
DistractFlow: Improving Optical Flow Estimation via
Realistic Distractions and Pseudo-Labeling

Jisoo Jeong Hong Cai Risheek Garrepalli Fatih Porikli
Qualcomm AI Research†

{jisojeon, hongcai, rgarrepa, fporikli}@qti.qualcomm.com

Abstract

We propose a novel data augmentation approach, Dis-
tractFlow, for training optical flow estimation models by
introducing realistic distractions to the input frames. Based
on a mixing ratio, we combine one of the frames in the
pair with a distractor image depicting a similar domain,
which allows for inducing visual perturbations congruent
with natural objects and scenes. We refer to such pairs as
distracted pairs. Our intuition is that using semantically
meaningful distractors enables the model to learn related
variations and attain robustness against challenging devia-
tions, compared to conventional augmentation schemes fo-
cusing only on low-level aspects and modifications. More
specifically, in addition to the supervised loss computed
between the estimated flow for the original pair and its
ground-truth flow, we include a second supervised loss de-
fined between the distracted pair’s flow and the original
pair’s ground-truth flow, weighted with the same mixing ra-
tio. Furthermore, when unlabeled data is available, we ex-
tend our augmentation approach to self-supervised settings
through pseudo-labeling and cross-consistency regulariza-
tion. Given an original pair and its distracted version, we
enforce the estimated flow on the distracted pair to agree
with the flow of the original pair. Our approach allows
increasing the number of available training pairs signifi-
cantly without requiring additional annotations. It is agnos-
tic to the model architecture and can be applied to training
any optical flow estimation models. Our extensive evalua-
tions on multiple benchmarks, including Sintel, KITTI, and
SlowFlow, show that DistractFlow improves existing mod-
els consistently, outperforming the latest state of the art.

1. Introduction
Recent years have seen significant progress in optical

flow estimation thanks to the development of deep learning,
e.g., [4,7,8,23]. Among the latest works, many focus on de-
veloping novel neural network architectures, such as PWC-
Net [29], RAFT [30], and FlowFormer [6]. Other stud-
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Figure 1. Existing augmentation schemes apply low-level vi-
sual modifications, such as color jittering, block-wise random oc-
clusion, and flipping, to augment the training data (top), while
DistractFlow introduces high-level semantic perturbations to the
frames (bottom). DistractFlow can further leverage unlabeled data
to generate a self-supervised regularization. Our training leads to
more accurate and robust optical flow estimation models, espe-
cially in challenging real-world settings.

ies investigate how to improve different aspects of super-
vised training [27], e.g., gradient clipping, learning rate, and
training compute load. More related to our paper are those
incorporating data augmentation during training (e.g., [30]),
including color jittering, random occlusion, cropping, and
flipping. While these image manipulations can effectively
expand the training data and enhance the robustness of the
neural models, they fixate on the low-level aspects of the
images.

Since obtaining ground truth optical flow on real data
is very challenging, another line of work investigates how
to leverage unlabeled data. To this end, semi-supervised
methods [9, 12] that utilize frame pairs with ground-truth
flow annotations in conjunction with unlabeled data in train-
ing have been proposed. For instance, FlowSupervisor [9]
adopts a teacher-student distillation approach to exploit un-
labeled data. This method, however, does not consider lo-
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calized uncertainty but computes the loss for the entire im-
age between the teacher and student network.

In this paper, we present a novel approach, Distract-
Flow, which performs semantically meaningful data aug-
mentations by introducing images of real objects and nat-
ural scenes as distractors or perturbations to training frame
pairs. More specifically, given a pair of consecutive frames,
we combine the second frame with a random image depict-
ing similar scenarios based on a mixing ratio. In this way,
related objects and scenes are overlaid on top of the orig-
inal second frame; see Figure 1 for an example. As a re-
sult, we obtain challenging yet appropriate distractions for
the optical flow estimation model that seeks dense corre-
spondences from the first frame to the second frame (and in
reverse too). The original first frame and the composite sec-
ond frame constitute a distracted pair of frames, which we
use as an additional data sample in both supervised and self-
supervised training settings. Unlike our approach, existing
data augmentation schemes for optical flow training apply
only low-level variations such as contrast changes, geomet-
ric manipulations, random blocks, haze, motion blur, and
simple noise and shapes insertions [28, 30]. While such
augmentations can still lead to performance improvements,
they are disconnected from natural variations, scene con-
text, and semantics. As we shall see in our experimental
validation, the use of realistic distractions in training can
provide a bigger boost to performance.

