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Abstract

Recent years have witnessed the tremendous progress
of 3D GANs for generating view-consistent radiance fields
with photo-realism. Yet, high-quality generation of hu-
man radiance fields remains challenging, partially due to
the limited human-related priors adopted in existing meth-
ods. We present HumanGen, a novel 3D human generation
scheme with detailed geometry and 360◦ realistic free-view
rendering. It explicitly marries the 3D human generation
with various priors from the 2D generator and 3D recon-
structor of humans through the design of “anchor image”.
We introduce a hybrid feature representation using the an-
chor image to bridge the latent space of HumanGen with
the existing 2D generator. We then adopt a pronged de-
sign to disentangle the generation of geometry and appear-
ance. With the aid of the anchor image, we adapt a 3D re-
constructor for fine-grained details synthesis and propose
a two-stage blending scheme to boost appearance genera-
tion. Extensive experiments demonstrate our effectiveness
for state-of-the-art 3D human generation regarding geome-
try details, texture quality, and free-view performance. No-
tably, HumanGen can also incorporate various off-the-shelf
2D latent editing methods, seamlessly lifting them into 3D.

1. Introduction
We are entering an era where the boundaries of real and

virtually generated worlds are dismissing. An epitome of
this revolution is the recent rise of 3D-aware and photo-
realistic image synthesis in the past several years [5, 6, 11,
16, 53, 63, 91], which combine 2D Generative Adversar-
ial Networks (GANs) with neural volume rendering, like
neural radiance fields (NeRFs) [43]. But such 3D GANs
mainly focus on rigid contents like human/animal faces or
CAD models. The further 3D generation of us humans with
photo-realism is more attractive, with numerous applica-
tions in VR/AR or visual effects.

High-quality 3D human generative models should ide-
ally generate 3D-aware humans with the following charac-
teristics: (1) detailed geometry, (2) photo-realistic appear-
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Figure 1. The proposed HumanGen can generate 3D humans with
fine-detailed geometry and appearance while seamlessly lifting
various 2D latent editing tools into 3D.

ance, and (3) even supporting 360◦ free-view rendering.
Yet, it remains extremely challenging, mainly due to the
significantly higher diversity of human apparel and skele-
tal pose. Only very recently, a few work explore auto-
decoding [10] and 3D GANs [3, 22, 85] for human gener-
ation by using the parametric human model like SMPL [39]
as priors. But such parametric human prior lacks sufficient
geometry details, and the adopted neural rendering in these
methods does not guarantee that meaningful 3D geometry
can be generated, further leading to appearance artifacts.
Besides, these 3D human generators are trained with lim-
ited human datasets that lack diversity [68] or suffer from
imbalanced viewing angles (most are front views) [13, 38].
In a nutshell, existing methods fail to fulfill all the afore-
mentioned three characteristics for 3D human generation.

We observe that 3D human generation can benefit from
more explicit priors from other research domains of human
modeling, except for the SMPL prior adopted in existing
methods. Specifically, with the recent large-scale dataset
SHHQ [13], the 2D human generators [29–31] achieve
more decent synthesis results than the 3D ones. And var-
ious downstream 2D editing tools are available by disentan-
gling the latent spaces [55,58,65,78]. These abilities of 2D
generation and subsequent can significantly benefit the 3D
human generation if their latent spaces can be bridged. Be-
sides, recent advances in monocular 3D human reconstruc-
tion [2, 60] have achieved more fine-grained geometry de-
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tails than the implicit geometry proxy in current 3D human
generators. Yet, there lacks a well-designed mechanism to
explicitly utilize the rich human priors from both 2D gener-
ator and 2D reconstructor for 3D human generation.

