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Abstract

Convenient 4D modeling of human-object interactions
is essential for numerous applications. However, monoc-
ular tracking and rendering of complex interaction scenar-
ios remain challenging. In this paper, we propose Instant-
NVR, a neural approach for instant volumetric human-
object tracking and rendering using a single RGBD cam-
era. It bridges traditional non-rigid tracking with recent in-
stant radiance field techniques via a multi-thread tracking-
rendering mechanism. In the tracking front-end, we adopt
a robust human-object capture scheme to provide suffi-
cient motion priors. We further introduce a separated in-
stant neural representation with a novel hybrid deforma-
tion module for the interacting scene. We also provide an
on-the-fly reconstruction scheme of the dynamic/static ra-
diance fields via efficient motion-prior searching. More-
over, we introduce an online key frame selection scheme
and a rendering-aware refinement strategy to significantly
improve the appearance details for online novel-view syn-
thesis. Extensive experiments demonstrate the effective-
ness and efficiency of our approach for the instant gen-
eration of human-object radiance fields on the fly, no-
tably achieving real-time photo-realistic novel view synthe-
sis under complex human-object interactions. Project page:
https://nowheretrix.github.io/Instant-NVR/.

1. Introduction
The accurate tracking and photo-realistic rendering for

human-object interactions are critical for numerous human-
centric applications like telepresence, tele-education or im-
mersive experience in VR/AR. However, a convenient solu-
tion from monocular input, especially for on-the-fly setting,
remains extremely challenging in the vision community.

Early high-end solutions [6, 9, 13, 18] require dense
cameras for high-fidelity reconstruction. Recent ap-
proaches [11, 12, 17, 46, 47, 59, 63] need less RGB or
RGBD video inputs (from 3 to 8 views) by using volu-
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Figure 1. Our Instant-NVR adopts a separated instant neural rep-
resentation to achieve photo-realistic rendering for human-object
interacting scenarios.

metric tracking techniques [19, 32]. Yet, the multi-view
setting is still undesirable for consumer-level daily usage.
Differently, the monocular method with a single handi-
est commercial RGBD camera is more practical and at-
tractive. For monocular human-object modeling, most ap-
proaches [2, 15, 53, 57, 65, 66] track the rigid and skeletal
motions of object and human using a pre-scanned template
or parametric model. Besides, the monocular volumetric
methods [32,41,43,58,64] obtain detailed geometry through
depth fusion, while the recent advance [44] further extends
it into the human-object setting. However, they fail to gen-
erate realistic appearance results, restricted by the limited
geometry resolution.

Recent neural rendering advances, represented by Neural
Radiance Fields (NeRF) [29], have recently enabled photo-
realistic rendering with dense-view supervision. Notably,
some recent dynamic variants of NeRF [21, 28, 50, 51, 55,
60, 67] obtain the compelling novel-view synthesis of hu-
man activities even under monocular capturing. However,
they rely on tedious and time-consuming per-scene training
to fuse the temporal observations into the canonical space,
thus unsuitable for on-the-fly usage like telepresence. Only
recently, Instant-NGP [30] enables fast radiance field gener-
ation in seconds, bringing the possibility for on-the-fly ra-
diance field modeling. Yet, the original Instant-NGP can
only handle static scenes. Few researchers explore the on-
the-fly neural rendering strategies for human-object interac-
tions, especially for monocular setting.
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In this paper, we present Instant-NVR – an instant neural
volumetric rendering system for human-object interacting
scenes using a single RGBD camera. As shown in Fig. 1,
Instant-NVR enables instant photo-realistic novel view syn-
thesis via on-the-fly generation of the radiance fields for
both the rigid object and dynamic human. Our key idea
is to bridge the traditional volumetric non-rigid tracking
with instant radiance field techniques. Analogous to the
tracking-mapping design in SLAM, we adopt a multi-thread
and tracking-rendering mechanism. The tracking front-end
provides online motion estimations of both the performer
and object, while the rendering back-end reconstructs the
radiance fields of the interaction scene to provide instant
novel view synthesis with photo-realism.