Figure 1 provides a high-level outline of DistractFlow.
We apply DistractFlow in supervised learning settings us-
ing the ground-truth flow of the original pair. Distracted
pairs contribute to the backpropagated loss proportional to
the mixing ratios used in their construction. Additionally,
when unlabeled frame pairs are available, DistractFlow al-
lows us to impose a self-supervised regularization by fur-
ther leveraging pseudo-labeling. Given an unlabeled pair
of frames, we create a distracted version. Then, we enforce
the estimated flow on the distracted pair to match that on the
original pair. In other words, the prediction of the original
pair is treated as a pseudo ground truth flow for the dis-
tracted pair. Since the estimation on the original pair can be
erroneous, we further derive and impose a confidence map
to employ only highly confident pixel-wise flow estimations
as the pseudo ground truth. This prevents the model from
reinforcing incorrect predictions, leading to a more stable
training process.

In summary, our main contributions are as follows:
• We introduce DistractFlow, a novel data augmentation

approach that improves optical flow estimation by uti-
lizing distractions from natural images. Our method
provides augmentations with realistic semantic con-
tents compared to existing augmentation schemes.

• We present a semi-supervised learning scheme for op-
tical flow estimation that adopts the proposed dis-

tracted pairs to leverage unlabeled data. We compute a
confidence map to generate uncertainty-aware pseudo
labels and to enhance training stability and overall per-
formance.

• We demonstrate the effectiveness of DistractFlow in
supervised [6, 14, 30] and semi-supervised settings,
showing that DistractFlow outperforms the very recent
FlowSupervisor [9] that require additional in-domain
unlabeled data.

2. Related Work
Optical Flow Estimation: Several deep architectures

have been proposed for optical flow [4, 8, 23, 29, 30, 38].
Among these, Recurrent All Pairs Field Transforms (RAFT)
[30] have shown significant performance improvement over
previous methods, inspiring many subsequent works [6, 14,
26, 27, 35]. Following the structure of RAFT architec-
ture, complementary studies [12, 14, 33, 35, 39] proposed
advancements on feature extraction, 4D correlation volume,
recurrent update blocks, and more recently, transformer ex-
tensions [6,39]. In DistractFlow, we introduce a new model-
agnostic training method that can help any model.

Data Augmentation: Data augmentation is a widely
used technique to better train deep learning models. Com-
mon augmentations include color and contrast jittering, flip-
ping, geometric manipulation, and random noise. While
they can improve the robustness of the model, these oper-
ations mainly focus on the low-level visual aspects and do
not account for variations in the semantic contents.

Recently, several data augmentation schemes, such as
adversarial perturbation and regularization methods, have
been proposed for classification tasks. Adversarial pertur-
bation [32] is one of the well-known augmentation meth-
ods for classification tasks, but recent work [24] shows
that it does not work well for optical flow estimation.
Interpolation-based Regularization (IR) [34, 36], which
mixes a couple of images and trains the model with mixed
label, improves the performance in classification tasks and
is employed in other fields such as object detection [13, 37]
and segmentation [10]. In a regression problem, however,
mixed ground truth does not correspond with mixed input.
Fixmatch [25] as a data augmentation scheme has demon-
strated state-of-the-art performance in classification tasks.
It combines pseudo-labeling and consistency regularization
by applying two different augmentations (weak, strong) to
the same image and generates pseudo-labels with weak aug-
mentation output. For classification tasks, it is possible to
create pseudo-labels since the output and ground-truth an-
notations represent class probabilities. However, there are
no such class probabilities for optical flow. Thus, these
methods cannot be readily applicable.

AutoFlow [28] proposed a new dataset for optical flow,
taking a versatile approach to data rendering, where motion,
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Figure 2. Left: Introducing realistic distractions in the supervised learning setting. Right: Semi-supervised learning leveraging distractions
and pseudo-labeling.

shape, and appearance are controlled via learnable hyper-
parameters. Though its performance gain is notable, Aut-
oFlow employs synthetic augmentations. The work in [27]
utilizes AutoFlow and argues that it is important to disen-
tangle architecture and training pipeline. [27] also points out
that some of the performance improvements of the recent
methods are due to hyperparameters, dataset extensions,
and training optimizations. Our work focuses on more ca-
pable augmentations for model agnostic training, not archi-
tecture novelties.

