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Abstract

Contrastive learning-based video-language representa-
tion learning approaches, e.g., CLIP, have achieved out-
standing performance, which pursue semantic interaction
upon pre-defined video-text pairs. To clarify this coarse-
grained global interaction and move a step further, we have
to encounter challenging shell-breaking interactions for fine-
grained cross-modal learning. In this paper, we creatively
model video-text as game players with multivariate coopera-
tive game theory to wisely handle the uncertainty during fine-
grained semantic interaction with diverse granularity, flex-
ible combination, and vague intensity. Concretely, we pro-
pose Hierarchical Banzhaf Interaction (HBI) to value pos-
sible correspondence between video frames and text words
for sensitive and explainable cross-modal contrast. To effi-
ciently realize the cooperative game of multiple video frames
and multiple text words, the proposed method clusters the
original video frames (text words) and computes the Banzhaf
Interaction between the merged tokens. By stacking token
merge modules, we achieve cooperative games at different
semantic levels. Extensive experiments on commonly used
text-video retrieval and video-question answering bench-
marks with superior performances justify the efficacy of our
HBI. More encouragingly, it can also serve as a visualization
tool to promote the understanding of cross-modal interac-
tion, which have a far-reaching impact on the community.
Project page is available at https://jpthu17.github.io/HBI/.

1. Introduction
Representation learning based on both vision and lan-

guage has many potential benefits and direct applicability to

*Corresponding author: Li Yuan, Jie Chen.
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Figure 1. (a) Cross-modal contrastive methods only learn a global
semantic interaction from the coarse-grained labels of video-text
pairs. (b) We model cross-modal alignment as a multivariate co-
operative game process. Specifically, we use Banzhaf Interaction
to value possible correspondence between video frames and text
words and consider it as an additional learning signal.

cross-modal tasks, such as text-video retrieval [20, 32] and
video-question answering [28, 49]. Visual-language learning
has recently boomed due to the success of contrastive learn-
ing [9–11,19,48,61–64], e.g., CLIP [40], to project the video
and text features into a common latent space according to
the semantic similarities of video-text pairs. In this manner,
cross-modal contrastive learning enables networks to learn
discriminative video-language representations.

The cross-modal contrastive approach [14, 20, 32] typi-
cally models the cross-modal interaction via solely the global
similarity of each modality. Specifically, as shown in Fig. 1a,
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it only exploits the coarse-grained labels of video-text pairs
to learn a global semantic interaction. However, in most
cases, we expect to capture fine-grained interpretable infor-
mation, such as how much cross-modal alignment is helped
or hindered by the interaction of a visual entity and a textual
phrase. Representation that relies on cross-modal contrastive
learning cannot do this in a supervised manner, as manu-
ally labeling these interpretable relationships is unavailable,
especially on large-scale datasets. This suggests that there
might be other learning signals that could complement and
improve pure contrastive formulations.

In contrast to prior works [20, 32, 45], we model cross-
modal representation learning as a multivariate cooperative
game by formulating video and text as players in a coop-
erative game, as illustrated in Fig. 1b. Intuitively, if visual
representations and textual representations have strong se-
mantic correspondence, they tend to cooperate together and
contribute to the cross-modal similarity score. Motivated by
this spirit, we consider the set containing multiple represen-
tations as a coalition, and propose to quantify the trend of
cooperation within a coalition via the game-theoretic inter-
action index, i.e., Banzhaf Interaction [18] for its simplicity
and efficiency. Banzhaf Interaction is one of the most popu-
lar concepts in cooperative games [33]. As shown in Fig. 2,
it measures the additional benefits brought by the coalition
compared with the costs of the lost coalitions of these players
with others. When a coalition has high Banzhaf Interaction,
it will also have a high contribution to the semantic similar-
ity. Thus, we can use Banzhaf Interaction to value possible
correspondence between video frames and text words for
sensitive and explainable cross-modal contrast.