For the tracking front-end, we first utilize off-the-shelf
instant segmentation to distinguish the human and object
from the input RGBD stream. Then, we adopt an efficient
non-rigid tracking scheme for both the performer and rigid
object, where we adopt both embedded deformation [45]
and SMPL [27] to model human motions. For the rendering
back-end, inspired by Instant-NGP [30] we adopt a separate
instant neural representation. Specifically, both the dynamic
performer and static object are represented as implicit radi-
ance fields with multi-scale feature hashing in the canonical
space and share volumetric rendering for novel view syn-
thesis. For the dynamic human, we further introduce a hy-
brid deformation module to efficiently utilize the non-rigid
motion priors. Then, we modify the training process of ra-
diance fields into a key-frame based setting, so as to enable
graduate and on-the-fly optimization of the radiance fields
within the rendering thread. For the dynamic one, we fur-
ther propose to accelerate our hybrid deform module with
a hierarchical and GPU-friendly strategy for motion-prior
searching. Yet we observe that naively selecting key-frames
with fixed time intervals will cause non-evenly distribution
of the captured regions of the dynamic scene. It results
in unbalanced radiance field optimization and severe ap-
pearance artifacts during free-view rendering. To that end,
we propose an online key-frame selection scheme with a
rendering-aware refinement strategy. It jointly considers the
visibility and motion distribution across the selected key-
frames, achieving real-time and photo-realistic novel-view
synthesis for human-object interactions.

To summarize, our main contributions include:

• We present the first instant neural rendering system un-
der human-object interactions from an RGBD sensor.

• We introduce an on-the-fly reconstruction scheme for
dynamic/static radiance fields using the motion priors
through a tracking-rendering mechanism.

• We introduce an online key frame selection scheme
and a rendering-aware refinement strategy to signifi-
cantly improve the online novel-view synthesis.

2. Related Work
Traditional Human Volumetric Capture. Human volu-
metric capture and reconstruction have been widely investi-
gated to achieve detailed geometry reconstruction and accu-
rate tracking. A series of works are proposed to make vol-
umetric fusion more robust with SIFT features [16], multi-
view systems [11, 12], scene flow [54], human articulated
skeleton prior [62, 64], extra IMU sensors [70], data-driven
prior [43, 44], learned correspondences [5], neural defor-
mation graph [4, 23] or implicit function [17, 63]. Starting
from the pioneering work DynamicFusion [32] which ben-
efits from the GPU solvers, the high-end solutions [11, 12]
rely on the multi-view camera system and complex calibra-
tion. VolumeDeform [16] combines depth-based correspon-
dences with sparse SIFT features to reduce drift. KillingFu-
sion [41] and SobolevFusion [42] support topology changes
via more constraints on the motion fields. Thanks to the hu-
man parametric model [27], DoubleFusion [64] proposes
the two-layer representation to capture scene more robustly.
UnstructuredFusion [59] extends it to an unstructured multi-
view setup. RobustFusion [44] further handles the chal-
lenging human-object interaction scenarios. Besides, Func-
tion4d [63] and NeuralHOFusion [17] marry the non-rigid-
tracking with implicit modeling. However, these methods
are dedicated to getting detailed geometry without focus-
ing on high-quality texture and most methods can not han-
dle human-object interactions. Comparably, our approach
bridges the traditional volumetric capture and neural ren-
dering advances, achieving photo-realistic rendering results
under human-object interactions.
Static Neural Scene Representations. Coordinates-based
neural scene representations in static scenes produce im-
pressive novel view synthesis results and show huge po-
tential. Various data representations are adopted to ob-
tain better performance and characteristics, such as point-
clouds [1, 48, 56], voxels [26], textured meshes [25, 49],
occupancy [33, 40] or SDF [34, 52]. Meanwhile, Since
the vanilla NeRF which requires hours of training is time-
consuming, some NeRF extensions [30, 39, 61] are pro-
posed to accelerate both training and rendering. Plenoc-
trees [61] utilizes the octree to skip the empty regions.
Plenoxels [39] parameterizes the encoding using spherical
harmonics on the explicit 3D volume. Instant-NGP [30] uti-
lizes the multi-scale feature hashing and TCNN to speed up.
Though its rendering speed seems possible to train on-the-
fly, they do not have a specific design for streaming input
and only can recover static scenes. Comparably, our Instant-
NVR achieves on-the-fly efficiency based on the Instant-
NGP [30].
Dynamic Neural Scene Representations. Novel view syn-
thesis in dynamic scenes is an important research prob-
lem. D-NeRF [38] and Non-rigid NeRF [50] leverage
the displacement field to represent the motion while Ner-

