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Abstract
Cross-modal alignment is essential for vision-language

pre-training (VLP) models to learn the correct correspond-
ing information across different modalities. For this purpose,
inspired by the success of masked language modeling (MLM)
tasks in the NLP pre-training area, numerous masked mod-
eling tasks have been proposed for VLP to further promote
cross-modal interactions. The core idea of previous masked
modeling tasks is to focus on reconstructing the masked
tokens based on visible context for learning local-to-local
alignment. However, most of them pay little attention to
the global semantic features generated for the masked data,
resulting in a limited cross-modal alignment ability of global
representations. Therefore, in this paper, we propose a novel
Semantic Completion Learning (SCL) task, complementary
to existing masked modeling tasks, to facilitate global-to-
local alignment. Specifically, the SCL task complements the
missing semantics of masked data by capturing the corre-
sponding information from the other modality, promoting
learning more representative global features which have a
great impact on the performance of downstream tasks. More-
over, we present a flexible vision encoder, which enables
our model to perform image-text and video-text multimodal
tasks simultaneously. Experimental results show that our
proposed method obtains state-of-the-art performance on
various vision-language benchmarks, such as visual ques-
tion answering, image-text retrieval, and video-text retrieval.

1. Introduction
Our real-world contains a wide variety of information,

such as texts, images, sounds, etc. For a powerful general
artificial intelligence system, it is necessary to capture the se-
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Figure 1. (a) The comparisons between previous masked modeling
tasks and our proposed Semantic Completion Learning (SCL),
which is composed of “MVSC” and “MLSC”. (b) The cross-modal
attention map visualization of the text global representation ([CLS])
on the input image for our model pre-trained with or without SCL.

mantic association from different modality sources. Towards
this goal, multimodal representation learning is a crucial
technique to bridge the heterogeneity gap between different
modalities [6, 36]. In this area, vision-language pre-training
models [14, 21, 30, 35, 43] have shown an impressive se-
mantic alignment ability, which brings substantial advances
on various downstream tasks, for instance, visual question
answering, image-text retrieval, etc.

Recently, numerous self-supervised vision-language pre-
training models [3, 10, 14, 17, 31, 32, 43] have been proposed.
These methods model the interactions between vision and
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language features mainly by using various masked model-
ing tasks, such as masked language modeling (MLM) and
masked vision modeling (MVM). As shown in Fig. 1(a),
the basic idea of MLM and MVM is self-reconstructing the
masked tokens via leveraging informative visible tokens to
realize local-to-local alignment. Specifically, MLM adopted
by BERT [24] is to predict the original vocabulary IDs of
the masked words. Inspired by the success of MLM in pre-
training, there is a flourishing trend to extend it to visual pre-
training tasks. Generally, by masking some visual patches,
MVM tasks predict their original pixels [13,17], correspond-
ing discrete tokens [4, 10, 46] generated by the VQ-VAE
variants, or Histograms of Oriented Gradients (HOG) fea-
tures [11], etc.

These masked modeling tasks only focus on reconstruct-
ing the local masked tokens, and pay little attention to recov-
ering the missing global semantic information caused by data
corruption. The token-level reconstruction may lead to in-
adequate learning of global representations for cross-modal
information. As illustrated in Fig. 1(b), in the situation of
token-level reconstructions, the global representation is dis-
ordered in its attention on the other modality. It implies
that the global-to-local alignment ability of the pre-training
model is limited, leading to a degraded global representation.
However, the global semantic features have a great impact
on the performance of the pre-training model as they are
usually used to deal with downstream tasks. Therefore, it is
crucial to ensure the global semantic features to learn more
accurate global-to-local alignment.

Intuitively, considering that the paired vision and text data
are two views of the same semantic information, the missing
semantics of masked data can be completed by capturing
information from the other modality. From this point of
view, we propose a novel pre-training task called Semantic
Completion Learning (SCL). Specifically, SCL is composed
of dual parts: masked vision semantic completion (MVSC)
and masked language semantic completion (MLSC). As
shown in Fig. 1(a), MVSC (MLSC) exploits information of
complete text (vision) data to recover the global semantic
representations of masked vision (text) data. In this way, the
model can generate representative global features with accu-
rate global-to-local alignment. For example, as illustrated
in Fig. 1(b), compared with the model pre-trained without
SCL, the attention maps with SCL pre-training are more
discriminative and reasonable.