To this end, we propose Hierarchical Banzhaf Interac-
tion (HBI). Concretely, we take video frames and text words
as players and the cross-modality similarity measurement as
the characteristic function in the cooperative game. Then,
we use the Banzhaf Interaction to represent the trend of
cooperation between any set of features. Besides, to effi-
ciently generate coalitions among game players, we propose
an adaptive token merge module to cluster the original video
frames (text words). By stacking token merge modules,
we achieve hierarchical interaction, i.e., entity-level inter-
actions on the frames and words, action-level interactions
on the clips and phrases, and event-level interactions on the
segments and paragraphs. In particular, we show that the
Banzhaf Interaction index satisfies Symmetry, Dummy, Addi-
tivity, and Recursivity axiom in Sec. 3.4. This result implies
that the representation learned via Banzhaf Interaction has
four properties that the features of the contrastive method
do not. We find that explicitly establishing the fine-grained
interpretable relationships between video and text brings a
sensible improvement to already very strong video-language
representation learning results. Experiment results on three
text-video retrieval benchmark datasets (MSRVTT [50], Ac-

Players in the Coalition

a woman in dress a man in suit

Coalition The lost Coalition Possible CoalitionPlayer

Banzhaf Interaction
of  Coalition [     ,     ]

Benefits of Coalition [     ,     ] Costs of the lost Coalitions [     ,     ]

a woman in dress a man in suit

All Players in the Game

Players outside the Coalition

Figure 2. The intuition of Banzhaf Interaction in video-text
representation learning. We refer the reader to Eq. 3 for the
detailed formula. When some players (frames and words) form a
coalition, we lose the coalitions of these players with others. In
other words, the lost coalition is mutually exclusive from the target
coalition. Banzhaf Interaction measures the difference between the
benefits of the coalition and the costs of the lost coalitions.

tivityNet Captions [21], and DiDeMo [1]) and the video
question answering benchmark dataset (MSRVTT-QA [49])
show the advantages of the proposed method. The main
contributions are as follows:

• To the best of our knowledge, we are the first to model
video-language learning as a multivariate cooperative
game process and propose a novel proxy training objec-
tive, which uses Banzhaf interaction to value possible
correspondence between video frames and text words
for sensitive and explainable cross-modal contrast.

• Our method achieves new state-of-the-art performance
on text-video retrieval benchmarks of MSRVTT, Activi-
tyNet Captions and DiDeMo, as well as on the video-
question answering task on MSRVTT-QA.

• More encouragingly, our method can also serve as a
visualization tool to promote the understanding of cross-
modal interaction, which may have a far-reaching im-
pact on the community.

2. Related Work
Cooperative Game Theory. The cooperative game

theory consists of a set of players with a characteristic func-
tion [6, 35]. The characteristic function maps each team
of players to a real number which indicates the payoff ob-
tained by all players working together to complete the task.
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The core of the cooperative game theory is to allocate dif-
ferent payoffs to game individuals fairly and reasonably.
Game theory has found many applications in the field of
model interpretability [13, 54, 60], but there is little explo-
ration in cross-modal learning. Banzhaf Interaction is one
of the most popular concepts in cooperative games [33]. Re-
cently, LOUPE [27] uses two-player interaction as a vision-
language pre-training task. In this paper, we design a new
framework of multivariate interaction for video-text repre-
sentation learning. Besides, our method can be directly
co-trained with target task losses for high flexibility.

Visual-Language Learning. Recently, contrastive
learning methods show great success in cross-modal
tasks [20, 25, 26], such as text-video retrieval [8, 32] and
video-question answering [20, 36]. Text-video retrieval [14,
47, 51] requires the model to map text and video to the
same latent space, where the similarity between them can
be directly calculated [7, 39, 53]. Video-question answer-
ing requires the model to predict an answer using visual
information [25, 26, 57]. Due to manually labeling the fine-
grained relationships being unavailable, cross-modal con-
trastive learning cannot capture fine-grained information in
a supervised manner. To this end, we model video-text as
game players with multivariate cooperative game theory and
propose to combine Banzhaf Interaction with cross-modal
contrastive learning. In contrast to prior works, we explic-
itly capture the fine-grained semantic relationships between
video frames and text words via Banzhaf Interaction. Then,
we use these relationships as additional learning signals to
improve pure contrastive learning.