In this paper, we present HumanGen – a novel neural
scheme to generate high-quality radiance fields for 3D hu-
mans from 2D images, as shown in Fig. 1. In stark contrast
with existing methods that only use SMPL, our approach
explicitly utilizes richer priors from the top-tier 2D gen-
eration and 3D reconstruction schemes. As a result, our
approach not only enables more realistic human genera-
tion with detailed geometry and 360◦ free-view ability, but
also maintains the compatibility to existing off-the-shelf 2D
editing toolbox based on latent disentanglement.

Our key idea in HumanGen is to organically leverage
a 2D human generator and a 3D human reconstructor as
explicit priors into a 3D GAN-like framework. Specifi-
cally, we first introduce a hybrid feature representation of
the generative 3D space, which consists of the tri-plane fea-
tures from EG3D [5] as well as a 2D photo-real human im-
age (denoted as “anchor image”) generated through the pre-
trained 2D generator. Note that we adopt separated Style-
GAN2 [31] architectures to generate both the tri-plane fea-
ture maps and the anchor image. But they share the same
latent mapping network, so as to bridge and anchor the la-
tent space of our 3D GAN to the pre-trained 2D human
generator. Then, based on such hybrid representation, we
design our 3D human generator into the pronged geometry
and appearance branches. In the geometry branch, we ex-
plicitly utilize a pre-trained 3D reconstructor PIFuHD [60]
to extract pixel-aligned features from the anchor image and
provide extra fine-grained geometry supervision for our Hu-
manGen. Note that the original PIFuHD encodes geometry
as an implicit occupancy field. Thus, we propose a geome-
try adapting scheme to turn it into a generative version with
signed distance field (SDF) output, so as to support efficient
and high-resolution volume rendering with sphere tracing.
For the appearance branch, we propose to learn an appear-
ance field and a blending field from both the pixel-aligned
and tri-plane features. Note that [18,59] only use the pixel-
aligned feature, thus we include the tri-plane features which
“sculpt” richer feature space for learning sharper texture.
Then, we adopt a two-stage blending scheme to fully use the
rich texture information in the anchor image. For our GAN
training procedure, we adopt similar training strategy like
EG3D [5] and introduce additional front and back consis-
tency supervision to enhance the generated texture details.

Besides, we observe that existing 2D human generator
StyleGAN2 [31] trained on the large-scale SHHQ [13] can
potentially generate diverse human images including side-
views and even back-views. Thus, we train our HumanGan
using an augmented dataset from SHHQ by using the pre-
trained 2D generator to cover 360◦ viewing angles. Once

trained, our HumanGen enables high-quality 3D human
generation. As an additional benefit, it shares the same la-
tent mapping with the 2D generated anchor image. Thus,
using the anchor image, we can seamlessly upgrade off-the-
shelf 2D latent editing methods into our 3D setting. We
showcase various 3D effects via convenient anchor image
editing. To summarize, our main contributions include:

• We present a novel 3D-aware human generation
scheme, with detailed geometry and 360◦ more realis-
tic free-view rendering than previous methods, achiev-
ing significant superiority to state-of-the-arts.

• We propose a hybrid feature representation using an
anchor image with shared latent space to bridge our
3D GAN with the existing 2D generator.

• We propose a pronged design for appearance/geometry
branches, and adapt a 3D reconstructor to aid the ge-
ometry branch for fine-grained details synthesis.

• We introduce an implicit blending field with two-stage
blending strategy to generate high-quality appearance.

