 64.13 0.32 41.72 0.49 35.74

UniLayout [9] 0.33 19.78 0.49 49.02 0.56 24.41 0.42 56.04 0.44 22.34 0.11 27.23

LDGM (Ours) 0.39 14.95 0.42 37.22 0.62 13.19 0.33 52.17 0.48 15.28 0.10 13.05

Completion

LayoutTrans. [7] 0.17 39.36 0.67 55.32 0.46 36.15 0.66 67.10 0.32 41.72 0.37 39.81

UniLayout [9] 0.23 28.78 0.52 46.43 0.59 25.18 0.45 55.99 0.41 32.04 0.19 22.90

LDGM (Ours) 0.38 24.35 0.49 39.26 0.60 16.42 0.36 53.15 0.44 25.31 0.10 19.45
Gen-PM

LDGM (Ours)

0.38 27.33 0.47 39.02 0.58 21.64 0.38 56.56 0.46 23.58 0.10 14.11

Gen-CM 0.37 28.74 0.51 43.25 0.57 26.15 0.38 57.74 0.44 24.94 0.11 16.26

Gen-PC 0.37 22.56 0.47 42.95 0.60 18.13 0.36 53.67 0.50 16.42 0.09 12.51

Gen-PCM 0.37 24.45 0.49 44.41 0.59 21.59 0.40 54.77 0.42 25.76 0.14 19.68

GT - 0.41 9.89 0.43 34.27 0.66 7.05 0.26 49.86 0.64 9.38 0.008 5.18

Table 2. Experiment results on the Rico dataset by varying the

corruption strategies on input tokens.

Model MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓
Non-decoupled 0.56 29.24 0.43 60.04

Partial 0.57 27.71 0.48 54.24
Sequential 0.56 26.69 0.43 57.17

Parallel (Ours) 0.59 21.59 0.40 54.77

attributes in parallel with three individual and fully over-

lapped diffusion timelines. The comparison results are in

Table 2. We can observe that our proposed strategy achieves

the best MaxIOU, FID and Alignment compared to the other

three. It delivers the second best Overlap (very close to the

best one) since the training samples of this strategy are of

the highest diversity thus imposing the largest difficult for

model optimization.

Inference strategy. We compare our inference strat-

egy against two common transformer decoding strategies:

(i) Autoregressive: the tokens are decoded one by one in

the sequence order. (ii) Non-autoregressive: where tokens

are decoded all at once for each time step for T decoding

steps in total. As shown in Table 3, Non-autoregressive
achieves the most inferior performance, which is because

it predicts many missing attributes at one time step, leading

to propagation of generation errors across tokens. Autore-

Table 3. Experiment results on the Rico dataset in terms of differ-

ent inference strategies.

Model MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓
AutoReg 0.60 23.16 0.42 56.87

Non-AutoReg 0.57 25.14 0.44 58.63

Ours 0.59 21.59 0.40 54.77

Table 4. Ablation study on condition flags. Retent. refers to the

retention/unchanged ratio of condition attributes free of generative

errors. “w/o. C-Flags” denotes discarding condition flags.

Model MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓ Retent. ↑
w/o. C-Flags 0.55 27.38 0.42 55.54 11.25

Ours 0.59 21.59 0.40 54.77 99.66

gressive requires to decode tokens in a given order, which

means it lacks the flexibility to meet user requirements as

discussed in [13]. Our proposed strategy LDGM can adap-

tively decode tokens starting from easier ones based on the

confidence scores, enabling the exploitation of more reli-

able context information when decoding the harder ones.