3. Method
3.1. Multivariate Cooperative Game Modeling

3.1.1 Video-Language Learning

Generally, given a corpus of video-text pairs (v, t), cross-
modal representation learning aims to learn a video encoder
and a text encoder. The problem is formulated as a cross-
modality similarity measurement Sv,t by cross-modal con-
trastive learning, where the matched video-text pairs are
close and the mismatched pairs are away from each other.

To learn fine-grained semantic alignment, the input video
v is embedded into frame sequence Vf = {vif}

Nv
i=1, where

Nv is the length of video v. The input text t is embed-
ded into word sequence Tw = {tjw}

Nt
j=1, where Nt is the

length of text t. Then, the alignment matrix is defined as:

A = [aij ]
Nv×Nt , where aij =

(vi
f )

T tjw

∥vi
f∥∥t

j
w∥

represents the align-

ment score between the ith video frame and the jth text word.
For the ith video frame, we calculate its maximum align-
ment score as max

j
aij . Then, we use the weighted average

maximum alignment score over all video frames as the video-
to-text similarity. Similarly, we can obtain the text-to-video

similarity. The total similarity score [45] can be defined as:

Sv,t =
1

2
(

Nv∑
i=1

ωi
v max

j
aij︸ ︷︷ ︸

video-to-text similarity

+

Nt∑
j=1

ωj
t max

i
aij︸ ︷︷ ︸

text-to-video similarity

), (1)

where [ω0
v , ω

1
v , ..., ω

Nv
v ] = Softmax(MLPv(Vf )) and

[ω0
t , ω

1
t , ..., ω

Nt
t ] = Softmax(MLPt(Tw)) are the weights

of the video frames and text words, respectively. Then the
cross-modal contrastive loss [43] can be formulated as:

LC = −1

2
[
1

B

B∑
k=1

log
exp(Svk,tk/τ)∑B
l exp(Svk,tl/τ)

+

1

B

B∑
k=1

log
exp(Svk,tk/τ)∑B
l exp(Svl,tk/τ)

],

(2)

where B is the batch size and τ is the temperature hyper-
parameter. This loss function maximizes the similarity of
positive pairs and minimizes the similarity of negative pairs.

Prior works typically directly apply the cross-modal con-
trastive loss to optimize the similarity scores Sv,t. To move
a step further, we model video-text as game players with
multivariate cooperative game theory to handle the uncer-
tainty during fine-grained semantic interaction with diverse
granularity, flexible combination, and vague intensity.

3.1.2 Banzhaf Interaction

We start by introducing notation and outlining assumptions
about the cooperative game theory. Then, we review Banzhaf
Interaction [18] for a cooperative game.

The cooperative game theory consists of a set N =
{1, 2, ..., n} of players with a characteristic function ϕ. The
characteristic function ϕ maps each team of players to a real
number. This number indicates the payoff obtained by all
players working together to complete the task. The core of
the cooperative game theory is calculating how much gain is
obtained and how to distribute the total gain fairly [42].

In a cooperative game, some players tend to form a coali-
tion: it may happen that ϕ({i}) and ϕ({j}) are small, and
at the same time ϕ({i, j}) is large. The Banzhaf Interac-
tion [18] measures the additional benefits brought by the
target coalition compared with the costs of the lost coalitions
of these players with others. The costs of the lost coalitions
can be estimated by each player in the target coalition work-
ing individually. For a coalition {i, j}, we consider [{i, j}]
as a single hypothetical player, which is the union of the
players in {i, j}. Then, the reduced game is formed by re-
moving the individual players in {i, j} from the game and
adding [{i, j}] to the game.