2. Related Work
3D-aware GAN. Early approaches mainly exploit explicit
3D representations for 3D-aware image synthesis, such as
textured mesh [36,52,67], and voxels [14,19,20,46,47,91].
These works commonly suffer from low model expressive-
ness or high memory footprint. The recent NeRF [43] has
exerted tremendous momentum towards view-consistent 3D
content generation [5–7, 11, 16, 17, 26, 49, 53, 63, 77, 79,
80, 90, 91]. However, low-resolution 3D volume genera-
tion is adopted [6, 63] and compensated with 2D upsam-
pling layers [5, 16, 49, 53, 80], and limits the 3D view con-
sistency and geometry detail. Hybrid representations, e.g.,
MPIs [11, 79, 90] partially address this issue but limit the
visible range. Compared to these methods mainly focus-
ing on the face or synthetic data [23], quite a few re-
cent works [3, 22, 51, 85] explore 3D human generation
using only 2D images. They tend to utilize SMPL [39]
pose prior [3, 85], pose configuration [51] and coarse shape
prior [22] to address the challenging human geometry di-
versity. However, such priors without geometry details can-
not guarantee such generators generate faithful 3D geome-
try. Besides, the lack of view-balanced human datasets fur-
ther limits their ability to around-view rendering. In con-
trast, our approach achieves generating high-quality freely-
renderable human radiance fields with detailed geometry.
2D Human Image Generation. A large part of 2D im-
age generation works fall in conditional image genera-
tion [25, 54, 75, 76, 92] and achieves a photo-realistic level.
As to human image synthesis, a line of work focuses on
conditioning the generator with semantic map [12, 28, 87],
pose [1, 62], texture [1, 15, 61] or text [23, 28]. With the re-
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Figure 2. Our approach consists of three modules. The hybrid feature module includes anchor image and tri-plane feature generation.
The geometry module includes reconstruction prior and SDF adaptation (Sec. 4.1). Texture module includes sphere tracing based volume
rendering, texture and blending weight fields, and two-stage blending (Sec. 4.2)

cent large-scale dataset SHHQ [13], the unconditional im-
age generators [13, 29–31] achieve synthesizing appealing
enough human images that are better than concurrent 3D
ones. In the meanwhile, various downstream editing tech-
niques over faces are then extended to full-scale human edit-
ing [55, 58, 64, 65, 78]. Rather than modeling a separate la-
tent space for 3D human generator, we leverage the human
appearance priors provided by 2D human generator by shar-
ing the same latent space of a pre-trained 2D stylegan, and
by the way, upgrade the editing toolchain to 3D era.
Neural Human Modeling. Rather than classical multi-
view stereo methods that require complicated hardware,
recent implicit occupancy field-based neural methods [18,
24, 59, 60] achieve reconstructing detailed human geom-
etry with sparse or even one camera. The following
works [27,35,66] further reveal the effectiveness of the neu-
ral occupancy field in the real-time textured dynamic hu-
man reconstruction, equipped with a neural texture blend-
ing scheme. Embracing the developing of NeRF tech-
niques [8, 9, 40–42, 44, 45, 48, 69, 71, 73, 82, 86], the hu-
man shape prior augmented NeRFs achieve modeling real-
istic human bodies [32, 37, 50, 57, 89], learning animatable
avatars [34, 56, 74] and generalizing across different per-
sons [32, 70, 89] from temporal data. However, such tech-
niques can only build human models from actually captured
data, i.e., images and videos, and cannot generate novel in-
dividuals and appearances. In contrast, we learn a 3D hu-
man generator from only 2D human images and largely al-
leviate the cost of producing high-fidelity virtual humans.

A concurrent work [88] also involves the priors from
StyleGAN-human and PIFuHD while it chooses to build la-
tent space for feature planes from reconstruction models.

3. Overview

By leveraging rich priors from 2D generation and 3D re-
construction models, HumanGen enables delicate 3D hu-
man generation with high-quality geometry details and
more realistic textures. We achieve this by employing a 2D
generator to synthesize an “anchor image” with exquisite
textures, then lifting it to 3D space and utilizing a 3D re-

constructor to enhance geometry details. We briefly discuss
each step below, and provide detailed explanation in Sec. 4.
Hybrid Feature. As illustrated in Fig. 2, HumanGen first
employs a pretrained 2D generator G2D to map gaussian
noise z to w latent space and produce an 1024×512 anchor
image. To lift the anchor image to 3D space, we further
utilize another 3D generator (EG3D [5]), synthesizing a tri-
plane from w to complete the missing information. The
tri-plane is composed of three feature planes Fxy , Fxz , Fyz