Condition flags. We study the benefits of condition flags

by comparing LDGM to the model without them. As pre-

sented in Table 4, the use of condition flags not only im-

proves the generation qualities measured by different met-

rics but also plays an important role in preventing attributes

1948

Magazine RICO PubLayNet

U
G

en

LDGMBLT UniLayout
Layout

Transformer
Layout

Transformer LDGMUniLayoutBLT LDGM
Layout

Transformer BLT UniLayout

G
en

-T

Input Input BLT
Layout
GAN++ LDGM Input BLT

Layout
GAN++ LDGMLDGM

Layout
GAN++BLT

Textt × 2
Image

Headline

e × 1
e × 1

Drawer × 1Input × 1Button × 2
Text × 2
Iconn × 1

Figure

Text

Title

× 5× 1× 1

G
en

-T
S

Input UniLayout LDGM Input UniLayout LDGM Input UniLayout LDGM

Image 19,17

Text 10,13 10,17

10,14 10,5

10,2

Toolbar 32,3

Icon

Text

WebView

20,3

4,3

5,3

3,2

3,2

32,31

Title

Text 4,2

24,3 10,1

26,6

21,1 10,1

13,12 13,2

13,10

13,2

R
ef

in
em

en
t

Input RUITE UniLayout LDGM Input RUITE UniLayout LDGM Input RUITE UniLayout LDGM

WebView1
equal to

WebView2

Text1 equal to Text2

G
en

-T
R

Input CLG-LO LDGM Input CLG-LO LDGM Input CLG-LO LDGM
Text × 2 Image

Headline

× 1× 1
Toolbar Image
Icon Button

Advertisement
WebView

r × 1 × 1× 3 × 1
w
3 × 3 × 1

Text × 9 Table

Title × 1 × 1
Toolbar at
the top of

WebView1

Table at the bottom of Text1

Text1 smaller thanText2

Layout
TransformerC

om
pl

et
io

n

Input
Layout

Transformer UniLayout LDGM Input UniLayout LDGM Input UniLayout LDGM
Layout

Transformer
Layout

Transformer

Figure 4. Qualitative comparisons with state-of-the-art layout generation methods.

given as conditions from being destroyed during generation.

6. Conclusion and Future Work

In this work, we unify diverse layout generation sub-

tasks, including unconditional generation from scratch and

conditional generation based on various user inputs, with

a single diffusion model, i.e., Layout Diffusion Generative

Model (LDGM). Given the number of elements in the lay-

out, LDGM supports the generation from arbitrary avail-

able element attributes, including category, position, size

and relation between elements, no matter they are coarse

or precise. To the best of our knowledge, this is the first

endeavour to achieve such a comprehensively versatile lay-

out generator. Besides, we devise a decoupled diffusion

model which performs decoupled diffusion processes for

attributes of different semantics/characteristics and gener-

ates them jointly with global-scope contexts taken into ac-

count. This methodology presents a core idea of “decouple-

first-diffusion-then”. We believe this idea will inspire more

exploration in designing diffusion-based generative models

beyond graphic layouts.

1949

References
[1] Diego Martin Arroyo, Janis Postels, and Federico Tombari.

Variational transformer networks for layout generation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13642–13652, 2021. 1,

2

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tar-

low, and Rianne van den Berg. Structured denoising dif-

fusion models in discrete state-spaces. Advances in Neural
Information Processing Systems, 34:17981–17993, 2021. 2,

4, 6

[3] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mo-

hammad Norouzi, and William Chan. WaveGrad: Esti-

mating gradients for waveform generation. arXiv preprint
arXiv:2009.00713, Sept. 2020. 2

[4] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-

schman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ran-

jitha Kumar. Rico: A mobile app dataset for building data-

driven design applications. In Proceedings of the 30th An-
nual ACM Symposium on User Interface Software and Tech-
nology, pages 845–854, 2017. 5

[5] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,

and LingPeng Kong. Diffuseq: Sequence to sequence

text generation with diffusion models. arXiv preprint
arXiv:2210.08933, 2022. 2

[6] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo

Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-

tor quantized diffusion model for text-to-image synthesis. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10696–10706, 2022. 2,