For the architecture of the vision-language pre-training
model, we adopt a general framework that consists of two
uni-modal encoders and a fusion encoder. Moreover, we
present a flexible vision encoder to enable our model to per-
form image-text and video-text multimodal tasks simultane-
ously. Specifically, for video inputs, the vision encoder only
adds a few additional learning parameters, and the [CLS]
feature of each frame is treated as a bridge associating spatial

modeling within the frame and temporal modeling among
frames. Inspired by curriculum learning [3], we train the
model with image-text and video-text datasets successively
to transfer visual knowledge from images to videos.

In a nutshell, our contributions are three-fold. (1) To en-
hance the global-to-local alignment of global representations,
we propose a new pre-training task called Semantic Com-
pletion Learning (SCL), which recovers missing semantic
information from unmasked data, promoting learning more
representative global features. (2) We design an adaptive
vision encoder, which can transfer multimodal pre-training
knowledge between images and videos readily. (3) We con-
duct multiple vision-language downstream tasks to demon-
strate the generalization of semantic completion learning,
and the vision encoder, including visual question answer-
ing, visual reasoning, image-text retrieval, and video-text
retrieval. Our model SCL achieves state-of-the-art perfor-
mance based on a similar pre-training data scale. Our code
is available at https://github.com/IIGROUP/SCL.

2. Related Works

2.1. Vision-Language Pre-training

Existing vision-language pre-training works can be di-
vided into two categories: dual-tower and cross-fusion archi-
tecture.

The dual-tower architecture based methods [1–3, 12, 22,
39, 49] employ two individual encoders to separately extract
the features for the visual data (images or videos) and textual
data, and then map these features into a common semantic
space. Among them, CLIP [39] exploits contrastive learn-
ing with a huge quantity of noisy image-text pairs directly
collected from the Internet, achieving remarkable results on
plenty of vision-language tasks. Similarly, FROZEN [3]
proposes a curriculum learning schedule to train the vision-
language model on both image-text and video-text datasets
by treating an image as a single-frame video. Although
these two-stream architecture based methods perform well
on cross-modal retrieval tasks with high efficiency, their per-
formances on the more complex multimodal downstream
tasks are not inspirational due to the insufficient interaction
between local vision and text features.

To overcome this limitation, the cross-fusion architec-
ture based methods [5, 9, 30, 31, 43] have been proposed,
which employ a cross-modal fusion encoder to enhance the
interactions between vision and text features. For exam-
ple, ALBEF [1] not only aligns the image and text features
with contrastive learning but also feeds them into a cross-
modal attention-based encoder to obtain the fused features.
Clover [18] improves cross-modal feature alignemnt and fu-
sion via a tri-modal alignment pre-training task. Our model
also conducts multimodal feature fusion to achieve encour-
aging performance on more downstream tasks.

6790



Two men walking on the 

tarmac of an airport.

Two walking on the 

 of an .

[mask] 
[mask]  [mask]

Vision Encoder Text Encoder

Fusion Encoder

......

...

Vision Encoder Text Encoder

Fusion Encoder

......

...

The

Same

[CLS] of the masked image

[CLS] of the complete image

[CLS] of another complete image

[CLS] of the masked text

[CLS] of the complete text

[CLS] of another complete text

Pull close
Push away
Detach

Masked Vision Semantic Completion (MVSC) Masked Language Semantic Completion (MLSC)

Figure 2. The overview of our proposed Semantic Completion Learning (SCL). The two versions of an image-text pair are forward
propagated, respectively, to perform masked vision/language semantic completion.