Definition 1. Banzhaf Interaction [18]. Given a coali-
tion {i, j} ⊆ N , the Banzhaf Interaction I([{i, j}]) for the
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Figure 3. The overall framework of HBI. We propose a novel proxy training objective, which uses Banzhaf interaction to value possible
correspondence between video frames and text words, and enhance cross-modal representation learning. By stacking token merge modules,
we achieve hierarchical interaction, i.e., entity-level interactions on the frames and words, action-level interactions on the clips and phrases,
and event-level interactions on the segments and paragraphs. To improve the generalization ability, we use the additional self-distillation loss.
The calculation of the exact Banzhaf Interaction is an NP-hard problem. To speed up the computation of Banzhaf Interaction for many data
instances, we pre-train a tiny model to learn a mapping from a set of input features to a result (Sec. 4.1).

player [{i, j}] is defined as:

I([{i, j}]) =
∑

C⊆N\{i,j}

p(C)[ϕ(C ∪ {[{i, j}]}) + ϕ(C)

−ϕ(C ∪ {i})− ϕ(C ∪ {j})],
(3)

where p(C) = 1
2n−2 is the likelihood of C being sampled.

“N \ {i, j}” denotes removing {i, j} from N .

Intuitively, I([{i, j}]) reflects the tendency of interac-
tions inside {i, j}. The higher value of I([{i, j}]) indicates
that player i and player j cooperate closely with each other.

3.1.3 Video-Text as Game Players

Given features Vf = {vif}
Nv
i=1 and Tw = {tjw}

Nt
j=1, fine-

grained cross-modal learning aims to find semantically
matched video-text feature pairs. Specifically, if a video
frame and a text word have strong semantic correspondence,
then they tend to cooperate with each other and contribute
to the fine-grained similarity score. Thus, we can consider
N = {vif}

Nv
i=1 ∪ {tjw}

Nt
j=1 as the players in the game.

To achieve the goal of the cooperative game and cross-
modal learning to be completely consistent, the characteristic

function ϕ should meet all the following criteria: (a) the final
score benefits from strongly corresponding semantic pairs
{v+f , t+w}, i.e., ϕ(N )−ϕ(N \{v+f , t+w}∪{[{v+f , t+w}]})<0;
(b) the final score is compromised by semantically irrel-
evant pairs {v−f , t−w}, i.e., ϕ(N ) − ϕ(N \ {v−f , t−w} ∪
{[{v−f , t−w}]})>0; (c) when there are no players to cooperate,
the final score is zero, i.e., ϕ({vif}

Nv
i=1) = ϕ({tjw}

Nt
j=1) =

ϕ(∅) = 0, where ∅ denotes the empty set.
Note that anything satisfying the above conditions can be

used as the characteristic function ϕ. For simplicity, we use
cross-modality similarity measurement S as ϕ. Then, we can
use Banzhaf Interaction to value possible correspondence
between video frames and text words, and to enhance cross-
modal representation learning.

3.2. Hierarchical Banzhaf Interaction

In the following, we first introduce the simple two-player
interaction between a video frame and a text word. Then,
we expand the two-player interaction to the multivariate
interaction via the token merge module. Fig. 3 illustrates the
overall framework of our method.

For a coalition {vif , tjw}, referring to Eq. 3, we can cal-
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culate the Banzhaf Interaction I([{vif , tjw}]). Due to the
disparity in semantic similarity and interaction index, we
design a prediction header to predict the fine-grained rela-
tionship Ri,j between the ith video frame and the jth text
word. The prediction header consists of a convolutional layer
for encoding, a self-attention module for capturing global
interaction, and a convolutional layer for decoding. We pro-
vide the experiment results of the prediction header with
different structures in Tab. 4.