596



Figure 2. Our approach consists of two stages. The tracking front-end (Sec. 4.1) captures human and object motions, while the rendering
back-end (Sec. 4.2) separately reconstructs the human-object radiance fields on-the-fly, for instant novel view synthesis with photo-realism.

fies [35] and HyperNeRF [36] use the SE(3) field. More-
over, some researchers focus on human reconstruction and
utilize the human prior. Neuralbody anchors latent code
on the SMPL [27] vertices. Humannerf [68] combines
the SMPL warping and deformation net to construct the
motion field. TAVA [20] learns the skinning weight for
joints via root-finding and can generalize to novel pose. De-
VRF [24] incorporates 4D-motion volume into the NeRF
pipeline. NDR [7] defines a bijective function which natu-
rally compatible with the cycle consistency. However, most
methods rely on multi-view camera input and the training is
costly. Comparably, our Instant-NVR bridges the non-rigid
volumetric capture with the instant radiance field training,
achieving photo-realistic rendering results from monocular
RGBD stream.

3. Overview

From monocular RGBD input, Instant-NVR bridges the
real-time non-rigid capture with instant neural rendering, al-
lowing for high-quality novel-view synthesis under human-
object interactions. As illustrated in Fig. 2, our system
consists of two cooperating threads: a tracking front-end
(Sec. 4.1) and a neural rendering back-end (Sec. 4.2).

Tracking Front-end. We extend the traditional volumet-
ric tracking [32, 59, 64] into a human-object setting. For
non-rigid human capture, we adopt the embedded deforma-
tion(ED) [45] and SMPL [27] as motion representations.
For object, we directly track its rigid motions via the Itera-
tive Closest Point(ICP) algorithm. This thread provides ac-
curate per-frame human-object motion priors, enabling the
integration of all the radiance information into the global
canonical space. Note that the reconstructed volumetric ge-
ometry suffers from discrete and low-resolution artifacts.

Thus, we only transmit the motion priors with the RGBD
images to the rendering thread and discard the explicit vol-
umetric geometry prior.

Neural Rendering Back-end. We extend instant radiance
fields [30] to the monocular and dynamic human-centric
scenes, where we maintain the canonical instant radiance
fields for both dynamic human and rigid objects separately.
We introduce a lightweight pose-conditioned deformation
module to learn the residual motion to refine the initial
warping provided by motion priors. To enable on-the-fly
radiance field generation and rendering, we adapt the train-
ing process into a key frame setting with the aid of efficient
motion-prior caching. We introduce a key frame selection
method to jointly consider the diversity of capturing view
and human pose, visibility maps, and the input image qual-
ity. We further adaptively refine the appearance output in
the rendering view with more analogous spatial-temporal
capturing views. Note that our rendering thread reconstructs
the radiance fields online to provide instant novel view syn-
thesis with photo realism.

4. Method
4.1. Tracking Front-end

Human Non-rigid Tracking. We follow the traditional
volumetric capture methods [44, 64] to track human non-
rigid motions. Specifically, we parameterize human non-
rigid motions as an embedded deformation graph W =
{dqi, xi}, where xi is the coordinates of the sampled ED
node in canonical space and dqi is the dual quaternions rep-
resenting the corresponding rigid transformation in SE(3)
space. Each 3D point vc in the canonical space can be
wrapped into the live space using an efficient and accu-
rate motion interpolation method Dual-Quaternion Blend-
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Figure 3. Our Neural Rendering back-end adopts a separated neural representation. Left are the input RGBD images with motions. Middle
is a separate rendering engine that includes a hybrid deformation module and volumetric rendering. Right are rendering results.

ing (DQB):

DQB(vc) =
∑

i∈N (vc)

w(xi, vc)dqi,

ṽc = SE3(DQB(vc))vc.

(1)

where N (vc) is a set of neighboring ED nodes of vc,
w(xi, vc) is the influence weight of the i − th node xi to
vc and formulated as w(xi, vc) = exp(−‖vc − xi‖22 /r2).
r is the influence radius (0.1 in our setting). Note that the
ED-only-based human tracking is fragile since the non-rigid
ICP often fails at fast articulated human motions due to
losing correspondence. Therefore, we also introduce the
SMPL inner body with shape parameters β and pose param-
eters θ as the skeleton prior and utilize θ with the skinning
weight to wrap 3D point vc, which further constrain the ED
motion tracking within a reasonable motion scale. Please
refer to [64] for details about the ED-sampling and double
layer motion representation.

