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Abstract

It is commonly believed that in transfer learning including
more pre-training data translates into better performance.
However, recent evidence suggests that removing data from
the source dataset can actually help too. In this work, we
take a closer look at the role of the source dataset’s compo-
sition in transfer learning and present a framework for prob-
ing its impact on downstream performance. Our framework
gives rise to new capabilities such as pinpointing transfer
learning brittleness as well as detecting pathologies such as
data-leakage and the presence of misleading examples in the
source dataset. In particular, we demonstrate that removing
detrimental datapoints identified by our framework indeed
improves transfer learning performance from ImageNet on a
variety of target tasks. 1

1. Introduction
Transfer learning enables us to adapt a model trained on a

source dataset to perform better on a downstream target task.
This technique is employed in a range of machine learning
applications including radiology [23, 45], autonomous driv-
ing [11, 24], and satellite imagery analysis [44, 47]. Despite
its successes, however, it is still not clear what the drivers of
performance gains brought by transfer learning actually are.

So far, a dominant approach to studying these drivers
focused on the role of the source model—i.e., the model
trained on the source dataset. The corresponding works
involve investigating the source model’s architecture [23],
accuracy [27], adversarial vulnerability [42, 43], and training
procedure [21, 30]. This line of work makes it clear that the
properties of the source model has a significant impact on

*Equal contribution.
1Code is available at https://github.com/MadryLab/data-

transfer

transfer learning. There is some evidence, however, that
the source dataset might play an important role as well [18,
26, 38]. For example, several works have shown that while
increasing the size of the source dataset generally boosts
transfer learning performance, removing specific classes can
help too [18, 26, 38]. All of this motivates a natural question:

How can we pinpoint the exact impact of the source dataset
in transfer learning?

Our Contributions. In this paper, we present a frame-
work for measuring and analyzing the impact of the source
dataset’s composition on transfer learning performance. To
do this, our framework provides us with the ability to in-
vestigate the counterfactual impact on downstream predic-
tions of including or excluding datapoints from the source
dataset, drawing inspiration from classical supervised learn-
ing techniques such as influence functions [7, 13, 25] and
datamodels [19]. Using our framework, we can:

• Pinpoint what parts of the source dataset are most uti-
lized by the downstream task.

• Automatically extract granular subpopulations in the
target dataset through projection of the fine-grained
labels of the source dataset.

• Surface pathologies such as source-target data leakage
and mislabelled source datapoints.

We also demonstrate how our framework can be used to
find detrimental subsets of ImageNet [9] that, when removed,
give rise to better downstream performance on a variety of
image classification tasks.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. A Data-Based Framework for Studying
Transfer Learning

In order to pinpoint the role of the source dataset in trans-
fer learning, we need to understand how the composition
of that source dataset impacts the downstream model’s per-
formance. To do so, we draw inspiration from supervised
machine learning approaches that study the impact of the
training data on the model’s subsequent predictions. In par-
ticular, these approaches capture this impact via studying
(and approximating) the counterfactual effect of excluding
certain training datapoints. This paradigm underlies a num-
ber of techniques, from influence functions [7, 13, 25], to
datamodels [19], to data Shapley values [14, 22, 31].

Now, to adapt this paradigm to our setting, we study the
counterfactual effect of excluding datapoints from the source
dataset on the downstream, target task predictions. In our
framework, we will focus on the inclusion or exclusion of
entire classes in the source dataset, as opposed to individual
examples2. This is motivated by the fact that, intuitively,
we expect these classes to be the ones that embody whole
concepts and thus drive the formation of (transferred) fea-
tures. We therefore anticipate the removal of entire classes to
have a more measurable impact on the representation learned
by the source model (and consequently on the downstream
model’s predictions).