which align xy, xz and yz axes, respectively. We then align
the anchor image with Fxy to guide the tri-pane to synthe-
size consistent 3D information as the anchor image.
Geometry Generation. Prior works typically learn geome-
try in low-resolution 3D space [5, 16], which produce over-
smoothed human shapes. In contrast, we utilize priors in 3D
reconstruction models [60] to enhance more detailed shape
generation. Specifically, HumanGen also represents geom-
etry with signed distance field (SDF). We employ pixel-
aligned global and local feature as well as occupancy field
in PIFuHD [60] as guidance to regress SDF values and can
therefore synthesize more detailed human geometry.
Texture Generation and Blending. HumanGen uses tex-
ture fields to decide RGB values and applies volume ren-
dering to synthesize images. However, both reconstruction
and generation priors help improve the texture quality. The
former allows HumanGen to directly generate high-res im-
ages without any superresolution [5, 16]. Specifically, the
SDF field adapted from reconstruction prior helps restrict
the sampling regions, enabling a more efficient volume ren-
dering to synthesize 512× 256 images directly. We further
incorporate the rich details from the anchor image to en-
hance the quality of rendered textures. We learn a blending
weight field and propose a two-stage blending scheme to
merge the anchor image and synthesized texture and then
introduce supervision on front and back consistency.

4. Method
4.1. Geometry Generation

Given a sampled anchor image, HumanGen first lifts
it into 3D geometry. It incorporates reconstruction pri-
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ors in the lifting to synthesize fine geometry details. We
first discuss how to extract priors from the reconstruction
model [60], then describe the way to utilize them in 3D gen-
eration.
Reconstruction Priors. We choose PIFuHD [60] to pro-
vide reconstruction prior, which can faithfully reconstruct
fine human geometry with plausible details like hairs or
wrinkles from single-view images. Given a 3D point X ∈
R3, PIFuHD projects it on the image and applies a global
and a local feature extractor to obtain the corresponding
pixel-aligned features(fg, f l). It further employs an im-
plicit function Focc : (X, fg, f l) 7→ o to map X to an
occupancy o ∈ [0, 1]. We therefore collect all the features
f = (fg, f l) and the occupancy value o as strong priors and
apply them in the geometry generation.
Prior-guided SDF Adaptation.

We choose the SDF field to represent geometry, which
has revealed better surface modelling [53, 72, 81]. Besides,
SDF representation further allows us to derive an efficient
sphere tracing to generate high-res images, which we detail
in Sec. 4.2. We employ a four-layer MLP Fsdf : (X, f) 7→ s
which predicts SDF value s given a sample point X and
PIFuHD feature f . During training, we sample surface
points Xs, where they should be 0.5 for occupancy de-
noted as: o(Xs) = 0.5. We train Fsdf to predict correct
SDF values (s(Xs) = 0) for those surface points, where
L3D SDF = ∥s(Xs)∥22. In addition to the common Eikonal
loss Leik = ∥∇s(X)∥2 − 1.0 for regularizing SDF gradi-
ents, we also add mask loss to make geometry converge.
Given a random view v, we get intersection mask Mo,v

by ray marching from the occupancy field and alpha map
Ms,v from the predicted SDF field. To get Ms,v, we vol-
ume render following [53] where density is calculated by:
σ(X) = α−1 sigmoid (−s(X)/α) and α here is a learnable
parameter .The mask loss is to minimize their difference,
where Lmask,v = ∥Mo,v − Ms,v∥22. The final geometry
loss is defined as

Lgeo = λmaskLmask,v + λ3D SDFL3D SDF + λeikLeik.
(1)

Following PIFu [59], we further train a color module that
will be further used in later texture generation. We first em-
ploy a CNN to extract image features. For a 3D point X,
we project it on the feature map and collect color feature
f c. We then train the color module Fcol. : (f

c, f) 7→ c ∈
[0, 1]3, and supervise the loss between predicted color and
GT sampled color from textured meshes.