Then, we optimize the Kullback-Leibler (KL) diver-
gence [22] between the I([{vif , tjw}]) and Ri,j . Concretely,
we define the probability distribution of the video-to-text
task and the text-to-video task as:

DI
v2t = [pIi,1, p

I
i,2, ..., p

I
i,Nt

],

DI
t2v = [p̂I1,j , p̂

I
2,j , ..., p̂

I
Nv,j ],

(4)

where pIi,j=
exp(I([{vi

f ,t
j
w}]))∑Nt

k=1 exp(I([{vi
f ,t

k
w}]))

, p̂Ii,j=
exp(I([{vi

f ,t
j
w}]))∑Nv

k=1 exp(I([{vk
f ,t

j
w}]))

.

Similarly, the probability distribution DR
v2t and DR

t2v

are calculated in the same way using Ri,j , i.e.,
DR

v2t = [pRi,1, p
R
i,2, ..., p

R
i,Nt

],DR
t2v = [p̂R1,j , p̂

R
2,j , ..., p̂

R
Nv,j

],

where pRi,j=
exp(Ri,j)∑Nt

k=1 exp(Ri,k)
, p̂Ri,j=

exp(Ri,j)∑Nv
k=1 exp(Rk,j)

. Finally,

the Banzhaf Interaction loss LI is defined as:

LI = Ev,t[KL(DR
v2t∥DI

v2t) + KL(DR
t2v∥DI

t2v)]. (5)

The Banzhaf Interaction loss LI brings the probability distri-
butions of the output R of the prediction header and Banzhaf
Interaction I close together to establish fine-grained seman-
tic alignment between video frames and text words. In partic-
ular, it can be directly removed during inference, rendering
an efficient and semantics-sensitive model.

For multivariate interaction, an intuitive method is to
compute Banzhaf Interaction on any candidate set of visual
frames and text words directly. However, the number of
candidate sets is too large, i.e., 2Nv+Nt . To reduce the num-
ber of candidate sets, we cluster the original visual (textual)
tokens and compute the Banzhaf Interaction between the
merged tokens. By stacking token merge modules, we get
cross-modal interaction efficiently at different semantic lev-
els, i.e., entity-level interactions on the frames and words,
action-level interactions on the clips and phrases, and event-
level interactions on the segments and paragraphs. Fig. 4
illustrates the framework of the token merge module.

Specifically, we utilize DPC-KNN [15], a k-nearest
neighbor-based density peaks clustering algorithm, to cluster
the visual (textual) tokens. Starting with the frame-level
tokens Vf = {vif}

Nv
i=1, we first use a one-dimensional convo-

lutional layer to enhance the temporal information between
tokens. Then, we compute the local density ρi of each token
vif according to its K-nearest neighbors:

ρi = exp(− 1

K

∑
vk
f∈KNN(vi

f )

∥vkf − vif∥2), (6)

Cluster Module
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Figure 4. The token merge module. “1D-Conv” denotes the one-
dimensional convolutional layer. N input tokens with D channels
are first clustered into M clusters. Then, we feed the merged tokens
as Q and the original tokens as K,V into an attention module.

where KNN(vif ) is the K-nearest neighbors of vif . After
that, we compute the distance index δi of each token vif :

δi =

 min
j:ρj>ρi

∥vkf − vif∥2, if ∃j s.t. ρj > ρi.

max
j

∥vkf − vif∥2, otherwise.
(7)

Intuitively, ρ denotes the local density of tokens, and δ rep-
resents the distance from other high-density tokens.

We consider those tokens with relatively high ρi × δi as
cluster centers, and then assign other tokens to the nearest
cluster center according to the Euclidean distances. Inspired
by [41,58], we use the weighted average tokens of each clus-
ter to represent the corresponding cluster, where the weight
W = Softmax(MLPw(Vf )). Then, we feed the weighted
average tokens as queries Q and the original tokens as keys
K and values V into an attention module. We treat the out-
put of the attention module as features at a higher semantic
level than the entity level, that is, the action-level visual to-
kens. Similarly, we merge the action-level tokens again to
get the event-level tokens. The action-level textual tokens
and event-level textual tokens are calculated in the same way.

