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Figure 1. InstantAvatar: we propose a system that can reconstruct animatable high-fidelity human avatars from a monocular video within
60 seconds, providing poses and masks, and can animate and render the model at 15 FPS at 540 × 540 resolution. To achieve this we
integrate accelerated neural radiance fields, originally designed for rigid scenes, with a fast correspondence search module for articulation.
An efficient empty-space skipping strategy further speeds up training and inference, enabling near-instant avatar learning.

Abstract

In this paper, we take one step further towards real-world
applicability of monocular neural avatar reconstruction by
contributing InstantAvatar, a system that can reconstruct
human avatars from a monocular video within seconds, and
these avatars can be animated and rendered at an inter-
active rate. To achieve this efficiency we propose a care-
fully designed and engineered system, that leverages emerg-
ing acceleration structures for neural fields, in combination
with an efficient empty-space skipping strategy for dynamic
scenes. We also contribute an efficient implementation that
we will make available for research purposes. Compared
to existing methods, InstantAvatar converges 130× faster
and can be trained in minutes instead of hours. It achieves
comparable or even better reconstruction quality and novel
pose synthesis results. When given the same time budget,
our method significantly outperforms SoTA methods. In-
stantAvatar can yield acceptable visual quality in as little
as 10 seconds training time. For code and more demo re-
sults, please refer to https://ait.ethz.ch/InstantAvatar.

*Equal contribution.
†Corresponding author

1. Introduction

Creating high-fidelity digital humans is important
for many applications including immersive telepresence,
AR/VR, 3D graphics, and the emerging metaverse. Cur-
rently acquiring personalized avatars is an involved process
that typically requires the use of calibrated multi-camera
systems and incurs significant computational cost. In this
paper, we embark on the quest to build a system for the
learning of 3D virtual humans from monocular video alone
that is lightweight enough to be widely deployable and fast
enough to allow for walk-up and use scenarios.

The emergence of powerful neural fields has enabled a
number of methods for the reconstruction of animatable
avatars from monocular videos of moving humans [1, 2, 6,
49, 62]. These methods typically model human shape and
appearance in a pose-independent canonical space.

To reconstruct the model from images that depict hu-
mans in different poses, such methods must use anima-
tion (e.g. skinning) and rendering algorithms, to deform
and render the model into posed space in a differentiable
way. This mapping between posed and canonical space al-
lows optimization of network weights by minimizing the
difference between the generated pixel values and real im-
ages. Especially methods that leverage neural radiance
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fields (NeRFs) [40] as the canonical model has demon-
strated high-fidelity avatar reconstruction results. However,
due to the dual need for differentiable deformation mod-
ules and for volume rendering, these models require hours
of training time and cannot be rendered at interactive rates,
prohibiting their broader application.

In this paper, we aim to take a further step toward real-
world applicability of monocular neural avatar reconstruc-
tion by contributing a method that takes no longer for recon-
struction, than it takes to capture the input video. To this
end, we propose InstantAvatar, a system that reconstructs
high-fidelity avatars within 60 seconds, instead of hours,
given a monocular video, pose parameters and masks. Once
learned the avatar can be animated and rendered at interac-
tive rates. Achieving such a speed-up is clearly a challeng-
ing task that requires careful method design, requires fast
differentiable algorithms for rendering and articulation, and
requires efficient implementation.

Our simple yet highly efficient pipeline combines sev-
eral key components. First, to learn the canonical shape and
appearance we leverage a recently proposed neural radiance
field variant [42]. Instant-NGP [42] accelerates neural vol-
ume rendering by replacing multi-layer perceptrons (MLPs)
with a more efficient hash table as data structure. How-
ever, because the spatial features are represented explicitly,
Instant-NGP is limited to rigid objects. Second, to enable
learning from posed observations and to be able to animate
the avatar, we interface the canonical NeRF with an efficient
articulation module, Fast-SNARF [7], which efficiently de-
rives a continuous deformation field to warp the canonical
radiance field into the posed space. Fast-SNARF is orders
of magnitude faster compared to its slower predecessor [9].

Finally, simply integrating existing acceleration tech-
niques is not sufficient to yield the desired efficiency. With
acceleration structures for the canonical space and a fast ar-
ticulation module in place, rendering the actual volume be-
comes the computational bottleneck. To compute the color
of a pixel, standard volume rendering needs to query and
accumulate densities of hundreds of points along the ray.
A common approach to accelerating this is to maintain an
occupancy grid to skip samples in the empty space. How-
ever, such an approach assumes rigid scenes and can not be
applied to dynamic scenes such as humans in motion.