Once we have chosen to focus on removal of entire source
classes, we can design counterfactual experiments to esti-
mate their influences. A natural approach here, the leave-one-
out method [7, 25], would involve removing each individual
class from the source dataset separately and then measuring
the change in the downstream model’s predictions. However,
in the transfer learning setting, we suspect that removing
a single class from the source dataset won’t significantly
change the downstream model’s performance. Thus, leave-
one-out methodology may be able to capture meaningful
influences only in rare cases. This is especially so as many
common source datasets contain highly redundant classes.
For example, ImageNet contains over 100 dog-breed classes.
The removal of a single dog-breed class might thus have a
negligible impact on transfer learning performance, but the
removal of all of the dog classes might significantly change
the features learned by the downstream model. For these
reasons, we adapt the subsampling [13, 19] approach, which
revolves around removing a random collection of source
classes at once.

Computing transfer influences. In the light of the above,
our methodology for computing the influence of source
classes on transfer learning performance involves training a
large number of models with random subsets of the source

2In Section 4.3, we adapt our framework to calculate more granular
influences of individual source examples too.

Algorithm 1 Estimation of source dataset class influences
on transfer learning performance.

Require: Source dataset S = [K
k=1 Ck (with K classes), a

target dataset T = (t1, t2, · · · , tn), training algorithm
A, subset ratio ↵, and number of models m

1: Sample m random subsets S1, S2, · · · , Sm ⇢ S of size
↵ · |S|:

2: for i 2 1 to m do
3: Train model fi by running algorithm A on Si

4: end for
5: for k 2 1 to K do
6: for j 2 1 to n do
7: Infl[Ck ! tj ] =

Pm
i=1 fi(tj ;Si) Ck⇢SiPm

i=1 Ck⇢Si
�

Pm
i=1 fi(tj ;Si) Ck 6⇢SiPm

i=1 Ck 6⇢Si

8: end for
9: end for

10: return Infl[Ck ! tj ], for all j 2 [n], k 2 [K]

classes removed, and fine-tuning these models on the target
task. We then estimate the influence value of a source class
C on a target example t as the expected difference in the
transfer model’s performance on example t when class C
was either included in or excluded from the source dataset:

Infl[C ! t] = ES [f(t;S) | C ⇢ S]� ES [f(t;S) | C 6⇢ S] ,
(1)

where f(t;S) is the softmax output3 of a model trained on
a subset S of the source dataset. A positive influence value
indicates that including the source class C helps the model
predict the target example t correctly. On the other hand,
a negative influence value suggests that the source class C
actually hurts the model’s performance on the target example
t. We outline the overall procedure in Algorithm 1, and defer
a detailed description of our approach to Appendix A.

A note on computational costs. In order to compute trans-
fer influences, we need to train a large number of source
models, each on a fraction of the source dataset. Specifically,
we pre-train 7,540 models on ImageNet, each on a randomly
chosen 50% of the ImageNet dataset. This pre-training step
needs to be performed only once though: these same mod-
els can then be used to fine-tune on each new target task.
Overall, the whole process (training the source models and
fine-tuning on target datasets) takes less than 20 days using
8 V100 GPUs4.

Are so many models necessary? In Section A.5, we ex-
plore computing transfer influences with smaller numbers

3We experiment with other outputs such as logits, margins, or correct-
ness too. We discuss the corresponding results in Appendix B.

4Details are in Appendix A.
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Figure 1. Most positive and negative ImageNet classes ordered based on their overall influence on the CIFAR-10 dataset. The top source
classes (e.g., tailed frog and sorrel horse) turn out to be semantically relevant to the target classes (e.g., frog and horse).

(a) CIFAR-10 results

Source Dataset

Target Dataset Full ImageNet Removing
Bottom Infl.

Semantically
Relevant Classes

AIRCRAFT 36.08± 1.07 36.88± 0.74 N/A
BIRDSNAP 38.42± 0.40 39.19± 0.38 26.74± 0.31

CALTECH101 86.69± 0.79 87.03± 0.30 82.28± 0.40
CALTECH256 74.97± 0.27 75.24± 0.21 67.42± 0.39

CARS 39.55± 0.32 40.59± 0.57 21.71± 0.40
CIFAR10 81.16± 0.30 83.64± 0.40 75.53± 0.42
CIFAR100 59.37± 0.58 61.46± 0.59 55.21± 0.52
FLOWERS 82.92± 0.52 82.89± 0.48 N/A