2.2. Masked Modeling Tasks

Recently, various masked modeling tasks have been pro-
posed, whose strategy is self-reconstructing the masked data.
Masked Language modeling (MLM) adopted by BERT [24]
is the most classical one. It randomly masks some tokens
of the input and then predicts the original vocabulary IDs of
the masked words based on their context. By pre-training
with the MLM, BERT achieves state-of-the-art results on
eleven natural language processing (NLP) tasks. Inspired by
the success of MLM in NLP, some works extend it into the
visual domain and propose masked vision modeling (MVM).
For example, VLMAE [17] proposes the Regional Masked
Image Modeling (RMIM) task to facilitate the fusion of
multimodal features. The RMIM masks some patches of
an input image and then reconstructs the original pixels de-
pending on the visible patches and the corresponding text.
Similarly, VIOLET [10] proposes a masked visual-token
modeling task, which first maps the original video frame
patches into discrete visual tokens and then recovers the cor-
responding visual tokens of masked patches to train a joint
encoder for the vision-language fusion. However, these tasks
focus on reconstructing local masked tokens, ignoring the
recovery of global semantic information of the masked data
after cross-modal interactions. Hence, we propose a novel
semantic completion learning (SCL) task.

3. Approaches

In this section, we first introduce our pre-training objec-
tives in Sec. 3.1, and then describe the model architecture in
Sec. 3.2. Please refer to Appendix A for the whole architec-

ture figure and the details of previous pre-training tasks.

3.1. Pre-training Tasks

3.1.1 Previous Pre-training Tasks

Contrastive Learning (CL). The input images and texts
are projected into vision and language embedding spaces
with two uni-modal encoders, respectively. We utilize con-
trastive learning to adjust the positions of semantic features,
enforcing the paired image-text features close and negative
samples far apart. Then the token-wise fusion is employed
for features of different modalities in the unified semantic
space.

Vision-Text Matching (VTM). VTM aims to determine
the correspondence of an image-text pair. The model con-
ducts a binary classification on the concatenation of vision
and text global representations generated by the fusion en-
coder, which contributes to the overall alignment of different
modalities.

Masked Language Modeling (MLM). MLM was first used
as a pretext task in natural language processing and was later
introduced to multi-modal pre-training. Following the text
tokens masked out with a probability of 15%, the model
attempts to predict the original words based on visual infor-
mation and textual context. The token-level reconstruction
task plays an important role in the way that the model learns
to associate linguistic words and visual entities, realizing
local-to-local semantic alignment.
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3.1.2 Semantic Completion Learning (SCL)

It is significant for the model to learn multi-modal infor-
mation fusion, that is, to extract knowledge from the other
modality. Instead of local information reconstruction in for-
mer masked modeling tasks, we expect that the model can
also recover the global semantics of masked images or texts
after cross-modal interaction.

As shown in Fig. 2, for each data pair, we first randomly
mask the image and text separately to get {Imask, T} and
{I, Tmask}, so that the masked one manages to learn seman-
tic information from the other complete modality. Then the
two couples of data are sent to the model respectively. The
recovered features of masked data are obtained by leveraging
information from the other modality to complete its missing
semantic information:

IRe, TCo = Model(Imask, T ),

ICo, TRe = Model(I, Tmask),
(1)

where IRe, TRe are recovered global features of masked data,
and ICo, TCo refer to global features of complete data. Then
we conduct masked vision semantic completion (MVSC)
and masked language semantic completion (MLSC) simulta-
neously. Specifically, we bridge the gap between recovered
global features and the complete ones in the form of con-
trastive learning. The InfoNCE loss is adopted to maximize
the mutual information (MI) between two versions of the
input data pair, {Imask, T} and {I, Tmask}:

NCEV = − 1

N

N∑
i=1

log
exp(s(IiRe, I

i
Co)/τ)∑N

n=1 exp(s(I
i
Re, I

n
Co)/τ)

,

NCEL = − 1

N

N∑
i=1

log
exp(s(T i

Re, T
i
Co)/τ)∑N

n=1 exp(s(T
i
Re, T

n
Co)/τ)

,

(2)

where s denotes cosine similarity and τ serves as the tem-
perature hyper-parameter. The negative samples are global
features of other complete images or texts in a batch. Note
that ICo and TCo are detached for gradient backward, which
makes the model more focused on the learning of recovering
global features. Finally, the SCL loss is defined as:

LSCL = NCEV +NCEL . (3)

By minimizing Eq.(3), it will make the global feature IRe

of the masked image similar to ICo of the complete image
(TRe similar to TCo). To recover the semantic information
of masked data, the global representations will learn supple-
mentary knowledge from the corresponding tokens of the
other modality, i.e., accurate global-to-local alignment.