We propose an empty space skipping scheme that is de-
signed for dynamic scenes with known articulation patterns.
At inference time, for each input body pose, we sample
points on a regular grid in posed space and map them back
to the canonical model to query densities. Thresholding
these densities yields an occupancy grid in canonical space,
which can then be used to skip empty space during volume
rendering. For training, we maintain a shared occupancy
grid over all training frames, recording the union of occu-
pied regions over individual frames. This occupancy grid is

updated every few training iterations with the densities of
randomly sampled points, in the posed space of randomly
sampled frames. This scheme balances computational effi-
ciency and rendering quality.

We evaluate our method on both synthetic and real
monocular videos of moving humans and compare it with
state-of-the-art methods on monocular avatar reconstruc-
tion. Our method achieves on-par reconstruction quality
and better animation quality in comparison to SoTA meth-
ods, while only requiring minutes of training time instead
of more than 10 hours. When given the same time budget,
our method significantly outperforms SoTA methods. We
also provide an ablation study to demonstrate the effect of
our system’s components on speed and accuracy.

2. Related Work

3D Human Reconstruction Reconstructing 3D human
appearance and shape is a long-standing problem. High-
quality reconstruction has been achieved in [12, 15, 19, 36]
by fusing observations from a dense array of cameras or
depth sensors. The expensive hardware requirement limits
such methods to professional settings. Recent work [1,2,17,
20, 21, 28, 65] demonstrates 3D human reconstruction from
a monocular video by leveraging personalized or generic
template mesh models such as SMPL [35]. These meth-
ods reconstruct 3D humans by deforming the template to fit
2D joints and silhouettes. However, personalized template
mesh might not be available in many scenarios and generic
template mesh cannot model high-fidelity details and differ-
ent clothing typologies.

Recently, neural representations [37, 41, 45, 46] have
emerged as a powerful tool to model 3D humans [3,6,8,10,
11, 13, 14, 22–26, 30, 31, 34, 38, 39, 39, 43, 44, 48, 49, 52, 53,
57, 59–63, 63, 64, 67, 69, 70]. Using neural representations,
many works [6, 18, 26, 27, 30, 34, 43, 48, 49, 61, 62, 64, 69]
can directly reconstruct high fidelity neural human avatars
from a sparse set of views or a monocular video without pre-
scanning personalized template. These methods model 3D
human shape and appearance via neural radiance field [40]
or signed distance and texture field in a pose-independent
canonical space and then deform and render the model into
various body poses in order to learn from posed observa-
tions. While achieving impressive quality and can learn
avatars from a monocular video, these methods suffer from
slow training and rendering speed due to the slow speed of
the canonical representation as well as deformation algo-
rithms. Our method addresses this issue and enables learn-
ing avatars within minutes.

Accelerating Neural Radiance Field Several methods
have been proposed to improve the training and inference
speed of neural representations [5, 16, 29, 32, 33, 42, 51,
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54–56, 66]. The core idea is to replace MLPs in neu-
ral representations with more efficient representations. A
few works [33, 54, 66] propose to use voxel grids to rep-
resent neural fields and achieve fast training and inference
speed. Instant-NGP [42] further replaces dense voxels with
a multi-resolution hash table, which is more memory ef-
ficient and hence can record high-frequency details. Be-
sides improving the efficiency of the representation, several
works [29, 32, 42] also improve the rendering efficiency by
skipping empty space via an occupancy grid to further in-
crease training and inference speed.

While achieving impressive quality and training effi-
ciency, these methods are specifically designed for rigid ob-
jects. Generalizing these methods to non-rigid objects is not
straightforward. We combine Instant-NGP with a recent ar-
ticulation algorithm to enable animation and learning from
posed observations. In addition, we propose an empty space
skinning scheme for dynamic articulated humans.

3. Method

Given a monocular video of a moving human, our pri-
mary goal is to reconstruct a 3D human avatar within a
tight computational budget. In this section, we first describe
the preliminaries that our method is based on (Sec. 3.1),
which include an accelerated neural radiance field that we
use to model the appearance and shape in canonical space
and an efficient articulation module to deform the canonical
radiance field into posed space. We then describe our im-
plementation of the volumetric renderer to produce images
from the radiance fields in an efficient manner (Sec. 3.2).
To avoid inefficient sampling of empty space, we leverage
the observation that the 3D bounding box around the hu-
man body is dominated by empty space. We then propose
an empty space skipping scheme specifically designed for
humans (Sec. 3.3). Finally, we discuss training objectives
and regularization strategies (Sec. 3.4).