FOOD 56.19± 0.14 56.85± 0.27 39.36± 0.39
PETS 83.41± 0.55 87.59± 0.24 87.16± 0.24

SUN397 50.15± 0.23 51.34± 0.29 N/A

(b) Summary of 11 target tasks

Figure 2. Target task accuracies after removing the K most positively or negatively influential ImageNet classes from the source dataset.
Mean/std are reported over 10 runs. (a) Results with CIFAR-10 as the target task after removing different numbers of classes from the
source dataset. We also include baselines of using the full ImageNet dataset and removing random classes. One can note that, by removing
negatively influential source classes, we can obtain a test accuracy that is 2.5% larger than what using the entire ImageNet dataset would
yield. Results for other target tasks can be found in Appendix C. (b) Peak performances when removing the most negatively influential
source classes across a range of other target tasks. We also compare against using the full ImageNet dataset or a subset of source classes that
are semantically relevant to the target classes (defined via the WordNet hierarchy, see Appendix A for details).

of models. While using the full number of models provides
the best results, training a much smaller number of models
(e.g., 1000 models, taking slightly over 2.5 days on 8 V100
GPUs) still provides meaningful transfer influences. Thus
in practice, one can choose the number of source models
based on noise tolerance and computational budget. Further
convergence results can be found in Appendix A.5.

3. Identifying the Most Influential Classes of
the Source Dataset

In Section 2, we presented a framework for pinpointing
the role of the source dataset in transfer learning by estimat-
ing the influence of each source class on the target model’s

predictions. Using these influences, we can now take a look
at the classes from the source dataset that have the largest
positive or negative impact on the overall transfer learning
performance. We focus our analysis on the fixed-weights
transfer learning setting (further results, including full model
fine-tuning as well as generalization to other architectures,
can be found in Appendix E).

As one might expect, not all source classes have large
influences. Figure 1 displays the most influential classes of
ImageNet with CIFAR-10 as the target task. Notably, the
most positively influential source classes turn out to be di-
rectly related to classes in the target task (e.g., the ImageNet
label “tailed frog” is an instance of the CIFAR class “frog”).
This trend holds across all of the target datasets and transfer
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Figure 3. Most positive and negative influencing ImageNet classes for the CIFAR-10 class “bird”. These are calculated by averaging the
influence of each source class over all bird examples. We find that the most positively influencing ImageNet classes (e.g., “ostrich” and
“bustard”) are related to the CIFAR-10 class “bird”. See Appendix E for results on other CIFAR-10 classes.

Most positively 
influenced

ImageNet: Ostrich CIFAR10

ImageNet: Maze SUN397

Most positively 
influenced

ImageNet: Convertible Cars

Most positively 
influenced

Most positively 
influenced

ImageNet: Cheeseburger Food

Figure 4. Projecting source labels onto the target dataset. For various target datasets (right), we display the images that were most
positively influenced by various ImageNet classes in the source dataset (left). We find that the identified images from the target datasets look
similar to the corresponding images in the source dataset.

learning settings we considered (see Appendix C). Interest-
ingly, the source dataset also contains classes that are overall
negatively influential for the target task, e.g., “bookshop”
and “jigsaw puzzle” classes. (In Section 4, we will take a
closer look at the factors that can cause a source class to be
negatively influential for a target prediction.)

How important are the most influential source classes?
We now remove each of the most influential classes from
the source dataset to observe their actual impact on trans-
fer learning performance (Figure 2a). As expected, remov-
ing the most positively influential classes severely degrades
transfer learning performance as compared to removing ran-
dom classes. This counterfactual experiment confirms that
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Most 
Positively 

Influenced 
CIFAR-10
Images

Most 
Negatively 
Influenced 
CIFAR-10
Images

ImageNet

Starfish Rapeseed

Figure 5. The CIFAR-10 images that were most positively (or negatively) influenced by the ImageNet classes “starfish” and “rapeseed.”
CIFAR-10 images that are highly influenced by the “starfish” class have similar shapes, while those influenced by “rapeseed” class have
yellow-green colors.

these classes are indeed important to the performance of
transfer learning. On the other hand, removing the most
negatively influential classes actually improves the overall
transfer learning performance beyond what using the entire
ImageNet dataset provides (see Figure 2b).