4.2. Texture Generation and Blending.

Volume Render with Sphere Tracing. As illustrated in
Fig.4, geometry branch takes anchor image from G2D and
generates the corresponding SDF field, which allows us to
perform sphere tracing to find the surface where s(X) = 0.
Specifically, we choose an orthogonal camera model fitting
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Figure 3. Illustration of reconstruction prior and our SDF adapta-
tion scheme.(Sec. 4.1)

with the PIFuHD setting to render. For each ray, we first
query s(X0) at X0 = o + tstartd where o and d is ray
origin and direction, tstart is the pre-defined starting step.
Then it iterates to query s(Xn) at Xn = o + (tstart +∑n−1

i=0 s(Xi))d, until s(Xn) converges to 0 or iteration ex-
ceeds nmax times. We set it to be 12 empirically. With the
intersection point of each ray with geometry, we only sam-
ple 6 points uniformly around the intersection point to effi-
ciently apply volume rendering to synthesize images. The
minimal sampling number allows us to generate 512× 256
high-res images.
Texture and Blending Weight Field. With tri-plane from
hybrid feature generation, for any queried point X in 3D
space, it is projected onto each feature plane to get feature
fxy , fxz and fyz . We model a two-layer MLP following [5]
as an implicit decoder to decode color c ∈ [0, 1]3 and blend-
ing weight b ∈ [0, 1]. To make texture generation branch
geometry-aware, we also apply the PIFuHD feature f from
Sec.4.1: fdecoder : (E(fxy, fxz, fyz), f) 7→ (c, b). E de-
notes the mean operation. For convenience, we use c(X)
and b(X) to denote color and blending weight at X.
Two-Stage Blending. Our goal is to synthesize a high-
detailed texture map. While the texture field tends to pro-
duce under-detailed results, we further blend it with anchor
image to enhance details. Before volume rendering, each
sample point on rays will query its SDF s, RGB c and blend-
ing weight b. To incorporate information from anchor im-
age, sample points are also projected to anchor image to
fetch pixel-aligned RGB cuv(X). cuv(X) and c(X) are then
blended through cb(X) = c(X)·(1−b(X))+cuv(X)·b(X).

Then we render 512 × 256 raw RGB image Iraw and
blending map Imap with volume rendering. For each ray,
we get integral color C(r) and blending weight B(r) of ray
r(t) = o + td by sampling 6 sample points in an interval
surrounding its intersection point with geometry. We use
the learned σ and the sampling interval [tstart, tend] is em-
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pirically determined by convergence of α (Sec.4.1)

C(r) =

∫ ted

tst

T (t)σ(r(t))cb(r(t))dt,

B(r) =

∫ ted

tst

T (t)σ(r(t))b(r(t))dt,

T (t) = exp

(
−
∫ t

tst

σ(r(s))ds

)
.

(2)

Since points with same xy coordinates blend same color
from 2D image, from side view, the raw rendering result
tends to have ”stretching” artifact. To alleviate such artifact,
we further utilize calculated blending map to blend rendered
image Iv with warped anchor image as post-processing:
Iv = Iraw · (1− Imap) + Îanchor · Imap where Iv denotes
final image from specific rendering view v, Îanchor denotes
warped anchor image from frontal view to render view.
Consistency Supervision. To enhance 3D consistency
with the 2D anchor image, we design two consistency losses
LCS
front and LCS

back. Firstly, the anchor image I from G2D

is aligned with xy axes, so it can naturally be used to su-
pervise rendered image Ivf

from frontal camera vf view-
ing through z-axis with 2D photometric loss L2D. Be-
sides, from the frontal camera vf , we calculate the ray in-
tersection points Xinter with sphere tracing. The decoded
color c(Xinter) is supervised to be close to their pixel-
aligned RGB color cuv(Xinter) from anchor image by 3D
RGB loss. Finally, we add a regularization term Lreg on
the blending weight of Xinter to enhance the blending ef-
fect on the frontal side. The final loss is as LCS

front =
λ2D frontL2D,vf + λ3D RGBL3D RGB + λbLreg,b, where

L2D,vf = ∥Ivf
− I∥22,

L3D RGB = ∥c(Xinter)− cuv(Xinter)∥22,
Lreg,b = ∥1− b(Xinter)∥22.