3.1. Preliminaries

Efficient Canonical Neural Radiance Field We model
human shape and appearance in a canonical space using a
radiance field fσf

, which predicts the density σ and color c
of each 3D point x in the canonical space:

fσf
: R3 → R+,R3 (1)

x 7→ σ, c (2)

where σf are the parameters of the radiance field.
We use Instant-NGP [42] to parameterize fσf

, which
achieves fast training and inference speed by using a hash
table to store feature grids at different coarseness scales. To
predict the texture and geometry properties of a query point
in space, they read and tri-linearly interpolate the features at

its neighboring grid points and then concatenate the interpo-
lated features at different levels. The concatenated features
are finally decoded with a shallow MLP.

Articulating Radiance Fields To create animations and
to learn from posed images, we need to generate deformed
radiance fields in target poses f ′σf

. The posed radiance field
is defined as

f ′σf
: R3 → R+,R3 (3)

x′ 7→ σ, c, (4)

which outputs color and density for each point in posed
space. We use a skinning weight field w in canonical space
to model articulation, with σw being its parameters:

wσw : R3 → Rnb , (5)
x 7→ w1, ..., wnb

. (6)

where nb is the number of bones in the skeleton. To avoid
the computational cost of [9], [7] represents this skinning
weight field as a low-resolution voxel grid. The value of
each grid point is determined as the skinning weights of
its nearest vertex on the SMPL [35] model. With this the
canonical skinning weight field and target bone transforma-
tions B = {B1, ...,Bnb

}, a point x in canonical space is
transformed to deformed space x′ via linear blend skinning
as follows:

x′ =
∑nb

i=1wiBix (7)

The canonical correspondences x∗ of a deformed point x′

are defined by the inverse mapping of Equation. 7. The key
is to establish the mapping from points in posed space x′

to their correspondences in the canonical space x∗. This
is efficiently derived by root-finding in Fast-SNARF [7].
The posed radiance field f ′σf

can then be determined as
f ′σf

(x′) = fσf
(x∗).

3.2. Rendering Radiance Fields

The articulated radiance field f ′σf
can be rendered into

novel views via volume rendering. Given a pixel, we cast a
ray r = o + td with o being the camera center and d be-
ing the ray direction. We sample N points {x′

i}N along the
ray between the near and far bound, and query the color and
density of each point from the articulated radiance field f ′σf

by mapping {x′
i}N back to the canonical space and query-

ing from the canonical NeRF model fσf
, as illustrate in

Fig. 2. We then accumulate queried radiance and density
along the ray to get the pixel color C

C =

N∑
i=1

αi

∏
j<i

(1− αj)ci,with αi = 1− exp(σiδi) (8)
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Figure 2. Method Overview. For each frame, we sample points along the rays in posed space. We then transform these points into a
normalized space where the global orientation and translation are removed, we then filter points in empty space using our occupancy grid.
The remaining points are deformed to canonical space using an articulation module and then fed into the canonical neural radiance field to
evaluate the color and density.

where δi = ∥x′
i+1 − x′

i∥ is the distance between samples.
While the acceleration modules of Sec. 3.1 already

achieve significant speed-up over the vanilla variants
(NeRF [40], SNARF [9]), the rendering itself now becomes
the bottleneck. In this paper, we optimize the process of
neural rendering, specifically for the use-case of dynamic
humans.

3.3. Empty Space Skipping for Dynamic Objects

We note that the 3D bounding box surrounding the hu-
man body is dominated by empty space due to the articu-
lated structure of 3D human limbs. This results in a large
amount of redundant sample queries during rendering and
hence significantly slows down rendering. For rigid objects,
this problem is eliminated by caching a coarse occupancy
grid and skipping samples within non-occupied grid cells.
However, for dynamic objects, the exact location of empty
space varies across different frames, depending on the pose.

Inference Stage At inference time, for each input body
pose, we sample points on a 64 × 64 × 64 grid in posed
space and query their densities from the posed radiance field
f ′σf

. We then threshold these densities into binary occu-
pancy values. To remove cells that have been falsely la-
beled as empty, due to the low spatial resolution, we dilate
the occupied region to fully cover the subject. Due to the
low resolution of this grid and the large amount of queries
required to render an image, the overhead to construct such
an occupancy grid is negligible. During volumetric render-
ing, for point samples inside the non-occupied cells, we di-
rectly set their density to zero without querying the posed
radiance field f ′σf

. This reduces unnecessary computation
to a minimum and hence improves the inference speed.