3.2. Model Architecture

Our model consists of three components: Vision Encoder,
Text Encoder, and Fusion Encoder.

Temporal Attention

xM

xMxM

Spatial Attention

xM

xM xM

VisualBlock

[CLS] token of a frame Token of a frame patch

Figure 3. The architecture of a VisualBlock.

3.2.1 Vision Encoder

Input. The vision encoder takes visual data (a video or im-
age) I ∈ RM×3×H×W containing M frame(s) of resolution
H×W as input, and when I is an image, M = 1. The visual
data I is first split into M×N patches x ∈ RM×3×N×P×P ,
where P ×P is the size of patches and N = HW/P 2. Then,
the patches x are transformed into M sequences of vision
tokens V = {vi}Mi=1 ∈ RM×N×D, where vi ∈ RN×D

denotes the sequence of tokens for the ith frame in the visual
data and D denotes the dimension of vision tokens. Next,
a learnable [CLS] token is concatenated to every token se-
quence vi, and we obtain V = {vi}Mi=1 ∈ RM×(N+1)×D.
Finally, the tokens V are summed with learnable spatial
positional embeddings Es ∈ R(N+1)×D and temporal posi-
tional embeddings Et ∈ RM×D:

g0
ij = vij +Et

i +Es
j , (4)

where all patches in the same spatial location of different
frames are given the same spatial positional embedding Es

j ,
and all patches in the same frame share the same temporal
positional embedding Et

i.
VisualBlock. The pre-processed vision tokens G0 =
{g0

i }Mi=1 ∈ RM×(N+1)×D are fed into the vision encoder
which can process image and video data. The vision encoder
is a modified ViT [8], containing a stack of VisualBlocks.

The detail of each VisualBlock is shown in Fig. 3. Specif-
ically, each VisualBlock will perform temporal attention to
exploit the global temporal information of the visual data,
and conduct the spatial attention to capture sufficient local
spatial semantic information. For temporal attention, we per-
form multi-head attention for the [CLS] tokens {gl−1

i0 }Mi=1

of all frames through attending to all M × (N +1) tokens to
produce [CLS] tokens {gl

i0}Mi=1. Regarding spatial attention,
it is the multi-head attention within each frame. Taking the
ith frame as an example, we use {gl−1

ij }Nj=1 without [CLS]
token as queries and all the N + 1 tokens in the frame as
keys and values to conduct attention and obtain the output
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Model VQA2.0 NLVR2
test-dev test-std dev test-p

Pre-trained with >10M images

ALBEF(14M) [29] 75.84 76.04 82.55 83.14
SimVLM [48] 77.87 78.14 81.72 81.77
OFA [45] 78.0 78.1 - -
BLIP [28] 78.25 78.32 82.15 82.24

Pre-trained with <10M images

Oscar [31] 73.16 73.44 78.07 78.36
UNITER [5] 72.70 72.91 77.18 77.85
ViLT [25] 71.26 - 75.70 76.13
TCL [52] 74.90 74.92 80.54 81.33
VLMo [47] 76.64 76.89 82.77 83.34
METER [9] 77.68 77.64 82.33 83.05
Ours 78.72 78.78 83.63 84.27

Table 1. Performance comparison on VQA2.0 and NLVR2.

tokens {gl
ij}Nj=1. After the temporal attention and spatial

attention are conducted, we concatenate the M [CLS] to-
kens {gl

i0}Mi=1 with the M × N tokens {{gl
ij}Nj=1}Mi=1 of

frame patches as the output of the VisualBlock, denoted as
Gl = {gl

i}Mi=1.

3.2.2 Text Encoder
Given the input text T , we first tokenize it into word em-
beddings {ti}Ki=1, where K is the total number of words.
Then, the text encoder, which consists of a stack of bidirec-
tional transformers [44], maps {ti}Ki=1 into token features
W = {wi}Ki=1 by modeling the contextual relationships.