Above, we noted that the top influential source classes
are typically related to the classes in the target dataset. What
happens if we only choose source classes that are semanti-
cally relevant to the classes of the target dataset? Indeed,
[38] found that hand-picking such source datasets can some-
times boost transfer learning performance. For each target
dataset, we select ImageNet classes that are semantically
relevant to the target classes (using the WordNet hierarchy,
see Appendix A). As shown in Figure 2b, choosing an op-
timal subset of classes via transfer influences substantially
outperforms this baseline.

4. Probing the Impact of the Source Dataset on
Transfer Learning

In Section 3, we developed a methodology for identi-
fying source dataset classes that have the most impact on

transfer learning performance. Now, we demonstrate how
this methodology can be extended into a framework for
probing and understanding transfer learning, including: (1)
identifying granular target subpopulations that correspond
to source classes, (2) debugging transfer learning failures,
and (3) detecting data leakage between the source and target
datasets. We focus our demonstration of these capabilities
on a commonly-used transfer learning setting: ImageNet to
CIFAR-10 (experimental details are in Appendix A).

4.1. Capability 1: Extracting target subpopulations
by projecting source class labels

Imagine that we would like to find all the ostriches in
the CIFAR-10 dataset. This is not an easy task as CIFAR-
10 only has “bird” as a label, and thus lacks sufficiently
fine-grained annotations. Luckily, however, ImageNet does
contain an ostrich class! Our computed influences enable us
to “project" this ostrich class annotation (and, more broadly,
the fine-grained label hierarchy of our source dataset) to find
this subpopulation of interest in the target dataset.

Indeed, our examination from Section 3 suggests that the
most positively influencing source classes are typically those
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Figure 6. Pinpointing highly negatively influential source classes can help explain model mistakes. Left: For three CIFAR-10 images, we
plot the most negatively influential source classes. Right: Over 20 runs, the fraction of times that our downstream model predicts each label
for the given CIFAR-10 image. When the most negatively influential class is removed, the model predicts the correct label more frequently.
More examples can be found in Appendix E.

that directly overlap with the target classes (see Figure 1). In
particular, for our example, “ostrich” is highly positively in-
fluential for the “bird” class (see Figure 3). To find ostriches
in the CIFAR-10 dataset, we thus need to simply surface the
CIFAR-10 images which were most positively influenced by
the “ostrich” source class (see Figure 4).

It turns out that this type of projection approach can be
applied more broadly. Even when the source class is not a
direct sub-type of a target class, the downstream model can
still leverage salient features from this class — such as shape
or color — to predict on the target dataset. For such classes,
projecting source labels can extract target subpopulations
which share such features. To illustrate this, in Figure 5, we
display the CIFAR-10 images that are highly influenced by
the classes “starfish” and “rapeseed” (both of which do not
directly appear in the CIFAR-10 dataset). For these classes,
the most influenced CIFAR-10 images share the same shape

(“starfish”) or color (“rapeseed”) as their ImageNet counter-
parts. More examples of such projections can be found in
Appendix E.

4.2. Capability 2: Debugging the failures of a trans-
ferred model

Our framework enables us to also reason about the pos-
sible mistakes of the transferred model caused by source
dataset classes. For example, consider the CIFAR-10 image
of a dog in Figure 6, which our transfer learning model of-
ten mispredicts as a horse. Using our framework, we can
demonstrate that this image is strongly negatively influenced
by the source class “sorrel horse.” Thus, our downstream
model may be misusing a feature introduced by this class. In-
deed, once we remove “sorrel horse” from the source dataset,
our model predicts the correct label more frequently. (See
Appendix E for more examples, as well as a quantitative
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CIFAR-10
Images

ImageNet
Images

Most Positively Influenced

airplane airplane ship deer

lawnmower minivan wing book jacket

ship frog airplane automobile

speedboat tailed frog warplane racer

Most Negatively Influenced

CIFAR-10
Images

ImageNet
Images

ship airplane ship automobile

warplane beach wagon warplane moving van

bird airplane horse truck

ostrich warplane sorrel horse moving van

Figure 7. ImageNet training images with highest positive (left) or negative (right) example-wise (average) influences on CIFAR-10 test
images. We find that ImageNet images that are highly positively influential often correspond to data leakage, while ImageNet images that
are highly negatively influential are often either mislabeled, ambiguous, or otherwise misleading. For example, the presence of a flying
lawnmower in the ImageNet dataset hurts the downstream performance on a similarly shaped airplane (boxed).

analysis of this experiment.)