To calculate the final ED-based motion, we jointly opti-
mize the skeleton pose θ and ED non-rigid motion field W
as follows:

E(W, θ) =λdataEdata + λbindEbind + λregEreg+

λpriorEprior + λposeEpose + λinterEinter.
(2)

The data term Edata measures the point-to-plane distances
between the deformed model and the current input depth
map:

Edata =
∑

(vc,u)∈P

ψ(nT
u (ṽc − u)), (3)

where u is a sampled point in the depth map, nu is its
normal, and vc denotes its closest point on the fused sur-
face. Pi is the set of correspondences found via a projec-
tive local search [32]. Besides, the binding term Ebind con-
strains both skeleton and final ED motions to be consistent

Figure 4. Illustration of our online refinement strategy.

while the geometry regularity term Ereg produces locally
as-rigid-as-possible (ARAP) motions to prevent overfitting
to depth inputs. These two terms are detailed in [14, 64].
The pose prior term Eprior from [3] penalizes the unnatural
poses. Both the pose term Epose and interaction term Einter

are form [44] to encourage natural motion capture during
human-object interactions. Note that the optimization non-
linear least squares problem in Eqn. 2 is solved using LM
method with the PCG solver on GPU [12, 14].
Object Rigid Tracking. For rigid tracking of objects, we
follow [44] to optimize the rigid motions and transform
them to camera pose T t under the ICP framework, in which
we fuse the depth map to a canonical TSDF volume to main-
tain the stable correspondence for robust object tracking.

4.2. Neural Rendering Back-end

To enable efficient photo-realistic neural rendering of the
interaction scenes, our neural rendering back-end adopts a
separated instant neural representation based on the on-the-
fly key frame selection strategy.
Separated instant neural representation. We design the
instant neural representation to reconstruct the human and
object separately. For object branch, given the RGBD im-
age It and Dt with the camera pose T t as the training set,
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we leverage the original Instant-NGP [30] to extract the 3D
point voc features on the hash table Ho and then feed them
into the geometry MLP Eo

g and color MLP Eo
c to acquire

the density and color.
For dynamic human, in contrast to recent ap-

proaches [35,36,38,50] which can’t handle long sequences
via pure MLP and human NeRFs [37, 55, 69] that heavily
rely on SMPL [27] which do not align well with the surface
and easily cause artifacts, we introduce a hybrid deforma-
tion module to efficiently leverage the motion priors. The
explicit non-rigid warping and an implicit pose-conditioned
deformation net jointly aggregate the corresponding point
information in the canonical space.

Specifically, given this human non-rigid motion {dqti},
SMPL pose ~θt and a sampling point vhl at frame t, we con-
struct the warping function to map vhl back to the canonical
space vht . We calculate the deformed ED nodes xti = dqtixi,
and then the point vhl in the influence radius r of these nodes
can be warped into canonical surface via neighboring ED
nodes weight blending:

vht = SE3(DQB−1(vhl ))v
h
l . (4)

To reduce the warping error and improve the rendering qual-
ity, we further integrate pose-conditioned deformation net
here to correct the misalignment, where we concatenate the
encoded vht via hash-encoding with the human pose ~θt and
predict the residual displacement δvh through an MLP. Fi-
nally, we feed vhc = vht + δvh into the canonical hash-
encoding Hh, geometry as well as color MLPs Eh

g ,E
h
c .

On-the-fly Radiance Fields. To ensure accurate tracking,
hundreds of ED-nodes are maintained to query live points
neighbors which is time-consuming and lead to bottlenecks.
The time consumption is O(n) even if we query a small
number of neighbors for each sampled point, in which n
is the number of ED nodes. To enhance on-the-fly effi-
ciency, we introduce a look-up-table-based fast search strat-
egy here to speed up. Specifically, we only initialize the
canonical KNN(k-nearest-neighbors) field in the beginning,
whose resolution is 5123, and each voxel saves s neighbor-
ing ED nodes index(4 in our setting). We then concatenate
non-rigid motions in each frame to form a look-up table.
At frame t, for a voxel with index k and coordinates vk in
the canonical, we warp it via Eqn. 1 to the live space and
obtain its corresponding voxel index f . We save the canon-
ical index k in live voxel f . Afterward, for each sampling
point, we can acquire the live space index f and obtain the
canonical index k. k links the 4 neighbor ED nodes in-
dex. Offsetting the index to frame t on the look-up-table,
we can acquire the corresponding motions and calculate the
blending weight as well as warped point via DQB in O(1)
manner. In addition, we are able to construct the live KNN
field for each voxel inO(1) time by utilizing custom CUDA
kernels.