Semi-Supervised Learning: Semi-supervised optical
flow learning methods [12, 17] aim to make the best use
of unlabeled data as there is only a limited amount of opti-
cal flow ground truth data for real and natural scenes. And
even in those datasets, the optical flow ground truths are
computed. RAFT-OCTC [12] proposed transformation con-
sistency for semi-supervised learning, which applies spatial
transformations to image pairs and enforces flow equivari-
ance between the original and transformed pairs. FlowSu-
pervisor [9] introduced a teacher network for stable semi-
supervised fine-tuning. Its student model is trained for all
pixels using teacher network output. In DistractFlow, we
propose uncertainty-aware pseudo-labeling, which uses two
different image pairs instead of different networks. We fur-
ther employ forward-backward consistency to derive dense
confidence scores, which steer the training process to im-
pose loss only within high-consistency image regions to
prevent feedback from incorrect flow estimates.

Since acquiring optical flow ground truth for real videos
is problematic (not possible for most cases), unsupervised
training methods [15,21,26] seek out training models with-
out ground truth flows. Even though they report promising
results comparable to the earlier deep learning approaches,
unsupervised training methods still entail limitations.

3. DistractFlow
Our approach incorporates augmentation and supervi-

sion techniques to enhance the training of optical flow es-
timation models. In Section 3.1, we describe how we
construct realistic distractions for optical flow training and
how we employ them in supervised settings. Next, in
Section 3.2, we extend our approach to semi-supervised
learning with additional unlabeled data. We derive a self-
supervised regularization objective by utilizing the dis-
tracted samples and pseudo-labeling.

3.1. Realistic Distractions as Augmentation
Consider a pair of video frames during training:

(It, It+1). The distracted version of them is denoted as
(It, Dλ(It+1, Ĩd), where Dλ(It+1, Ĩd) is the perturbed sec-
ond frame obtained by combing with another image Ĩd
based on a mixing ratio of λ ∈ (0, 1). Specifically,
Dλ(It+1, Ĩd) is calculated as λ ·It+1+(1−λ) · Ĩd, where λ
is sampled from a Beta(α, α) distribution, same as defined
in [34, 36].

Figure 2 shows an example of a distracted pair of video
frames. It can be seen that the actual objects and the real
scene from one image are overlaid onto the second one.
Such perturbations can reflect challenging real-world sce-
narios, e.g., foreground/background objects that only start
to appear in the second frame, drastic motion blur, out-of-
focus artifacts, reflections on specular surfaces, partial oc-
clusions, etc. Furthermore, since the distractions are from
the same dataset, the visual context of the original pair and
distractor image are similar. For instance, the original pair
and distractor depict similar classes (road, car, building,
etc.). The spatial arrangement of the class and object re-
gions in those images are similar, e.g., roads are within the
lower part of the images, and so do the sky, buildings, and
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Figure 3. Semi-supervised learning that leverages distractions and
confidence-aware pseudo-labeling.

vehicles. While one may attempt to render such scenar-
ios synthetically, our DistractFlow provides a convenient
and automatic way that can still capture such natural and
semantically related variations. Compared to conventional
augmentation methods that use noise or simple shapes, our
method allows the model to be more robust to perturbations
caused by real-world image contents.

Additionally, we note that applying realistic distractions
to the first or both frames is possible. As we shall see in
the experiments, all of these options will result in improved
accuracy.

To provide supervision on the distracted pair of frames,
we use the ground-truth flow of the original pair. The loss
is computed as follows:

Ldist = ∥V f
(It, It+1)

− f(It, Dλ(It+1, Ĩd))∥1, (1)

where V f
(It, It+1)

is the ground-truth forward flow for the
original pair (It, It+1) and f(·, ·) denotes the predicted
flow based on model f .

In the supervised learning setting, where all training
samples are labeled, the total training loss is then given as
follows:

Lsup = Lbase + wdistLdist, (2)
where Lbase is the conventional supervised loss and wdist >
0 weights Ldist. For iterative models like RAFT, we com-
pute and apply this loss at each recurrent iteration.