3.2.3 Fusion Encoder
Similar to [9,43], we adopt a two-stream architecture for the
fusion encoder, each layer of which consists of two modality-
specific self-attention blocks and two cross-attention blocks.
Specifically, taking the vision features as an example, fol-
lowing intra-modal interactions in the visual self-attention
block, we conduct cross-modal interactions in the language-
to-vision cross-attention block, which takes the vision tokens
G = {gi}Mi=1 as queries and the text tokens W = {wi}Ki=1

as keys and values. The text features are conducted with
similar operations. In the end, we use the mean pooling of
all the frame [CLS] tokens yielded by the fusion encoder as
the global representation for visual data and the [CLS] token
of text as the global representation for text data.

4. Experiments
4.1. Implementation Details

Following a recent line of works, we use COCO [33], Vi-
sual Genome (VG) [26], Conceptual Captions (CC3M) [41],

1Pre-trained on 14M images.

Model
Flicker30K-ZS

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Evaluate pre-trained models directly

UNITER [5] 66.16 88.40 92.94 80.70 95.70 98.00
ViLT [25] 55.0 82.5 89.8 73.2 93.6 96.5
ALIGN [23] 75.70 93.80 96.80 88.60 98.70 99.70
METER [9] 79.60 94.96 97.28 90.90 98.30 99.50
Ours 79.74 95.46 97.86 91.70 99.30 99.90

Evaluate models fine-tuned on COCO

ALBEF [29] 76.8 93.7 96.7 90.5 98.8 99.7
ALBEF1 [29] 82.8 96.3 98.1 94.1 99.5 99.7
TCL [52] 79.6 95.1 97.4 93.0 99.1 99.6
Ours 81.74 96.72 98.54 94.80 99.60 100.00

Table 2. Performance comparison of zero-shot image-text retrieval
on Flickr30K.

and SBU Captions [37] for image-text pre-training, which
contain 4M images in total. Then the pre-trained model is
applied to image-text downstream tasks and the initializa-
tion for video-text pre-training. For the following video-text
pre-training, we utilize WebVid [3] with 2.5M videos as the
pre-training corpus. We employ an extensive set of eval-
uation benchmarks on a wide variety of vision-language
understanding and retrieval tasks, including visual question
answering (VQA2.0 [16]), visual reasoning (NLVR2 [42]),
image-text retrieval (Flickr30K [38], COCO [33]), and video-
text retrieval (MSRVTT [51], LSMDC [40]). We utilize
CLIP-ViT-224/16 [39] and RoBERTa [34] to initialize vi-
sion and language encoders following METER [9]. For our
proposed SCL, we adopt high mask ratios, 80% for images
and 40% for texts. Other details of pre-training settings can
be found in Appendix B.

4.2. Evaluation Results

4.2.1 Image-Text Understanding

We conduct multimodal understanding tasks on VQA2.0
and NLVR2, which require the model to exploit vision and
language semantic fusion. As the results shown in Table 1,
SCL achieves new state-of-the-art performance compared
with previous models, implying that cross-modal fusion ben-
efits from our new pre-training task. Specifically, when pre-
trained with fewer than 10M images, our model outperforms
METER [9] by +1.04 and +1.14 scores on VQA2.0 test-dev
and test-std. On NLVR2, we gain +0.86 and +0.93 score
improvements over VLMo [47], respectively. Moreover, our
model pre-trained with 4M images also surpasses some mod-
els with more than 10M images, for instance, SimVLM [48],
BLIP [28].

4.2.2 Image-Text Retrieval

We evaluate image-text retrieval in both zero-shot and fine-
tuning scenarios. Our model achieves substantial perfor-
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Model COCO Flickr30K
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with > 10M images

ALIGN [23] 59.9 83.3 89.8 77.0 93.5 96.9 84.9 97.4 98.6 95.3 99.8 100.0
ALBEF(14M) [29] 60.7 84.3 90.5 77.6 94.3 97.2 85.6 97.5 98.9 95.9 99.8 100.0