(3)

To supervise consistency on the back view, we use the pre-
trained reconstruction color prior as mentioned in Sec. 4.1
to calculate consistency loss LCS

back. For rendering view vb

opposite to vf , a standard gaussian noise is added to its
spherical coordinates to get random view v′b and 2D pho-
tometric loss is calculated between volume rendered image
Iv′

b
and predicted color image Ipredv′

b
which is calculated by

query fc(Xinter) on intersection points. LCS
back is as:

LCS
back = λ2D backL2D,v′

b
,

L2D,v′
b
= ∥Iv′

b
− Ipredv′

b
∥22.

(4)

4.3. Training.

Traning Set. Current 2D human image collections typi-
cally have view distribution bias [13,83], as they focus more
on taking photos in front views. Previous method [85] use
sampling trick to alleviate this. We notice that G2D also
generates view-biased images and produces more diverse
side view and back view at a lower frequency. So we ap-
ply a human pose calibration [84] on G2D to filter images
and generate a relatively view-balanced training set of 230k
images.
GAN Training. We further use an adversarial loss to refine
whole texture generation. For previous triplane-based meth-
ods, they all assume that the learned object is in a canonical
state and thus condition discriminator on live state param-
eters like camera pose and human skeleton pose. In our
setting, we assume that images from G2D are aligned with
xy axes. However, human in image is probably not fac-
ing to front, so we condition discriminator on relative pose
of human. In order to render with same view distribution
with dataset, for image I given by G2D, we calibrate it
with PyMAF [84] to get relative human root transforma-
tion Mhuman and skeleton pose. For sampled camera view
v from dataset, it is transformed with vr = Mhuman

−1v,
where vr denotes actual rendering view. The GAN loss is

Ladv(θG, θD) = Ez∼pz,v∼pdst
[log(D(G(z, v; θG)))]

+EIr∼preal
[log(−D(Ir; θD)) + λ∥∇D(Ir; θD)∥22].

(5)

HumanGen training is separated into first stage training
for geometry branch and second stage training for texture
branch. More details can be found in the supplementary.
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Figure 5. The geometry and texture generation results of our HumanGen on various identities.
5. Experimental Results

In this section, we evaluate our HumanGen on quality of
generated texture and geometry. Metrics used are Frechet
Inception Distance (FID) [21] and Kernel Inception Dis-
tance (KID) [4]. 50k generated images are used to compute
scores. However, FID, KID cannot properly assess geom-
etry quality, so we further evaluate geometry by compar-
ing generated depth with aligned depth predicted by Mi-
DaS [33] in masked region on 5k generated samples.

5.1. Comparison

We compare our method with state-of-the-art 3D-aware
generation methods, EG3D [5], StyleSDF [53]. An-
other compared baseline is the combination of Stylegan-
human [13] and PIFu [59]. Besides, we compare
GNARF [3] implemented by ourselves with super-
resolution module to achieve same resolution. As illustrated
in Fig. 6, StyleSDF fails to generate full-body and diverse
texture and performs poor on generated geometry. EG3D
generates wrong geometry and its texture appearance lacks
view consistency, especially on the head region. GNARF
generates geometry with artifacts on body parts because of
self-intersection problem caused by imperfect pose calibra-
tion from single-view human image. 2D Generator with
PIFu generates correct full-body geometry but lacks fine
geometry details and its texture tends to be blurred. While
our HumanGen achieves better detailed full-body geometry
as well as photo-realistic texture generation. We compare
above methods on FID and KID for texture and depth for
geometry. The quantitative results in Tab. 1 demonstrate
that our method achieves the best FID and depth.