3.2. Semi-Supervised Learning via Realistic Dis-
traction and Pseudo-Labeling

During training, when unlabeled frame pairs are avail-
able, we can further leverage our distracted pairs of
frames to derive additional self-supervised regulariza-
tion. More specifically, given a distracted pair of frames,
(It, Dλ(It+1, Ĩd)), and the original pair, (It, It+1), we en-
force the model’s prediction on the distracted pair to match

that on the original pair. In other words, the prediction on
the original pair, f(It, It+1), is treated as the pseudo label.
By doing this, the model learns to produce optical flow es-
timation on the distracted pair that is consistent with that
of the original pair, despite the distractions. Such regular-
ization promotes the model’s robustness when processing
real-world data, as we show in our experiments.

We note that, however, using all of f(It, It+1) as the
training target for the distracted pair is problematic. This is
because the model’s prediction can be erroneous and noisy
during the training process, even on the original frame pairs.
The low-quality pseudo labels can be detrimental to the
overall training, even leading to instability.

To address this issue, we adopt uncertainty-aware pseudo
labels by calculating a confidence map based on forward
backward consistency, and only using highly confident pix-
els’ predictions as pseudo ground truth, as shown in Fig-
ure 3. On a frame pair (It, It+1), let V̂ f (x) and V̂ b(x) de-
note the predicted forward and backward flows at the pixel
location x. When they satisfy the following constraint [21],
we can assume that the prediction is accurate.

|V̂ f (x) + V̂ b(x+ V̂ f (x))|2

< γ1

(
|V̂ f |2 + |V̂ b(x+ V̂ f (x))|2

)
+ γ2,

(3)

where γ1 = 0.01 and γ2 = 0.5 from [21].
As such, we derive the confidence map as follows:

Mconf = exp

(
− |V̂ f (x) + V̂ b(x+ V̂ f (x))|2

γ1

(
|V̂ f |2 + |V̂ b(x+ V̂ f (x))|2

)
+ γ2

)
.

(4)
Our confidence map provides a measure of reliability of

the predicted optical flow. Specifically, in Eq. 4, if the nu-
merator and the denominator are equal, the confidence value
is then approximately 0.37 (e−1). In this paper, we use a
very high threshold and it could provide a more accurate
optical flow pseudo ground truth.

By incorporating the confidence map, our self-
supervised regularization is then given as follows:

Lself = ∥[Mconf ≥ τ ] (f(It, It+1)−f(It, Dλ(It+1, Ĩd)))∥1,
(5)

where [·] is the Iverson bracket and τ is the confidence
threshold.1

In summary, in the semi-supervised learning setting,
where labeled and unlabeled data are both used in training,
the total loss is as follows:

Ltotal = Lsup + wselfLself, (6)

where Lsup is the supervised loss of Eq. 2, Lself is the self-
supervised loss of Eq. 5, and wself > 0 weights Lself.

1By [Mconf ≥ τ ], we note that the Iverson bracket is applied pixel-wise
to produce a binary confidence map.
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Table 1. Optical flow estimation results on SlowFlow, Sintel (train), and KITTI (train) datasets. We train the models on FlyingChairs (C)
and FlyingThings (T) in the supervised setting. In the semi-supervised setting, we finetune the model on FlyingThings (T) as labeled data
and Sintel (test) and KITTI (test) (S/K) as unlabeled data. * indicates test results of existing models generated by us.

Method Model Labeled Unlabeled SlowFlow (100px) Sintel (train) KITTI (train)
data data 1 3 5 7 (Final-epe) (Fl-epe) (Fl-all)

Su
pe

rv
is

ed

Supervised RAFT [30]

C+T

3.73 7.98 6.72 9.96 2.73∗ 4.94∗ 16.9∗

DistractFlow (Our) 3.37 3.93 6.21 8.18 2.61 4.57 16.4
Supervise GMA [14] 2.49 4.99 5.95 9.15 2.85∗ 4.88∗ 17.1∗

DistractFlow (Our) 2.53 3.49 5.43 8.24 2.66 4.76 16.9
Supervised FlowFormer [6] 2.72 3.73 5.24 6.78 2.39∗ 4.10∗ 14.7∗

DistractFlow (Our) 2.51 2.77 4.39 6.30 2.31 4.00 13.9

Se
m

i-S
up

er
vi

se
d

Supervised

RAFT [30]

C + T 3.73 7.98 6.72 9.96 2.73∗ 4.94∗ 16.9∗

RAFT-A [28] AutoFlow [28] - - - - 2.57 4.23 -
RAFT-OCTC [12]