Training Stage During training, however, the overhead to
construct such an occupancy grid at each training iteration

is no longer negligible. To avoid this overhead, we con-
struct a single occupancy grid for the entire sequence by
recording the union of occupied regions in each of the in-
dividual frames. Specifically, we build an occupancy grid
at the start of training and update it every k iterations, by
taking the moving average of the current occupancy values
and the densities queried from the posed radiance field f ′σf

at the current iteration. Note that this occupancy grid is de-
fined in a normalized space where the global orientation and
translation are factored out so that the union of the occupied
space is as tight as possible and hence unnecessary queries
are further reduced.

3.4. Training Losses

We train our model by minimizing the robust Huber loss
ρ between the predicted color of the pixels C and the corre-
sponding ground-truth color Cgt:

Lrgb = ρ(∥C − Cgt∥) (9)

In addition, we assume an estimate of the human mask is
available and apply a loss on the rendered 2D alpha values,
in order to reduce floating artifacts in space.

Lalpha = ∥α− αgt∥1 (10)

Hard Surface Regularization Following [50], we add
further regularization to encourage the NeRF model to pre-
dict solid surfaces:

Lhard = − log(exp−|α| +exp−|α−1|) + const. (11)

where const. is a constant to ensure loss value to be non-
negative. Encouraging solid surfaces helps to speed up ren-
dering because we can terminate rays early once the accu-
mulated opacity reaches 1.
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male-3-casual male-4-casual female-3-casual female-4-casual
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Neural Body [49] (∼ 14 hours) 24.94 0.9428 0.0326 24.71 0.9469 0.0423 23.87 0.9504 0.0346 24.37 0.9451 0.0382
Anim-NeRF [6] (∼ 13 hours) 29.37 0.9703 0.0168 28.37 0.9605 0.0268 28.91 0.9743 0.0215 28.90 0.9678 0.0174

Ours (1 minute) 29.65 0.9730 0.0192 27.97 0.9649 0.0346 27.90 0.9722 0.0249 28.92 0.9692 0.0180

Anim-NeRF [6] (5 minutes) 23.17 0.9266 0.0784 22.30 0.9235 0.0911 22.37 0.9311 0.0784 23.18 0.9292 0.0687
Ours (5 minutes) 29.53 0.9716 0.0155 27.67 0.9626 0.0307 27.66 0.9709 0.0210 29.11 0.9683 0.0167

Anim-NeRF [6] (3 minutes) 19.75 0.8927 0.1286 20.66 0.8986 0.1414 19.77 0.9003 0.1255 20.20 0.9044 0.1109
Ours (3 minutes) 29.58 0.9719 0.0157 27.83 0.9640 0.0342 27.68 0.9708 0.0217 29.05 0.9689 0.0263

Anim-NeRF [6] (1 minute) 12.39 0.7929 0.3393 13.10 0.7705 0.3460 11.71 0.7797 0.3321 12.31 0.8089 0.3344
Ours (1 minute) 29.65 0.9730 0.0192 27.97 0.9649 0.0346 27.90 0.9722 0.0249 28.92 0.9692 0.0180

Table 1. Qualitative Comparison with SoTA on the PeopleSnapshot [1] dataset. We report PSNR, SSIM and LPIPS [68] between real
images and the images generated by our method and two SoTA methods, Neural Body [49] and Anim-NeRF [6]. We compare all three
methods at their convergence, and also compare ours with Anim-NeRF at 5 minutes, 3 minutes and 1 minute training time.

Occupancy-based regularization Previous methods for
the learning of human avatars [6, 27] often encourage mod-
els to predict zero density for points outside of the surface
and solid density for points inside the surface by leverag-
ing the SMPL body model as regularizer. This is done to
reduce artifacts near the body surface. However such regu-
larization makes heavy assumptions about the shape of the
body and does not generalize well for loose clothing. More-
over, we empirically found this regularization is not effec-
tive in removing artifacts near the body. This can be seen
in Fig. 3. Instead of using SMPL for regularization, we use
our occupancy grid which is a more conservative estimate
of the shape of the subject and the clothing, and define an
additional loss Lreg which encourages the points inside the
empty cells of the occupancy grid to have zero density:

Lreg =

{
|σ(x)| if x is in the empty space
0 otherwise

(12)

4. Experiments

We evaluate the accuracy and speed of our method on
monocular videos and compare it with other SoTA methods.
In addition, we provide an ablation study to investigate the
effect of individual technical contributions.