4.3. Capability 3: Detecting data leakage and mis-
leading source examples

Thus far, we have focused on how the classes in the
source dataset influence the predictions of the transferred
model on target examples. In this section, we extend our
analysis to the individual datapoints of the source dataset.
We do so by adapting our approach to measure the influence
of each individual source datapoint on each target datapoint.
Further details on how these influences are computed can be
found in Appendix D.

Figure 7 displays the ImageNet training examples that
have highly positive or negative influences on CIFAR-10 test
examples. We find that the source images that are highly
positively influential are often instances of data leakage
between the source training set and the target test set. On the
other hand, the ImageNet images that are highly negatively
influential are typically mislabeled, misleading, or otherwise
surprising. For example, the presence of the ImageNet image
of a flying lawnmower hurts the performance on a CIFAR-
10 image of a regular (but similarly shaped) airplane (see
Figure 7).

5. Related Work
Transfer learning. Transfer learning is a technique com-
monly used in domains ranging from medical imaging [23,
36], language modeling [6], to object detection [5, 8, 15, 41].
Therefore, there has been considerable interest in understand-
ing the drivers of transfer learning’s success. For example,
by performing transfer learning on block-shuffled images,
[37] demonstrate that at least some of the benefits of transfer
learning come from low-level image statistics of source data.
There is also an important line of work studying transfer
learning by investigating the relationship between different
properties of the source model and performance on the target
task [23, 27, 42, 43].

The works that are the most relevant to ours are those
which studied how modifying the source dataset can affect
the downstream performance. For example, [26] showed that
pre-training with an enormous source dataset (approximately
300 million) of noisily labeled images can outperform pre-
training with ImageNet. [1, 18] investigated the importance
of the number of classes and the number of images per class
in transfer learning. Finally, [38] demonstrated that more
pre-training data does not always help, and transfer learning
can be sensitive to the choice of pre-training data. They also
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presented a framework for reweighting the source datapoints
in order to boost transfer learning performance.

Influence functions and datamodels. Influence functions
are well-studied statistical tools that have been recently ap-
plied in machine learning settings [7, 17, 25]. For a given
model, influence functions analyze the effect of a training
input on the model’s predictions by estimating the expected
change in performance when this training input is added or
removed. In order to apply this tool in machine learning,
[25] propose estimating the influence functions using the
Hessian of the loss function. A recent line of work estimates
this quantity more efficiently by training on different subsets
of the training set [13]. In a similar vein, [14] proposed
running a Monte Carlo search to estimate the effect of ev-
ery training input via Shapley values. More recently, [19]
proposed datamodeling framework as an alternative way to
estimate the effect of a training input on the models’ predic-
tion. Datamodels are represented using parametric functions
(typically, linear functions) that aim to map a subset of the
training set to the model’s output.

6. Conclusions
In this work, we presented a new framework for exam-

ining the impact of the source dataset in transfer learning.
Specifically, our approach estimates the influence of a source
class (or datapoint) that captures how including that class
(or datapoint) in the source dataset impacts the downstream
model’s predictions. Leveraging these estimates, we demon-
strate that we can improve the transfer learning performance
on a range of downstream tasks by identifying and removing
detrimental datapoints from the source dataset. Furthermore,
our framework enables us to identify granular subpopula-
tions in the target dataset by projecting fine-grained labels
from the source dataset, better understand model failures
on the downstream task and detect potential data-leakages
from the source to the downstream dataset. We believe our
framework provides a new perspective on transfer learning:
one that enables us to perform a fine-grained analysis of the
impact of the source dataset.
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