C + T

T (subsampled) - - - - 2.67 4.72 16.3
Fixed Teacher [9] S/K - - - - 2.58 4.91 15.9
FlowSupervisor [9] S/K - - - - 2.46 3.35 11.1
DistractFlow (Our) S/K 2.46 3.60 5.15 6.95 2.35 3.01 11.7
Supervised GMA [14] 2.49 4.99 5.95 9.15 2.85∗ 4.88∗ 17.1∗

DistractFlow (Our) S/K 2.44 2.79 4.38 6.57 2.31 3.21 11.0
Supervised FlowFormer [6] 2.72 3.73 5.24 6.78 2.39∗ 4.29∗ 15.4∗

DistractFlow (Our) S/K 2.48 2.69 4.31 6.29 2.33 3.03 11.8

4. Experiments
In this section (and in the supplementary), we present

a comprehensive evaluation of DistractFlow on several
benchmark datasets, compare it with baselines and the latest
state-of-the-art (SOTA) methods, and conduct extensive ab-
lation studies. We focus our evaluations on realistic or real-
world data, including SlowFlow, Sintel (final), and KITTI;
we provide results on Sintel (clean) in the Supplementary.

4.1. Experimental Setup
Evaluation Settings: We consider two settings for run-

ning the experiments. In the first setting, we consider a
supervised learning setting where the network is trained
on fully labeled data. The second setting considers semi-
supervised learning, where unlabeled data can be used dur-
ing training, in addition to labeled training data.

Evaluation Metrics: We use the common evaluation
metrics for optical flow estimation, including End-Point Er-
ror (EPE) and Fl-all, which is the percentage of optical flow
with EPE larger than 3 pixels or over 5% of the ground truth.
The goal is to lower both of these metrics.

Datasets: Following commonly adopted evaluation pro-
tocols in the literature [6, 14, 30, 35], we train our model on
FlyingChairs (C) [4] and FlyingThings3D (T) [20] for su-
pervised training when evaluating on SlowFlow [11] (100px
flow magnitude) dataset and the training splits of Sintel
(S) [2] and KITTI (K) [5, 22]. In particular, on SlowFlow,
we use 4 blur durations with a larger duration having larger
motion blurs. When we evaluate on Sintel test set, we use
FlyingThings3D, Sintel training set, KITTI training set, and
HD1K (H) [16] for supervised training. And, we finetune
on KITTI training dataset for evaluation on KITTI test set.

For the additional unlabeled data used during training,
we followed the same setting from [9]. We use FlyingTh-
ings as labeled dataset and Sintel test set as unlabeled

dataset for evaluating on Sintel and SlowFlow, and the video
frames from KITTI test raw sequences for evaluating on
KITTI training dataset. When we evaluate on Sintel and
KITTI test sets, we use the labeled dataset from supervised
training settings, and use additional KITTI train raw se-
quences, Sintel training data (only using every other frame),
Monkaa (M) [20], and Driving (D) [20] as the unlabeled
datasets. Note that we do not use Sintel and KITTI test
sets as unlabeled datasets for Sintel and KITTI test evalua-
tion. We further experiment with utilizing unlabeled open-
source Blender videos as additional unsupervised training
data, such as Sintel and Big Buck Bunny.

Networks and Training: We use RAFT [30], GMA
[14], FlowFormer [6] as our baselines, and utilize their offi-
cial codes.2 For objectiveness, we train all the baselines in
the same framework and reported the results we obtained.
We set (wdist, wself ) and τ to (λ (mixing ratio), 1) and 0.95,
respectively. For supervised training, we follow RAFT and
GMA learning parameters such as optimizer, number of
GRU iterations, training iterations, and so on. For semi-
supervised training, we use labeled and unlabeled data with
a 1:1 ratio. For FlowFormer, we reduce the total batch size
and only finetune it due to GPU memory overflow. All set-
tings and training details are provided in the Supplementary.

4.2. Evaluations on SlowFlow, Sintel (train), and
KITTI (train)

Supervised Setting: Table 1 shows the performance
evaluation of the supervised and semi-supervised training
results on SlowFlow, Sintel (train), and KITTI (train). In
the top section of Table 1, we provide results of existing su-
pervised models and our models trained using DistractFlow

2RAFT: https://github.com/princeton-vl/RAFT, GMA:
https://github.com/zacjiang/GMA, FlowFormer: https://
github.com/drinkingcoder/FlowFormer-Official
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Table 2. Optical flow estimation results on Sintel (test) and KITTI
(test) datasets. We train the models on FlyingChairs (C), Fly-
ingThings (T), Sintel (S), KITTI (K), and HD1K (H) in the su-
pervised setting. When using the semi-supervised setting/using
additional data for training, RAFT-A trains on A+S+K+H+T
datasets where A stands for AutoFlow, FlowSupervisor trains on
C+T+S+K+H (labeled) and uses Sintel, KITTI, and Spring as un-
labeled datasets. In our case, we use C+T+S+K+H as labeled data
and Sintel, KITTI, and Sceneflow (Monkaa, Driving) as unlabeled
data. * indicates results obtained using warm-start [30].