Pre-trained with < 10M images

UNITER [5] 52.93 79.93 87.95 65.68 88.56 93.76 75.56 94.08 96.76 87.30 98.00 99.20
PixelBERT [20] 50.1 77.6 86.2 63.6 87.5 93.6 71.5 92.1 95.8 87.0 98.9 99.5
VinVL [53] 58.1 83.2 90.1 74.6 92.6 96.3 - - - - - -
ALBEF(4M) [29] 56.80 81.50 89.20 73.10 91.40 96.00 82.80 96.70 98.40 94.30 99.40 99.80
SOHO [19] 50.6 78.0 86.7 66.4 88.2 93.8 72.5 92.7 96.1 86.5 98.1 99.3
TCL [52] 59.0 83.2 89.9 75.6 92.8 96.7 84.0 96.7 98.5 94.9 99.5 99.8
METER [9] 57.08 82.66 90.07 76.16 93.16 96.82 82.22 96.34 98.36 94.30 99.60 99.90
Ours 60.14 84.56 91.45 77.70 94.10 97.44 84.56 97.42 98.94 95.90 99.80 100.00

Table 3. Performance comparison of fine-tuned image-text retrieval on Flickr30K and COCO datasets.

Model MSRVTT LSMDC
R@1 R@5 R@10 R@1 R@5 R@10

Fine-tune

VideoCLIP [49] 30.9 55.4. 66.8 - - -
Frozen [3] 31.0 59.5 70.5 15.0 30.8 39.8
VIOLET [10] 34.5 63.0 73.4 16.1 36.6 41.2
ALPRO [27] 33.9 60.7 73.2 - - -
MCQ [14] 37.6 64.8 75.1 17.9 35.4 44.5
MILES [15] 37.7 63.6 73.8 17.8 35.6 44.1
Clover [18] 38.6 67.4 76.4 22.7 42.0 52.6

Ours 43.2 76.0 86.7 32.8 62.5 72.9

Zero-shot

VideoCLIP [49] 10.4 22.2 30.0 - - -
Frozen [3] 18.7 39.6 51.6 9.3 22.0 30.1
VIOLET [10] 25.9 49.5 59.7 - - -
ALPRO [27] 24.1 44.7 55.4 - - -
MCQ [14] 26.0 46.4 56.4 12.2 25.9 32.2
MILES [15] 26.1 47.2 56.9 11.1 24.7 30.6
Clover [18] 25.8 49.6 60.1 13.8 28.1 38.3

Ours 30.9 54.4 65.0 17.2 32.4 39.1

Table 4. Performance comparison of text-to-video retrieval on
MSRVTT and LSMDC.

mance improvements on Flickr30K and COCO datasets with
similar model sizes and pre-training data scales. The re-
sults are also competitive with models pre-trained on larger
datasets, such as ALIGN [23] and ALBEF [29]. In the fine-
tuning phase, the model is trained with CL and VTM losses.
During inference, for the sake of efficiency, we first filter
top-k candidates with vision and language encoders and then
compute VTM scores for ranking.

To investigate the generalization ability of our model,
we conduct zero-shot experiments on the Flickr30K dataset.
As shown in Table 2, SCL achieves the best performance
in both settings of zero-shot retrieval on Flickr30K. When
we evaluate with the pre-trained model directly, SCL gains

a comprehensive boost from previous methods, reaching
79.74% and 91.7% in terms of IR@1 and TR@1. When
evaluated with the model fine-tuned on COCO, SCL out-
performs models pre-trained on datasets of similar sizes,
including ALBEF [29] and TCL [52]. Moreover, compared
with ALBEF pre-trained on 14M images, SCL also has a
more impressive performance in five out of six recall met-
rics, further demonstrating the effectiveness of our proposed
strategies.

For fine-tuning experiments, our model surpasses previ-
ous models by a large margin, as shown in Table 3. TCL [52]
has a distinguished retrieval performance with triple con-
trastive learning, which is cross-modal, intra-modal, and
global-local. Compared with TCL, our method brings
+1.14%/ + 0.56% IR@1 boost and +2.10%/ + 1.00%
TR@1 on COCO and Flickr30K, respectively. It is worth not-
ing that our model also has higher scores than ALIGN [23]
with 1.8B image-text pairs pre-trained. Thanks to semantic
completion learning, the global features capture more cross-
modal information, leading to an encouraging performance
on retrieval.