Datasets

PeopleSnapshot We conduct experiments on the Peo-
pleSnapshot [1] dataset, which contains videos of humans
rotating in front of a camera. We follow the evaluation pro-
tocol defined in Anim-NeRF [6]. The pose parameters pro-
vided in this dataset are obtained using SMPLify [4], which
do not always align with images. Hence, Anim-NeRF [6]
optimizes the poses of training and test frames. For a fair
quantitative comparison in Tab. 1, we train our model with
the pose parameters optimized by Anim-NeRF and keep
them frozen throughout training. Our model also supports

body pose optimization. For all other results in the pa-
per, we use an off-the-shelf 3D pose estimator and optimize
poses jointly with our model to refine the pose estimates.
This is done by back-propagating the gradient of the image
reconstruction loss to the pose parameters. The camera pa-
rameters are given in PeopleSnapshot, obtained by standard
calibration procedure.

SURREAL The PeopleSnapshot dataset has limited pose
variations. To evaluate the performance on more challeng-
ing test poses, we also generate synthetic monocular se-
quences by rendering SMPL with texture maps from the
SURREAL [58] dataset. For training, we drive the textured
SMPL model with the same SMPL parameters from Peo-
pleSnapshot, and for test, we generate challenging out-of-
distribution poses. This allows us to evaluate the perfor-
mance of methods on novel pose synthesis.

Baselines

Anim-NeRF [6] This baseline models human shapes and
appearance in a canonical space with an MLP-based NeRF.
Given a pose, they first generate an SMPL body in the tar-
get pose. Then for each query point in deformed space, its
corresponding skinning weights are defined as the weighted
average of skinning weights of its K nearest vertices on the
posed SMPL mesh. Finally, with the skinning weights, the
query point can be transformed back to the canonical space
based on inverse LBS.

Neural Body [49] This baseline learns a set of latent
codes anchored to a deformable SMPL mesh. These latent
codes deform with the SMPL mesh and are decoded into
radiance fields in different poses.

4.1. Comparison with SoTA

Reconstruction Quality To measure the appearance
quality of the reconstructed avatar, we animate and ren-
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Figure 3. Qualitative Results on SURREAL [58] and PeopleSnapshot dataset [1]. We show reconstructed avatars on SURREAL (top)
and PeopleSnapshot (bottom) from different viewpoints (column 2-3) and in various poses (column 4-6).
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Figure 4. Training Progression. We show the image quality at different training iterations. Our method converges significantly faster than
SoTA Anim-NeRF [6].
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Anim-NeRF Ours
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

S1 21.66 0.9450 0.07615 24.48 0.9353 0.0304
S2 20.00 0.9483 0.09693 23.94 0.9354 0.0343
S3 20.06 0.9326 0.07948 25.08 0.9494 0.0275

Table 2. Quantitative Results on the SURREAL Dataset. We
evaluate novel pose synthesis quality of our method and Anim-
NeRF [6] on 3 synthetic subjects.

PSNR↑ SSIM↑ LPIPS↓ Training Time↓
w/o Skipping 28.29 0.9680 0.030 3m 00s
w/ Skipping 28.66 0.9699 0.025 1m 42s

Update Frequency=8 28.73 0.9700 0.027 1m 44s
Update Frequency=16 28.66 0.9699 0.025 1m 42s
Update Frequency=32 28.56 0.9694 0.026 1m 41s

Decay Rate=0.5 28.74 0.9704 0.026 1m 57s
Decay Rate=0.8 28.66 0.9699 0.025 1m 42s
Decay Rate=0.9 28.62 0.9695 0.023 2m 03s

Resolution=32 28.31 0.9690 0.026 2m 17s
Resolution=64 28.66 0.9699 0.025 1m 42s
Resolution=96 28.81 0.9705 0.026 1m 58s

Table 3. Ablation: Empty Space Skipping. We perform an abla-
tion study over the hyperparameters of empty space skipping. For
all the experiments we report the average over 4 sequences in Peo-
pleSnapshot after 50 epochs.

PSNR↑ SSIM↑ LPIPS↓
w/o occupancy-based regularizer 28.22 0.9680 0.0301
w/ occupancy-based regularizer 28.64 0.9700 0.0240

Table 4. Ablation: Occupancy-based Regularizer. We evaluate
image quality averaged over the 4 PeopleSnapshot sequences. For
both cases we train our model for 50 epochs.

der the reconstructed model with the poses of test frames
in PeopleSnapshot, and measure the difference between
generated and real images. When training all methods to
convergence, our generated images are significantly better
than Neural Body [49] and achieve on-par quality as SoTA
method Anim-NeRF [6], as indicated by the image quality
metrics in Tab. 1 and the qualitative results in Fig. 3.