3.3. Training Objective

Combining the cross-modal contrastive loss LC and
Banzhaf Interaction loss LI , the full objective of seman-
tic alignment can be formulated as L = LC + αLI , where
α is the trade-off hyper-parameter. We train the network at
three semantic levels, which are shown as follows,

Le=Le
C+αLe

I , La=La
C+αLa

I , Lo=Lo
C+αLo

I , (8)

where Le, La, and Lo represent the semantic alignment loss
at the entity level, action level, and event level, respectively.

To further improve the generalization ability, we optimize
the additional KL divergence between the distribution among
different semantic levels. We find that the entity-level simi-
larity Se

v,t converges first in the training process, so we distill
the entity-level similarity to the other two semantic levels.
The analyses and experiments are provided in Appendix.

Starting with entity-level similarity Se
v,t distilling to

action-level similarity Sa
v,t, we first compute the distribu-

tion De
v2t and De

t2v by replacing I([{v, t}]) with Se
v,t in
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Figure 5. Visualization of the hierarchical interaction. We take Video7060 in the MSRVTT as an example. We provide more visualizations
in the Appendix. Here, the degree of confidence from high to low is represented by red, orange, green and blue lines, respectively.

Eq. 4. The distribution Da
v2t and Da

t2v are calculated using
Sa
v,t. The Le2a

D loss is defined as:

Le2a
D = Ev,t[KL(Da

v2t∥De
v2t) + KL(Da

t2v∥De
t2v)]. (9)

The Le2o
D loss from entity-level similarity to event-level sim-

ilarity is calculated in the same way.
The overall loss is the combination of semantically align-

ment losses and self-distillation losses, which is defined as:

Ltotal = Le + La + Lo︸ ︷︷ ︸
deep supervision

+β (Le2a
D + Le2o

D )︸ ︷︷ ︸
self-distillation

, (10)

where β is the trade-off hyper-parameter. We provide the
ablation experiments for each part of the loss function in
Tab. 5. We find that Banzhaf Interaction loss LI significantly
improves the performance, while deep supervision and self-
distillation can improve the generalization ability.

3.4. Theoretical Analysis

Similar to Banzhaf value axioms [18], the following ax-
ioms convey intuitive properties that a cross-modal interac-
tion score should satisfy.

Axioms 1. Given a set N = {1, 2, ..., n} of players, a
characteristic function ϕ : 2n → R, and a coalition C =
{i, j} ⊆ N , following properties are met for the interaction
score I([C]). (a) Symmetry: If ∀S ⊆ N , ϕ(S ∪ {[C]}) =
ϕ(S∪{[C′

]}),
∑

i∈C ϕ(S∪{i}) =
∑

i′∈C′ ϕ(S∪{i′}), then
I([C]) = I([C′

]); (b) Dummy: If ∀S ⊆ N , ϕ(S∪{[C]}) =
ϕ(S),

∑
i∈C ϕ(S ∪ i) = 0, then I([C]) = 0; (c) Additivity:

If ϕ(∗) and ϕ
′
(∗) have the interaction scores I([C]) and

Method Receptive field Robustness Flexibility

Cosine similarity Element level Absolute value Non-adjustable
Banzhaf Interaction Set level Relative value Adaptable ϕ

Table 1. The comparison with cosine similarity.

I ′
([C]) respectively, then the interaction score for the game

with value function ϕ(∗) + ϕ
′
(∗) is I([C]) + I ′

([C]); (d)
Recursivity: let B(∗) denote the Banzhaf value [4], then
B([C]|N \C∪{[C]}) = B(i|N \{j})+B(j|N \{i})+I([C]).

Symmetry states that if changing the value of two coali-
tions has the same effect on the output under all values of
the other variables, then both coalitions should have an iden-
tical interaction score. Dummy states that if changing the
value of a coalition [C] has no effect on the output under all
values of other variables, then the interaction value of [C]
should be zero. Additivity states the sum of the interaction
scores of the two characteristic functions is equal to the in-
teraction score of the sum of these characteristic functions.
Recursivity states that if the interaction is positive, then the
interaction score of [{i, j}] should be greater than simply
the sum of individual values. If the interaction is negative,
the interaction score of [{i, j}] should be less than the sum.