4.2.3 Video-Text Retrieval

Due to our adaptable vision encoder, the image-text pre-
trained model can be readily transferred to video-text pre-
training. We evaluate text-to-video retrieval on two pop-
ular datasets, MSRVTT and LSMDC, to prove the perfor-
mance of the video pre-training model. Table 4 summa-
rizes results under both fine-tuning and zero-shot settings.
In the fine-tuning situation, compared with the previous
SOTA model, SCL achieves notable performance improve-
ments with +4.6% and +10.1% in R@1 on MSRVTT and
LSMDC. When doing zero-shot retrieval, SCL also gains
remarkable improvements over the existing methods with
+4.8% and +3.4% in R@1 on MSRVTT and LSMDC, re-
spectively. These results demonstrate that the knowledge of
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Pre-training tasks Flicker30K-ZS VQA2.0 NLVR2
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 test-dev dev test-p

Ours (MLM+VTM+CL+SCL) 70.4 91.1 95.2 86.2 97.3 99.2 77.59 81.01 81.89
w/o MLM 67.6 89.5 94.4 84.7 97.5 99.3 75.46 78.93 79.41
w/o VTM 49.7 78.5 87.2 61.1 86.4 94.7 76.96 77.86 79.54
w/o CL 67.8 90.7 94.9 82.5 97.3 99.1 77.66 81.10 82.18

w/o SCL 67.0 89.4 94.3 80.0 96.5 99.4 77.31 80.30 81.46

Table 5. Ablation study of each pre-training task. Note that the model pre-trained without VTM can only conduct zero-shot retrieval with
vision and text encoders without feature fusion, so the recall metrics are not comparable to the others.

Pre-training tasks Flickr30K-ZS VQA2.0 NLVR2
IR@1 IR@5 TR@1 TR@5 test-dev test-p

MLM+VTM+CL 67.0 89.4 80.0 96.5 77.31 81.46
+MLSC 67.0 90.0 80.5 97.1 77.60 81.88
+MVSC 69.5 90.5 85.5 98.3 77.50 81.69

+SCL 70.4 91.1 86.2 97.3 77.59 81.89

Table 6. Ablation study of MLSC and MVSC.

mask ratio Flicker30K-ZS VQA2.0
image text IR@1 IR@5 TR@1 TR@5 test-dev

0.7 0.4 68.8 90.6 84.0 97.7 77.51
0.8 0.3 69.5 90.5 83.8 97.6 77.63
0.8 0.4 70.4 91.1 86.2 97.3 77.59
0.8 0.5 68.8 90.5 81.9 97.4 77.63
0.9 0.4 68.6 90.6 82.8 97.3 77.57

Table 7. Effect of different image and text mask ratios.

Vision Encoder Video Retrieval Text Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Mean Pooling 23.0 45.6 56.5 22.5 46.4 54.9
Global CLS 22.5 45.9 55.1 22.4 45.7 55.5
Frame CLS 23.3 48.3 56.8 24.0 46.5 55.7

Table 8. Ablation study of the vision encoder on zero-shot retrieval
of MSRVTT.

our SCL model learned from image-text data can be used to
improve the performance of video-text retrieval tasks.

4.3. Ablation Studies

We conduct empirical ablation experiments on pre-
training tasks and the vision encoder. Since pre-training
is time-consuming, we use COCO and VG as pre-training
datasets, which is also a common setting in previous
works [19, 43, 50].

4.3.1 Different Pre-training Tasks

There are four pretext tasks in our method, including CL,
VTM, MLM, and SCL. As summarized in Table 5, we ex-
plore the impact of each task on both retrieval and under-
standing datasets. The first row shows the results of our
model with all pre-training tasks, and the second to fifth

rows reflect the effect of removing each task separately. Ac-
cording to the chart, we observe that the retrieval perfor-
mance drops most due to the lack of SCL when conduct-
ing retrieval with feature fusion. Specifically, SCL brings
+3.38% and +6.20% boost in IR@1 and TR@1 on F30K-
ZS. The model without MLM loses 2.13% in the accuracy
of VQA2.0, which indicates that MLM has a great effect
on multimodal understanding tasks. As for NLVR2, VTM
has a relatively large impact. However, contrastive learning
is only effective for retrieval in our model, which is per-
haps because the other three pre-training tasks have already
learned cross-modal fusion sufficiently for understanding
tasks. Overall, comparing the first row with the fifth row, the
model with SCL makes progress on all downstream tasks,
which demonstrates that the model learns more accurate
cross-modal alignment to generate representative global fea-
tures.