5.2. Ablation Study

Adversarial Training. We evaluate texture generation
based on the same fixed geometry branch. In Fig. 7(b), we
train a tri-plane generator to decode texture only with ad-
versarial loss (Eqn. 5) and discriminator without condition

(a)

(b)

(c)

(e)

(d)

Figure 6. Qualitative comparison. (a) StyleSDF (b) EG3D (c)
Stylegan-human + PIFu (d) GNARF (e) Ours

(base). We find it hard for the generator to maintain color
or identity consistency with the anchor image and gener-
ate high-quality texture of human part. In Fig. 7(d), with-
out relative camera pose conditioned on discriminator, the
generator tends to be confused about correct body part po-
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Table 1. Quantitative comparison of generation results.
Method FID↓ KID↓ Depth↓
EG3D [5] 21.33 0.0110 0.0395
StyleSDF [53] 36.69 0.0309 0.0493
2D-G [13]+PIFu [59] 39.20 0.0351 0.0379
GNARF [3] 24.61 0.0169 0.0408
Ours 20.97 0.0157 0.0201

sition. While our method maintains high consistency with
given anchor image and learns to generate full-body texture.
Quantitative result in Tab. 2 demonstrates that our method
achieves better score.
Consistency Supervision. Let CS denote consistency su-
pervision described in Sec. 4.2. In Fig. 8 (a), without both
CS from Eqn. 3 and Eqn. 4, the generator is prone to change
cloth type or color and is not consistent with anchor image.
In (c) and (e), without frontal CS or without back CS,
the texture generation on unsupervised side is prone to dis-
obey color or identity consistency with supervised side. Our
full method maintains consistency with anchor image while
achieving the best self-consistency. As in Tab. 2, our full
method achieves better score.
Two-Stage Blending. In Fig. 9 (a), without both blending
scheme, the texture generation depends completely on de-
coded RGB, which is prone to be blurred and cannot recover
high-fidelity texture consistent with anchor image. The
second-stage image blending depends on learned first-stage
per-sample-point blending. As illustrated in (c), without
image blending as second-stage post-processing, the tex-
ture will have ”stretching” artifacts because sample points
sharing the same xy-coordinates are blended with the same
pixel color from anchor image. In our full method, per-
sample-point blending enables recovering high-frequency
details and image blending alleviates artifacts of first-stage
blending. Quantitative results can refer to Tab. 2.
View Distribution of Training Set. As for evaluation
of view distribution of training set, we further train our
full method on another synthesised view-biased training set
without data from back views. As shown in Fig. 10, without
adversarial loss on back 180◦ region, the texture generation
on back tends to degrade to predicted color prior from re-
construction model which is prone to be blurred and has
obvious color difference with frontal texture. Quantitative
results can refer to Tab. 2.
Analysis on Geometry Adaptation. We conduct an anal-
ysis on geometry adaptation with reconstruction prior. In
Fig. 11 (b), without PIFuHD [60] feature, we directly adapt
a tri-plane generator with losses from Eqn. 1, but it fails
to converge. In (c)&(d), we respectively adapt an MLP to
output density and SDF. Geometry in SDF representation is
more smooth and has clear surface level set. As shown in
Tab. 3, with better representation of SDF, our full method
achieves the lowest difference with depth from PIFuHD.