Speed Our method requires much less training time and
computation resources than SoTA methods. We only re-
quire 1 minute to train on a single RTX 3090 while Anim-
NeRF [6] requires 13 hours on 2× RTX 3090 and Neural
Body [49] requires 14 hours on 4× RTX 2080. Ours also
achieves superior rendering speed - we can render images
at 540× 540 resolution on a single RTX 3090 at more than
15 FPS, which is orders of magnitude faster than baselines.

Given the same training time budget, our method
achieves significantly better image quality than Anim-NeRF

No Reg Ours Global Sparsity

Figure 5. Effect of Occupancy-based Regularization. With-
out our regularization loss, the model suffers from floating arti-
facts. Our occupancy-based regularization loss successfully re-
moves such artifacts. While a global sparsity prior biasing all den-
sities towards 0 can also reduce such artifacts, it leads to degener-
ated image quality (semi-transparent).

as shown in Tab. 1. Comparing our training progression
with Anim-NeRF in Fig. 4, we note that our method already
learns meaningful appearance and moderate details within
5s and acceptable visual quality at 10s. After only 1 minute
of training time, our method already achieves high-fidelity
reconstruction quality. In contrast, Anim-NeRF does not
produce meaningful results this early in training and only
learns the rough shape after 3 minutes.

Novel Pose Synthesis Quality The previous evaluation
does not reflect the performance of novel pose synthesis,
because the pose variation in the PeopleSnapshot dataset
is limited (self-rotating). Due to the lack of ground truth
images in novel poses, we resort to evaluating novel pose
synthesis qualitatively. We generate images in novel chal-
lenging poses with our method and Anim-NeRF. As shown
in Fig. 3, our method can faithfully generate images even
in challenging body poses while preserving high fidelity.
In contrast, Anim-NeRF suffers from artifacts under arms
and between legs, because their methods cannot correctly
disambiguate body parts that are close to each other in the
posed space. Our method outperforms our baseline espe-
cially for loose clothing as shown in the bottom example
in Fig. 3. This is because we don’t rely on the SMPL body
model for regularization and hence can better deal with sub-
jects and clothing that differ from SMPL. To quantitatively
evaluate novel pose synthesis, we generate synthetic data in
challenging poses as ground truth. The results in Tab. 2 and
Fig. 3 verify the superiority of our method in terms of novel
pose synthesis quality.

4.2. Ablation Study

Empty Space Skipping We study the effect of our pro-
posed empty space skipping scheme for dynamic objects.
As shown in Tab. 3, skipping empty space significantly im-
proves the training and rendering speed, and is robust to the
choice of hyperparameters.
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Input View 1 View 2 View 3 Novel Pose

Figure 6. More Qualitative Results of Our Method. We show our reconstructed avatars from different views and in different poses.

Occupancy-based Regularization Lreg The occupancy
grid for empty space skipping can also help regularize the
radiance field to reduce noise via our regularization loss Lreg
described in Section. 3.4. As shown in Fig. 5, this loss ef-
fectively reduces floating artifacts and consequently helps
to improve the overall image quality as evidenced by the
PSNR improvement in Tab. 4. Another common approach
to reducing floating noise is to encourage zero density for
every point in space. We compare our solution with this
strategy and find it (Global Sparsity) leads to degenerated
image quality as shown in Fig. 5.

More qualitative results are shown in Fig. 6

4.3. Limitations

Although occupancy-based regularization is generally
effective at reducing floating artifacts, we occasionally ob-
serve remaining artifacts when the pose parameters are
noisy. As illustrated in Fig. 7, these artifacts stem from the
model compensating for noisy feet estimates to satisfy the
image reconstruction loss (see below) and can’t be removed
via regularization.

Figure 7. Limitation: Remaining Artifacts due to Inaccurate
Pose. The floating artifact between the feet (right) is generated to
minimize the reconstruction loss in a different view (left).

Our method does not model facial expression and hand
articulation, hence the reconstructed face and hand quality
might degrade if facial expression or hand pose changes

drastically. This could be addressed by introducing more
complicated body models such as SMPL-X [47]. In ad-
dition, our method does not model pose-dependent defor-
mations and view-dependent appearance changes, hence
it’s unable to model wrinkles and non-Lambertian objects
such as eyeglasses. Finally, our method reconstructs avatars
purely based on image observations and cannot infer un-
seen regions. For instance, if the input video only captures
the front side of the subject, our method cannot reconstruct
the back side. This limitation could potentially be addressed
by leveraging learning-based methods to predict the texture
and geometry of unobserved regions.