Online Key Frame Selection. To achieve online perfor-
mance and high quality rendering, we choose key frames
to organize our neural rendering training dataset. Before
choosing, we discard blurry RGB frames caused by fast
motion based on the blurriness measure [10]. Besides, we
observe that naively selecting key-frames with fixed time
intervals brings the time-related details but causes the non-
evenly distribution of the captured regions. Inspired by
[22, 31], we introduce a key frame selection scheme here to
keep the diversity of motion distribution and complement
visibility. Specifically, we formulate the visibility map for
each ED node xti = (x′, y′, z′) in frame t as follows:

sti =

{
1, if |z′ −Dt(π(xti))| < ε
0, othersize

, (5)

where π(·) denotes the projection matrix, Dt(·) represents
the depth value of the corresponding pixel at frame t, ε is
the visibility degree (0.01 in our setting). we continue to
define the similarity for two frames:

Eh(t1, t2) = ~βpose| ~θt1 − ~θt2 |2 + βvis
∑
i

st1i ⊕ s
t2
i +

βh|t1 − t2|2,
(6)

where ⊕ is the xor operation and t1, t2 are frame indexes.
For an object with the pose T t which includes rotation

Rt and translation ~dt, we define the similarity as follows:

Eo(t1, t2) = βd‖ ~dt1 − ~dt2‖22 + βo|t1 − t2|2, (7)

Furthermore, we define γ to determine the diversity of
the spatial pool. At the start time, the pool is empty and
imported the first frame. Once the similarity of each two
among the latest frame received from tracking and frame(s)
in the pool is greater than γ, we push this frame to the pool.
When the pool capacity reaches its peak (100 in our setting),
we will continually update the pool using the new frame
by removing the frame with the biggest similarity. In this
manner, our spatial pool constantly updates in all frames.

To achieve photo-realistic novel-view synthesis, our
Instant-NVR further refines the rendering view via train-
ing short iterations on the carefully selected frames in a
spatial-temporal pool. The spatial-temporal pool includes
m frames from the spatial pool, which have the most simi-
larity with the rendering view and m latest frames received
from the front-end. Our selection strategy ensures high-
quality rendering without losing temporal detail.

4.3. Implementation Details

To train the dynamic NeRF under human-object interac-
tions, we first apply the semantic segmentation MIVOS [8]
to decouple the scene and obtain the human and object
masks separately. To assemble human and object in a novel
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Figure 5. The rendering results of Instant-NVR on various interaction sequences, including “driving a balance car”,“shaking a bag”, and
“playing a water gun”.

view, we additionally render the depth maps and then com-
bine the RGB images according to the depth occlusion. We
implement our entire pipeline on GPU based on the Instant-
NGP [30] using two Nvidia GeForce RTX3090 GPU. One
GPU for the tracking front-end(14 GB memory consump-
tion) and another for the neural rendering(15 GB for human
branch and 4 GB for object). For deformation net, the input
is the 32-dim hash feature and the 72-dim pose. The hidden
layer is 4 and hidden dimension is 128. For key frame se-
lection, we use the bigger weight for the joint rotation of the
torso to domain the human pose diversity, specifically, for
~βpose, we set each torso weight βpose(torso) = 0.1 and each

limbs weight as 0.02. Besides, we use the following empiri-
cally determined parameters: βvis = 0.01, βh = 0.02, βd =
1.0, βo = 0.02, γ = 2.5, λdata = 1.0, λbind = 1.0, λreg =
4.0, λprior = 0.01, λpose = 0.02, λinter = 1.0. For effi-
ciency, we choose m = 10 in the spatial-temporal pool. We
use the photometric loss and depth loss to supervise human
NeRF and object NeRF separately as follows:

Lcolor =
∑
r∈R
‖M(r)(Ĉ(r)−C(r))‖2,

Ldepth =
∑
r∈R
‖M(r)(D̂(r)−D(r))‖1

(8)

where M(r) is human or object mask.