Furthermore, SCL comprises MVSC and MLSC, whose
effects we showcase in Table 6. According to the first three
rows, either MVSC or MLSC can improve the performance
of downstream tasks. We find that MVSC has a superior
impact on retrieval tasks, which is probably because it im-
proves the robustness of visual information understanding.
In VQA2.0 and NLVR2, MLSC plays a more important role.
Additionally, when combining the two sub-tasks, our model
performs better in most metrics, which indicates that they
are in synergy.

4.3.2 Mask Ratio in SCL

As shown in Table 7, we observe that the mask ratios of
image and text affect downstream tasks, especially on zero-
shot retrieval. VQA2.0 is less sensitive to the mask ratio
because the model has been fine-tuned with a large amount of
data. Considering the second to fourth rows, when the image
mask ratio is fixed, the model with a text mask ratio of 0.4
has almost the best performance. Moreover, when the text
mask ratio is set to 0.4, the results of the image mask ratio of
0.8 are the highest. We speculate that when the mask ratio
is lower, semantic completion will rely more on intra-modal
information and lack learning across modalities, leading to
inferior performance. When the mask ratio is too high, the
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Figure 4. The cross-attention visualization of text [CLS] on the whole image for the model pre-trained with or without SCL. The cross-modal
attention maps of 12 heads are from the last layer of the fusion encoder. Then we depict heatmaps by max-pooling the attention maps.

small number of remaining tokens can only perform very
limited cross-modal interactions. In conclusion, we choose
0.4 and 0.8 as text and image mask ratios, respectively.

4.3.3 Vision Encoder Design

To investigate the effectiveness of our designed vision en-
coder in processing video data, we compare it with two other
variants: (1) The first variant, termed Mean Pooling, directly
treats a video as M separate images and then uses the mean
pooling of M [CLS] tokens as the video representation. (2)
The second variant, termed Global CLS, is the vision encoder
proposed by MCQ [14]. In this experiment, we pre-train the
vision encoder and text encoder on the WebVid [3] dataset
via contrastive learning and then conduct zero-shot cross-
modal retrieval on the MSRVTT dataset. The experimental
results are shown in Table 8, where the Frame CLS denotes
our designed vision encoder. It can be found that Frame CLS
achieves the best performance on both video-to-text and text-
to-video retrieval tasks, which demonstrates the outstanding
capability of video temporal modeling.

4.4. Visualization Analysis

To demonstrate that SCL boosts cross-modal alignment
for global representations, we visualize cross-attention maps
between text [CLS] and the whole image in the last layer of
the fusion encoder. We conduct max-pooling on attention
maps of 12 heads to draw heatmaps, as shown in Fig. 1(b)
and Fig. 4. Compared with pre-trained by CL, VTM and
MLM, the model with SCL can recognize relevant regions
more precisely. For example, in the first image of Fig 1(b),
the attention distribution of global text representation to
the image is scattered without SCL, while after semantic
completion learning, [CLS] pays attention to the fish, lemons,
asparagus in the image. Taking the second image of Fig 4 as
another example, the model pre-trained with SCL identifies

the dishes and sink in the kitchen, which indicates a desirable
global-to-local alignment ability.

Observing attention maps of 12 heads in Fig. 4, we find
that the attention maps without SCL are basically the same
for an image, but for the model pre-trained with SCL, the at-
tention maps of different heads are distinctive, which means
that each head learns various information from the image.
Overall, semantic completion learning encourages global
representations to learn cross-modal interactions, extracting
useful knowledge from the other modality. There are more
visualization cases in Appendix C.

5. Conclusion

In this paper, we proposed a new vision-language pre-
training task called Semantic Completion Learning (SCL).
Different from previous pre-training tasks that reconstruct
masked local tokens, SCL leverages cross-modal interac-
tions to recover global semantic information of masked data,
promoting cross-modal alignment for global representations.
Ablation studies and visualization analysis demonstrate the
effectiveness of SCL. Moreover, we introduced a flexible
vision encoder, which adapts to image-text and video-text
multimodal tasks readily. We conducted image-text and
video-text pre-training sequentially and applied our model to
various challenging downstream tasks. The extensive evalu-
ations validate the great superiority of our SCL method.
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