5. Conclusion
In this paper, we propose a method that can reconstruct

animatable human avatars from monocular videos within 60
seconds and can animate and render the model afterward
at 15 FPS. To achieve this, we combine an efficient neu-
ral representation, Instant-NGP [42], and an efficient artic-
ulation module Fast-SNARF [7]. This naive combination
does not yield optimal speed. We devise an empty space
skipping scheme to improve our rendering speed, and an
occupancy-aware regularization loss to reduce floating ar-
tifacts in space. In comparison with SoTA methods, our
method achieves on-par image quality while being signifi-
cantly faster during training and inference. While this paper
focuses on full-body human reconstruction, the idea could
be applied to other objects. An interesting next step is to ex-
tend our method to reconstruct general articulated objects or
animals from images efficiently.

Acknowledgements Xu Chen was supported by the Max
Planck ETH Center for Learning Systems.

16929



References
[1] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Detailed human avatars
from monocular video. In Proc. of the International Conf.
on 3D Vision (3DV), 2018. 1, 2, 5, 6

[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruction
of 3d people models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8387–8397,
Jun 2018. CVPR Spotlight Paper. 1, 2

[3] Alexander W. Bergman, Petr Kellnhofer, Wang Yifan,
Eric R. Chan, David B. Lindell, and Gordon Wetzstein. Gen-
erative neural articulated radiance fields. Arxiv, 2022. 2

[4] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In Proc. of the European Conf. on Computer
Vision (ECCV), 2016. 5

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Proc. of the
European Conf. on Computer Vision (ECCV), 2022. 2

[6] Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao
Bao, Xu Jia, and Huchuan Lu. Animatable neural radiance
fields from monocular rgb videos. arXiv.org, 2021. 1, 2, 5,
6, 7

[7] Xu Chen, Tianjian Jiang, Jie Song, Max Rietmann, An-
dreas Geiger, Michael J. Black, and Otmar Hilliges. Fast-
SNARF: A fast deformer for articulated neural fields. arXiv,
abs/2211.15601, 2022. 2, 3, 8

[8] Xu Chen, Tianjian Jiang, Jie Song, Jinlong Yang, Michael J
Black, Andreas Geiger, and Otmar Hilliges. gdna: Towards
generative detailed neural avatars. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[9] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. Snarf: Differentiable forward skinning
for animating non-rigid neural implicit shapes. In Interna-
tional Conference on Computer Vision (ICCV), 2021. 2, 3,
4

[10] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. SNARF: Differentiable forward skin-
ning for animating non-rigid neural implicit shapes. In Proc.
of the IEEE International Conf. on Computer Vision (ICCV),
2021. 2

[11] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3D shape reconstruc-
tion and completion. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 2

[12] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-
nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk,
and Steve Sullivan. High-quality streamable free-viewpoint
video. ACM Trans. on Graphics, 34, 2015. 2

[13] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-
Moll, Geoffrey Hinton, Mohammad Norouzi, and Andrea
Tagliasacchi. Neural articulated shape approximation. In
European Conference on Computer Vision (ECCV), 2020. 2

[14] Zijian Dong, Chen Guo, Jie Song, Xu Chen, Andreas Geiger,
and Otmar Hilliges. PINA: Learning a personalized implicit

neural avatar from a single RGB-D video sequence. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022. 2

[15] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip
Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts
Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,
et al. Fusion4d: Real-time performance capture of challeng-
ing scenes. ACM Transactions on Graphics (ToG), 35(4):1–
13, 2016. 2

[16] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14346–
14355, 2021. 2

[17] Chen Guo, Xu Chen, Jie Song, and Otmar Hilliges. Human
performance capture from monocular video in the wild. In
2021 International Conference on 3D Vision (3DV), pages
889–898. IEEE, 2021. 2

[18] Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar
Hilliges. Vid2avatar: 3d avatar reconstruction from videos
in the wild via self-supervised scene decomposition. arXiv,
2023. 2

[19] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,
Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-
Escolano, Rohit Pandey, Jason Dourgarian, et al. The re-
lightables: Volumetric performance capture of humans with
realistic relighting. ACM Trans. on Graphics, 38, 2019. 2

[20] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Ger-
ard Pons-Moll, and Christian Theobalt. Livecap: Real-time
human performance capture from monocular video. ACM
Transactions On Graphics (TOG), 38(2):1–17, 2019. 2

[21] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Ger-
ard Pons-Moll, and Christian Theobalt. Deepcap: Monoc-
ular human performance capture using weak supervision. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, jun 2020. 2