5. Experimental Results

In this section, we compare the state-of-the-art methods
and evaluate Instant-NVR on various challenging human-
object interaction scenarios. Besides, various rendering re-
sults of Instant-NVR are shown in Fig. 5, such as driving
a balance car, shaking a bag and playing with a water gun.
Please also kindly refer to our video.

5.1. Comparison

We compare Instant-NVR against the fusion-based
methods RobustFusion [44], NeuralHOFusion [17] and
NeRF-based methods NeuralBody [37], HumanNerf [68],
both in efficiency and rendering quality. For comparison
with fusion-based methods, as illustrated in Fig. 6 (b), Ro-
bustFusion [44] generates blurry appearance results, which
are restricted by the limited geometry resolution. For a fair
comparison, NeuralHOFusion [17] is modified to a single
view setting and suffers from artifacts as shown in Fig. 6
(c). For NeRF-based methods, we employ the RGBD input
to estimate the SMPL [27] as their prior and adopt RGBD
loss terms. Both NeuralBody [37] and HumanNerf [68]
give erroneous and blurry rendering results in the monoc-
ular setting (Fig. 6 (d-e)), which rely heavily on SMPL [27]
and can not handle human-object interactions. In addi-
tion, training in these methods is time-consuming and novel
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Figure 6. Qualitative comparison with fusion-based methods and NeRF-based methods. (a) Reference view. (b) RobustFusion [44] (c)
NeuralHOFusion [17] (d) NeuralBody [37] (e) HumanNerf [68] (f) Ours.
view synthesis remains slow. In contrast, our Instant-NVR
achieves more detailed and photo-realistic rendering results
under human-object interactions, as shown in Fig. 6 (f).
The quantitative results in Tab. 1 also demonstrate that our
approach can achieve consistently better rendering quality
and achieve efficient training as well as rendering speed
to support on-the-fly performance. Note that both Neural-
Body [37] and HumanNerf [68] take several hours to train,
while training for our method is online.

Table 1. Comparison against fusion and NeRF-based methods.
Method PSNR↑ SSIM ↑ Rendering Time↓
RobustFusion [44] 20.59 0.935 0.123s
NeuralHOFusion [17] 21.09 0.942 0.151s
NeuralBody [37] 19.71 0.928 2.420s
HumanNerf [68] 18.68 0.892 5.103s
Ours 27.81 0.976 0.023s

5.2. Evaluation

Online Human rendering. As shown in Fig. 7 (b), per-
vertex texture extracted from the fused albedo volume [14]
is blurry. Naively selecting key-frames with fixed time in-
tervals generates noising rendering results in Fig. 7 (c) due
to the non-evenly distribution of the captured regions. In
contrast, our online key frame selection strategy based on
the diversity of motion distribution and complement visibil-
ity can achieve much clearer rendering results, as shown in
Fig. 7 (d). To boost the rendering quality, the further refine-
ment scheme can help us to achieve more photo-realistic
rendering results, as shown in Fig. 7 (e). As for quantitative
analysis, we evaluate the rendering quality in Tab. 2, which
highlights the contributions of each component.
Online Object Rendering. As for the evaluation of online
object rendering in Fig. 8, we can observe that per-vertex
texture failed to generate high-quality appearance which is

Figure 7. Quantitative evaluation of Online Human Rendering. (a)
Input image; (b) Per-vertex texture; (c) Key frame selection using
fixed interval; (c) Key frame selection w/o refinement; (d) Key
frame selection w refinement.

Table 2. Quantitative evaluation of Online Human Rendering.
Method PSNR ↑ SSIM ↑ MAE ↓
Per-vertex texture 19.710 0.902 3.176
Key frame selection using fixed interval 23.071 0.922 1.571
Key frame selection w/o refinement 25.768 0.949 1.229
Key frame selection w refinement 28.255 0.972 0.534

restricted by the limited geometry resolution. Moreover,
naively selecting key-frames with fixed time interval brings
the noises. Fig. 8 (d) shows that applying our key frame se-
lection strategy without refinement is still unclear. In con-
trast, we can achieve the best rendering results with our full
training pipeline. Moreover, the quantitative evaluation is
as demonstrated in Tab. 3, in which our full pipeline with
the online key frame selection and rendering refinement
achieves the highest accuracy.
Run-time Evaluation. In Tab. 4, we list the run-time of
each step in our pipeline, including both the tracking front-
end and the neural rendering back-end. For tracking front-
end, the rigid tracking of the object takes 40ms while the hu-
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Figure 8. Quantitative evaluation of Online Object Rendering. (a)
Input image; (b) Per-vertex texture; (c) Key frame selection using
fixed interval; (c) Key frame selection w/o refinement ; (d) Key
frame selection w refinement.