Table 2. Quantitative evaluation of texturing generation.
Method FID↓ KID↓
base 31.07 0.0251

w/o both CS 34.52 0.0246
w/o frontal CS 25.75 0.0193
w/o back CS 21.69 0.0137

w/o both blending scheme 48.37 0.0436
w/o image blending 25.94 0.0193

full (view-biased dataset) 21.81 0.0161
full 20.97 0.0157

Table 3. Quantitative evaluation of geometry generation.
Method Depth Diff ↓
w/o PIFuHD feat. 0.0383
w/o SDF 0.0183
Full 0.0145

34 41 43 53 67 75
79

25

53

(a) (b) (c) (d) (e)
Figure 7. Qualitative evaluation of texture generation. (a) Anchor
image. (b) base; (c)&(e) Ours (d) w/o relative cam pose condition.

(f)

02

75

19

22

35

46

(a) (b) (c) (d) (e)

24, 
124, 
196

Figure 8. Qualitative evaluation of texture generation. (a) w/o both
CS. (b)&(d)&(f) Ours ; (c) w/o frontal CS; (e) w/o back CS.

Application. Our method is naturally compatible with ex-
isting 2D editing methods. As shown in Fig. 12(a), with
style mixing on 2D, we are able to achieve 3D results with
given static pose. In Fig. 12(b), real images can be inverted
to latent space to generate 3D results. In Fig. 12(c), by
editing in latent space, the length change of upper or lower
clothes can be seamlessly upgraded to 3D. In Fig. 12(d), 2D
text-guided generation can be extended to 3D.
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(a) (b) (c) (d)
Figure 9. Qualitative evaluation of texture generation. (a) w/o two-
stage blending scheme. (b)&(d) Ours; (c) w/o image blending.

(a) (b) (c) (d)

Figure 10. Qualitative evaluation of view-distribution of training
set. (a)&(c) results on view-biased training set; (b)&(d) Ours.

(a) (b) (c) (d)
Figure 11. Qualitative evaluation of human geometry generation.
(a) Anchor images. (b) w/o PIFuHD feature; (c) w/o SDF; (d) Full.

5.3. Limitation and Discussion

Although HumanGen achieves generating human with
detailed geometry and 360◦ more realistic rendering, it still
has limitations. First, the adopted view-balanced training
set is essentially generated from a view-biased 2D genera-
tor, so the bias still potentially exists on uneven generation
quality among different poses and views. It is meaningful to
have a real dataset with balanced view distribution and data
of same identities. Second, with rich explicit priors in our
method, it limits the out-of-domain generation ability of our
method. E.g. the pose editing is limited to the pose space of
Stylegan-human and does not support continuous control.
It’s promising to include motion prior into current frame-
work for high-quality deformable generation, but requiring
much more diverse training data. Furthermore, certain arti-
facts like incorrect texture and blur still exist in non-frontal
regions due to the imperfect back-view data and losses im-
balance. Generating 3D humans as realistic as the 2D gen-
eration is still challenging. We also care much about the

A lady is wearing a 
blue blouse and 
black pants. She has 
black hair.

(a) Pose editing with 2D style mixing

(b) Real image Inverse

(c) Editing with latent space

(d) Generation with text guiding
Figure 12. Various 3D applications of HumanGen.

ethical issue. HumanGen should not be used to create fake
results and all our results are carefully chosen impartially.

6. Conclusion
We have presented a novel 3D human generation scheme

with detailed geometry and 360◦ realistic free-view render-
ing. Our key idea is to introduce the concept of “anchor
image” to aid the human generation using various human
priors explicitly. Our hybrid feature representation effi-
ciently bridges the latent space of HumanGen with the exist-
ing 2D generator. Our geometry adapting scheme enables
fine-grained details synthesis from 3D human reconstruc-
tion prior, while our two-stage blending scheme further en-
codes the rich texture information in the anchor image for
appearance generation. Our experimental results demon-
strate the effectiveness of HumanGen for state-of-the-art
3D human generation. Various 3D applications of Human-
Gen further demonstrate its compatibility to existing off-
the-shelf 2D editing toolbox based on latent disentangle-
ment. With the above unique ability, we believe that our
approach is a critical step for high-quality 3D human gen-
eration, with various potential applications in VR/AR.
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