Method Model Sintel (test) KITTI (test)
(Final-epe) (Fl-all)

Supervised
Supervised RAFT [30] 2.86∗ 5.10
DistractFlow (Our) 2.77∗ 4.82

Semi-Supervised / Additional dataset
Supervised

RAFT [30]

2.86∗ 5.10
RAFT-A [28] 3.14 4.78
RAFT-OCTC [12] 3.09 4.72
FlowSupervisor [9] 2.79∗ 4.85
DistractFlow (Our) 2.71∗ 4.71

supervised augmentation. Our supervised models trained
on FlyingChairs and FlyingThings3D show significant im-
provements across the test datasets for all the architectures.
For SlowFlow with a 3-frame blur duration, the existing
RAFT model shows very larges error (over 100 EPE) on
a few samples. DistractFlow, on the other hand, leads to
more robust results and a much smaller EPE.

Semi-Supervised Setting: In this part, we evaluate our
proposed approach when additional unlabeled data becomes
available. In the bottom section of Table 1, we show
results of the previous semi-supervised learning methods
and our proposed method. Following FlowSupervisor, we
finetune each model on FlyingThings (labeled) and Sintel
test (unlabeled), and evaluate on the SlowFlow and Sin-
tel train dataset. For evaluation on KITTI train dataset,
we finetune the pre-trained models (from Sintel unlabeled)
on FlyingThings (labeled) and raw KITTI test (unlabeled).
We can see that DistractFlow (RAFT) shows better per-
formance as compared to RAFT-OCTC, RAFT-A, Fix-
Teacher, and FlowSupervisor. Furthermore, we apply our
semi-supervised approach to GMA and FlowFormer, and
DistractFlow improves their performance.

4.3. Evaluations on Sintel (test) and KITTI (test)
Supervised Setting: The top section of Table 2 summa-

rizes the supervised and semi-supervised training results on
Sintel (test) and KITTI (test) datasets. From the first part of
Table 2, we can see that our proposed DistractFlow permits
significant improvements over the baseline RAFT model. It
is noteworthy that without using additional unlabeled data,
our model trained under the supervised setting already out-
performs the semi-supervised FlowSupervisor, which lever-
ages additional data.

Semi-Supervised Setting: In the second part of Ta-

Table 3. Effects of different types of perturbations applied to the
frames, as data augmentation during training.

Method Perturbation Sintel (train) KITTI (train)
(Final-epe) (Fl-epe) (Fl-all)

RAFT [30] 2.73 4.94 16.9

Our
Gaussian noise 2.68 4.86 17.6
Random shapes 2.66 4.82 16.8

Realistic Distractions 2.61 4.57 16.4

Table 4. Distracting It and/or It+1 on Sintel (train) and KITTI
(train) datasets. We train RAFT with distractions to I1 or I2 or
both. α is the coefficient in the Beta distribution for sampling λ.
α1 and α2 are for applying distractions to I1 and I2, respectively.

Method Distraction α1 α2
Sintel (train) KITTI (train)
(Final-epe) (Fl-epe) (Fl-all)

RAFT [30] 2.73 4.94 16.9

DistractFlow

On It

0.1 2.69 4.81 16.4
1 2.64 5.25 17.6
10 2.55 5.32 17.8

On It+1

0.1 2.65 4.66 16.3
1 2.61 4.57 16.4

10 2.70 4.82 17.2
On It & It+1 (same) 0.1 1 2.70 5.33 18.3
On It & It+1 (diff) 0.1 1 2.64 4.92 16.7

ble 2, we provide results for semi-supervised methods or
methods that train with additional datasets. RAFT-A is
trained with an additional AutoFlow dataset but still un-
derperforms the RAFT trained with our DistractFlow ap-
proach. RAFT-OCTC applies a semi-supervised method as
well as changes the architecture for occlusion prediction.
Although RAFT-OCTC uses a slightly more complex ar-
chitecture, our DistractFlow-trained RAFT still shows bet-
ter performance. In addition, our method also considerably
outperforms FlowSupervisor.