Table 3. Quantitative evaluation of Online Object Rendering.
Method PSNR ↑ SSIM ↑ MAE ↓
Per-vertex texture 21.253 0.944 4.431
Key frame selection using fixed interval 25.248 0.954 1.043
Key frame selection w/o refinement 26.747 0.965 0.931
Key frame selection w refinement 28.826 0.977 0.615

Table 4. Quantitative evaluation of Run-time
Procedure Time
rigid tracking 40ms
non-rigid-tracking 62ms
deformation net 5ms
training w/o fast search 205.53ms
training w fast search 17.95ms
rendering 23.38ms

Figure 9. Evaluation of the hybrid deformation module. (a), (d)
are the reference views. (b), (e) are the results with only deform
block. (c),(f) use our deform block with the aid of deform net.

man non-rigid tracking takes 62ms. Besides, the deforma-
tion net costs 5ms. For rendering back-end, training with-
out fast search strategy takes 205.53ms while using our fast
search scheme, the training time reduces to 17.95ms. Be-
sides, we use 15.38ms for the rendering process.

Hybrid Deformation Module Evaluation. We conduct
further evaluation of our hybrid deformation module to
demonstrate its advantages. As shown in Fig. 9 (b)(e), em-
ploying only the explicit deform block results in misalign-
ment between the ground truth and warped space, leading
to blurry images and erroneous silhouettes. Conversely, by
utilizing the deform block with the aid of implicit deform
net to learn the residual displacement in Fig. 9 (c)(f), the
rendering results outcome exhibit superior alignment and
significantly enhance texture.

5.3. Limitation

As the first instant neural rendering system from an
RGBD sensor that performs real-time and photo-realistic
novel-view synthesis under human-object interactions, the
proposed Instant-NVR still has some limitations. First, al-
though we adopt the hybrid deformation module to effi-
ciently utilize the non-rigid motion priors since our method
is in monocular RGB-D camera setting, non-rigid fusion
fails when facing the fast movement and leads to inaccu-
rate priors which affect the on-the-fly rendering. Due to
limited resolution and inherent noise of the depth input,
our method cannot reconstruct the extremely fine details
of the performer, such as the fingers. Data-driven tech-
niques on different human parts will be critical for such
problem. Besides, Instant-NVR is committed to render-
ing photo-realistic results on-the-fly. Therefore, we choose
the density field as geometry representation, analogous to
Instant-NGP [30]. It is promising to integrate other SDF
representations [7, 52], which can generate a more delicate
geometry. Furthermore, to ensure efficient transmission be-
tween tracking front-end and rendering back-end, we dis-
card the volumetric explicit geometry priors produced by
the tracking step. It is an interesting direction to explore
more complementary between tracking and rendering.

6. Conclusion

We have presented a practical neural tracking and ren-
dering approach for human-object interaction scenes using
a single RGBD camera. By bridging traditional non-rigid
tracking with recent instant radiance field techniques, our
system achieves a photo-realistic free-viewing experience
for human-object scenes on the fly. Our non-rigid track-
ing robustly provides sufficient motion priors for both the
performer and the object. Our separated instant neural rep-
resentation with hybrid deformation and efficient motion-
prior searching enables the on-the-fly reconstruction of both
the dynamic and static radiance fields. Our online key frame
selection with a rendering-aware refinement strategy further
provides a more vivid and detailed novel-view synthesis for
our online setting. Our experimental results demonstrate
the effectiveness of Instant-NVR for the instant generation
of dynamic radiance fields and photo-realistic novel view
synthesis of human-object interactions in real time. We be-
lieve that our approach is a critical step to virtual but realis-
tic teleport human-object interactions, with many potential
applications like consumer-level telepresence in VR/AR.
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