3, 4

[7] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S

Davis, Vijay Mahadevan, and Abhinav Shrivastava. Layout-

transformer: Layout generation and completion with self-

attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1004–1014, 2021. 1,

2, 6, 7

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems, pages 6840–6851, 2020. 2, 4

[9] Zhaoyun Jiang, Huayu Deng, Zhongkai Wu, Jiaqi Guo,

Shizhao Sun, Vuksan Mijovic, Zijiang Yang, Jian-Guang

Lou, and Dongmei Zhang. Unilayout: Taming unified

sequence-to-sequence transformers for graphic layout gen-

eration. arXiv preprint arXiv:2208.08037, 2022. 1, 2, 3, 6,

7

[10] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou,

and Dongmei Zhang. Coarse-to-fine generative modeling

for graphic layouts. In AAAI Conference on Artificial In-
telligence, 2022. 1, 2

[11] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-

gal, and Greg Mori. Layoutvae: Stochastic scene layout gen-

eration from a label set. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9895–

9904, 2019. 2

[12] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota

Yamaguchi. Constrained graphic layout generation via latent

optimization. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 88–96, 2021. 1, 2, 5, 6, 7

[13] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan

Hao, Haifeng Gong, and Irfan Essa. Blt: Bidirectional lay-

out transformer for controllable layout generation. arXiv
preprint arXiv:2112.05112, 2021. 1, 2, 3, 6, 7

[14] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and

Bryan Catanzaro. Diffwave: A versatile diffusion model for

audio synthesis. arXiv preprint arXiv:2009.09761, 2020. 2

[15] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng

Gong, Ming-Hsuan Yang, and Weilong Yang. Neural de-

sign network: Graphic layout generation with constraints. In

European Conference on Computer Vision, pages 491–506.

Springer, 2020. 1, 2, 5

[16] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,

and Tingfa Xu. Layoutgan: Generating graphic layouts with

wireframe discriminators. arXiv preprint arXiv:1901.06767,

2019. 1, 2, 5

[17] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu,

Christina Wang, and Tingfa Xu. Attribute-conditioned lay-

out gan for automatic graphic design. IEEE Transactions on
Visualization and Computer Graphics, 27(10):4039–4048,

2020. 2, 6

[18] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy

Liang, and Tatsunori B Hashimoto. Diffusion-lm im-

proves controllable text generation. arXiv preprint
arXiv:2205.14217, 2022. 2

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[20] Alex Nichol and Prafulla Dhariwal. Improved de-

noising diffusion probabilistic models. arXiv preprint
arXiv:2102.09672, 2021. 2

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

6

[22] Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar

Averbuch-Elor. Read: Recursive autoencoders for document

layout generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 544–545, 2020. 2

[23] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima

Sadekova, and Mikhail Kudinov. Grad-tts: A diffusion prob-

abilistic model for text-to-speech. In International Confer-
ence on Machine Learning, pages 8599–8608. PMLR, 2021.

2

[24] Soliha Rahman, Vinoth Pandian Sermuga Pandian, and

Matthias Jarke. Ruite: Refining ui layout aesthetics using

transformer encoder. In 26th International Conference on
Intelligent User Interfaces-Companion, pages 81–83, 2021.

1, 6, 7

[25] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-

attention with relative position representations. NAACL,

2018. 5

[26] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

1950

nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265, 2015. 2

[27] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-

ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 2

[28] Kota Yamaguchi. Canvasvae: Learning to generate vector

graphic documents. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5481–5489,

2021. 1

[29] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH

Lau. Content-aware generative modeling of graphic design

layouts. ACM Transactions on Graphics (TOG), 38(4):1–15,

2019. 2, 5

[30] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-

laynet: largest dataset ever for document layout analysis. In

2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022. IEEE, 2019. 5

[31] Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey

Tulyakov, and Yan Yan. Discrete contrastive diffusion for

cross-modal and conditional generation. arXiv preprint
arXiv:2206.07771, 2022. 2

1951