4.4. Ablation Studies
We conduct extensive ablation studies on various aspects

of our method, by using RAFT as the base model. In the
supervised setting, we train on FlyingChairs (C) and Fly-
ingThings3D (T). In the semi-supervised setting, we take
the RAFT model pretrained from the supervised setting and
then finetune it using FlyingThings3D (labeled) and Sintel
(test)/KITTI (test) (unlabeled). The evaluation is done on
Sintel (train) and KITTI (train).

Type of Perturbations: When applying visual pertur-
bations, we compare using realistic distractions in Distract-
Flow with using synthetic noise such as Gaussian noise and
random shapes. For generating random shapes, we make
random background colors and add 5 to 10 shapes (e.g., cir-
cles, triangles, and rectangles) of random colors and sizes.
As shown in Table 3, while introducing perturbations with
Gaussian noise or random shapes can result in performance
gains, the improvements are not as significant as compared
to the case of using our proposed augmentation strategy.

Distracting It or It+1 or both: We compare applying
distractions to It or It+1 or both in Table. 4. At the top
of Table. 4, we generate distracted It using the α1 values
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Figure 4. Qualitative results on Sintel (train) using RAFT, FlowFormer, DistractFlow-RAFT, and DistractFlow-FlowFormer (the last two
are empowered with our proposed method). All models are trained on FlyingChairs and FlyingThings3D. It can be seen that DistractFlow
can generate more accurate predictions, with better spatial consistency and finer details, as highlighted by circles.

Table 5. Effectiveness of Ldist

Method Lbase Ldist
Sintel (train) KITTI (train)
(Final-epe) (Fl-epe) (Fl-all)

RAFT [30] ✓ 2.73 4.94 16.9

DistractFlow ✓ 2.82 5.43 19.0
✓ ✓ 2.61 4.57 16.4

for sampling λ and train the model accordingly.3 All three
variants show improvements on Sintel. However, when α1s
are 1 or 10, the performance drops on KITTI compared
to RAFT. We suspect that the Sintel (final) dataset has a
heavy visual effect even in It, and using strongly distracted
It could help the training.4 On the other hand, since KITTI
has relatively cleaner images, strongly distracted It does not
improve the performance.

In the middle of Table 4, we distract It+1 according to
the different α2 values and train the model. In most of these
cases DistractFlow improves upon the baseline RAFT, and
it shows the best performance at α2 = 1. This result shows
that various mixing of the images is helpful.

At the bottom of Table 4, we distract It and It+1 si-
multaneously. When we apply the same distraction to
both frames, two consecutive videos, it degrades the per-
formance. This is because applying the same distraction to
both frame introduces new correspondences which are not
part of the ground truth. On the other hand, when we apply
distractions from two different images to It and It+1, the
trained model shows better performance compared to base-
line RAFT. Overall, distracting It+1 shows the best perfor-
mance and we carry out experiments with this setting.

Effectiveness of Ldist: Table 5 shows the effectiveness
of Ldist. Without the supervised loss on the original pairs,

3When α < 1, sampled λ is close to 0 or 1. When α > 1, sampled λ
is close to 0.5. When α = 1, λ is sampled from a uniform distribution.

4Since we set wdist = λ, when λ is close to zero, the distracted pair
only impacts the training minimally.

Table 6. Effectiveness of confidence map and λ weight for Lself in
semi-supervised setting. τ is the confidence threshold in Eq. 5 and
in wself is the weight for the self-supervised loss. Note that 0.37
corresponds to having equal nominator and denominator in Eq. 3.

Method τ
Sintel (train) KITTI (train)
(Final-epe) (Fl-epe) (Fl-all)

RAFT [30] 2.73 4.94 16.9

DistractFlow
diverged

✓(0.37) 2.35 3.37 12.42
✓(0.95) 2.35 3.01 11.71

Table 7. Effects of using different unlabeled datasets in the semi-
supervised training. Our DistractFlow enables consistent perfor-
mance improvements when using any of the unlabeled datasets.

Method Unlabeled data Sintel (train)
(# of pairs) (Final-epe)

RAFT [30] 2.73

DistractFlow
Sintel-test (1.1k) 2.35

Monkaa (17k) & Driving (9k) 2.42
Big Buck Bunny (14k) 2.58

a model trained only with Ldist still provides reasonable es-
timation performance, but shows worse accuracy as com-
pared to the original model. Combining Lbase with Ldist
shows a significant improvement.