[22] Tong He, John Collomosse, Hailin Jin, and Stefano Soatto.
Geo-PIFu: Geometry and pixel aligned implicit functions for
single-view human reconstruction. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 2

[23] Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and
Tony Tung. ARCH++: Animation-ready clothed human re-
construction revisited. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

[24] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang
Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-
driven generation and animation of 3d avatars. ACM Trans.
Gr., 2022. 2

[25] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and
Tony Tung. Arch: Animatable reconstruction of clothed hu-
mans. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[26] Boyi Jiang, Yang Hong, Hujun Bao, and Juyong Zhang. Sel-
frecon: Self reconstruction your digital avatar from monoc-
ular video. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[27] Wei Jiang, Kwang Moo Yi, Golnoosh Samei, Oncel Tuzel,
and Anurag Ranjan. Neuman: Neural human radiance field

16930



from a single video. In Proc. of the European Conf. on Com-
puter Vision (ECCV), 2022. 2, 5

[28] Yue Jiang, Marc Habermann, Vladislav Golyanik, and Chris-
tian Theobalt. Hifecap: Monocular high-fidelity and expres-
sive capture of human performances. In BMVC, 2022. 2

[29] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf accleration toolbox. arXiv preprint
arXiv:2210.04847, 2022. 2, 3

[30] Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhoefer,
Jürgen Gall, Angjoo Kanazawa, and Christoph Lassner.
Tava: Template-free animatable volumetric actors. In Proc.
of the European Conf. on Computer Vision (ECCV), 2022. 2

[31] Siyou Lin, Hongwen Zhang, Zerong Zheng, Ruizhi Shao,
and Yebin Liu. Learning implicit templates for point-based
clothed human modeling. In Proc. of the European Conf. on
Computer Vision (ECCV), 2022. 2

[32] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.
2, 3

[33] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 2, 3

[34] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural Actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM Trans. on Graphics, 2021. 2

[35] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. ACM Trans. on Graphics, 2015. 2, 3

[36] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J
Gortler, and Leonard McMillan. Image-based visual hulls.
In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, 2000. 2

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2019. 2

[38] Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael
Zollhoefer, and Siyu Tang. COAP: Compositional articu-
lated occupancy of people. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022. 2

[39] Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu
Tang. LEAP: Learning articulated occupancy of people. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[40] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 4

[41] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 2

[42] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2, 3, 8

[43] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Neural articulated radiance field. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2021.
2

[44] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Unsupervised learning of efficient geometry-aware
neural articulated representations. In Proc. of the European
Conf. on Computer Vision (ECCV), 2022. 2

[45] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2019. 2

[46] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[47] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands, face,
and body from a single image. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 8

[48] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In Proc. of the IEEE International Conf. on Com-
puter Vision (ICCV), 2021. 2

[49] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 1, 2, 5, 7

[50] Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry La-
gun, and Andrea Tagliasacchi. Lolnerf: Learn from one look,
2022. 4

[51] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2021. 2

[52] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. PIFu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 2

[53] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. PIFuHD: Multi-level pixel-aligned implicit function for
high-resolution 3D human digitization. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2020.
2

[54] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2,
3

16931



[55] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[56] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3D shapes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[57] Garvita Tiwari, Nikolaos Sarafianos, Tony Tung, and Gerard
Pons-Moll. Neural-GIF: Neural generalized implicit func-
tions for animating people in clothing. In International Con-
ference on Computer Vision (ICCV), October 2021. 2

[58] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In CVPR, 2017. 5, 6

[59] Shaofei Wang, Andreas Geiger, and Siyu Tang. Locally
aware piecewise transformation fields for 3D human mesh
registration. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[60] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas
Geiger, and Siyu Tang. MetaAvatar: Learning animatable
clothed human models from few depth images. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.
2

[61] Shaofei Wang, Katja Schwarz, Andreas Geiger, and Siyu
Tang. Arah: Animatable volume rendering of articulated
human sdfs. In Proc. of the European Conf. on Computer
Vision (ECCV), 2022. 2

[62] Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
manNeRF: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 16210–16220, June 2022. 1, 2

[63] Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J
Black. ICON: Implicit Clothed humans Obtained from Nor-
mals. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

[64] Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu. H-
NeRF: Neural radiance fields for rendering and temporal re-
construction of humans in motion. In Advances in Neural
Information Processing Systems (NeurIPS), 2021. 2

[65] Weipeng Xu, Avishek Chatterjee, Michael Zollhöfer, Helge
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