Effectiveness of Confidence Map: Table 6 shows our
study on the impacts of confidence-based thresholding in
the semi-supervised training. When training the model
without any confidence maps, erroneous predictions are
used for backpropagation and training the network, causing
the training to diverge. On the other hand, our confidence
map allows the network to only train on highly accurate pre-
dictions and enables stability when training the model.

When we set τ = 0.37 (a common choice for forward-
backward consistency), we can stably train the model and
it shows improvement. Higher τ (e.g., 0.95) shows further
accuracy improvement on KITTI. This may be due to the
larger displacements in KITTI, which can make the model
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Figure 5. Qualitative results on SlowFlow using the original RAFT
and DistractFlow-trained RAFT models in supervised and semi-
supervised model settings. We see that DistractFlow training en-
ables the network to produce more accurate results, despite the
severe motion blur.

more prone to in accurate predictions. As such, creating
pseudo labels with a higher confidence threshold is benefi-
cial in this case.

4.5. Qualitative Results
Figure 4 shows qualitative results on the Sintel (train, fi-

nal) using the original RAFT and FlowFormer, as well as
our DistractFlow-trained RAFT and FlowFormer. These
models are trained on FlyingChairs and FlyingThings3D.
Because Sintel (final) contains visual effects such as fog
and blur, the original models generate erroneous estima-
tions. On the other hand, our DistractFlow-trained models
show more accurate and robust flow estimation results. Es-
pecially, it shows accurate predictions at the object bound-
ary without any edge- or segmentation-aware training [1,3].

Figure 5 shows qualitative results on SlowFlow using
the original RAFT, as well as DistractFlow-trained RAFT
models (supervised and semi-supervised). Our supervised
training allows the model to generate more accurate and ro-
bust flows compared to the baseline RAFT. With our semi-
supervised setting, our model shows further improvements.

5. Discussion
Unlabeled Dataset: Table 7 shows the results on Sin-

tel (train) when using different unlabeled data in semi-
supervised training. Sintel (test) shows significant improve-
ment compared to supervised training since it is in the same
domain as Sintel (train). Although Monkaa & Driving or
Bunny dataset have more unlabeled pairs and can still im-
prove upon the original RAFT, they exhibit worse perfor-
mance than using Sintel (test) pairs. This indicates that
for semi-supervised setting, it is important to use unlabeled

Images RAFT DistractFlow

Figure 6. Predictions on distracted video frame pairs. In the first
column, the first row shows the overlaid original pair and the sec-
ond to fourth rows show the distracted pairs. The mixing weight
for the distractor increases from top to bottom. The RAFT model
trained with DistractFlow performs robustly, while the original
RAFT model completely fails when the distraction becomes large.

data with scenes and distributions resembling the target use
case. We leave data distribution robustness (e.g., address-
ing out-of-distribution samples [18, 19, 31] as part of future
work. Nevertheless, our semi-supervised method improves
the performance when using any of the unlabeled datasets.

Robust Prediction: Figure 6 shows the predictions of
RAFT and DistractFlow-RAFT (trained with FlyingChairs
and FlyingThings3D) on distracted frames pairs, using mix-
ing ratios of 1, 0.75, 0.5, and 0.25. When the original It+1

has a small portion of a distracted image , the original RAFT
has degraded performance. It completely fails to find the
correspondence for the red car when λ = 0.25. In contrast,
the model trained using DistractFlow still robustly finds the
correspondence in the distracted image.

6. Conclusion
We proposed a novel method, DistractFlow, to augment

optical flow training. We introduced realistic distractions to
the video frame pairs which provided consistent improve-
ments to optical flow estimation models. When unlabeled
data was available, based on the original and distracted
pairs, we devised a semi-supervised learning scheme us-
ing pseudo labels. We also incorporated forward-backward
consistency through confidence maps that provided training
stability and enhanced the performance further. Through
extensive experiments on several optical flow estimation
benchmarks: SlowFlow, Sintel, and KITTI, we showed that
our method achieved significant improvements over the pre-
vious state of the art without inducing additional complex-
ity during inference. In particular, models trained using our
DistractFlow strategy are more robust in practical, challeng-
ing scenarios (e.g., consistent error reductions on SlowFlow
despite strong motion blurs).
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