Theorem 1. The Banzhaf Interaction index satisfies Symme-
try, Dummy, Additivity and Recursivity axiom.

We refer the reader to Appendix for more detail about The-
orem 1. This result implies that the representation learned
via Banzhaf Interaction has four properties that the features
of the contrastive method do not. Besides, we compare
Banzhaf Interaction and cosine similarity in Tab. 1, mainly
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MSRVTT

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MMT [16] 26.6 57.1 69.6 4.0 24.0
T2VLAD [46] 29.5 59.0 70.1 4.0 -
Support-Set [37] 30.1 58.5 69.3 3.0 -
CLIP4Clip [32] 44.5 71.4 81.6 2.0 15.3
EMCL-Net [20] 46.8 73.1 83.1 2.0 -
X-Pool [17] 46.9 72.8 82.2 2.0 14.3
TS2-Net [31] 47.0 74.5 83.8 2.0 13.0

HBI (Ours) 48.6 74.6 83.4 2.0 12.0

ActivityNet Captions

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

ClipBERT [24] 21.3 49.0 63.5 6.0 -
T2VLAD [46] 23.7 55.5 - 4.0 -
MMT [16] 28.7 61.4 - 3.3 16.0
Support-Set [37] 29.2 61.6 - 3.0 -
CLIP4Clip [32] 40.5 72.4 83.6 2.0 7.5
TS2-Net [31] 41.0 73.6 84.5 2.0 8.4
EMCL-Net [20] 41.2 72.7 - 2.0 -

HBI (Ours) 42.2 73.0 84.6 2.0 6.6

DiDeMo

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

FSE [59] 13.9 36.0 - 11.0 -
CE [30] 16.1 41.1 - 8.3 43.7
ClipBERT [24] 20.4 48.0 60.8 6.0 -
TT-CE [12] 21.6 48.6 62.9 6.0 -
Frozen [3] 34.6 65.0 74.7 3.0 -
TS2-Net [31] 41.8 71.6 82.0 2.0 14.8
CLIP4Clip [32] 42.8 68.5 79.2 2.0 18.9

HBI (Ours) 46.9 74.9 82.7 2.0 12.1

(a) Retrieval performance on the Text->Video task.

MSRVTT

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

T2VLAD [46] 31.8 60.0 71.1 3.0 -
HiT [29] 32.1 62.7 74.1 3.0 -
CLIP4Clip [32] 42.7 70.9 80.6 2.0 11.6
X-Pool [17] 44.4 73.3 84.0 2.0 9.0
TS2-Net [31] 45.3 74.1 83.7 2.0 9.2

HBI (Ours) 46.8 74.3 84.3 2.0 8.9

ActivityNet Captions

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

HSE [59] 18.7 48.1 - - -
T2VLAD [46] 24.1 56.6 - 4.0 -
Support-Set [37] 28.7 60.8 - 2.0 -
MMT [16] 28.9 61.1 - 4.0 17.1
CLIP4Clip [32] 41.4 73.7 85.3 2.0 6.7

HBI (Ours) 42.4 73.0 86.0 2.0 6.5

DiDeMo

Methods R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

FSE [59] 13.1 33.9 - 12.0 -
S2VT [44] 13.2 33.6 - 15.0 -
CE [30] 15.6 40.9 - 8.2 42.4
TT-CE [12] 21.1 47.3 61.1 6.3 -
CLIP4Clip [32] 41.4 68.2 79.1 2.0 12.4

HBI (Ours) 46.2 73.0 82.7 2.0 8.7

(b) Retrieval performance on the Video->Text task.

Table 2. Comparisons to current state-of-the-art methods on the MSRVTT [50], ActivityNet Captions [21] and DiDeMo [1] datasets.
“↑” denotes that higher is better. “↓” denotes that lower is better. All results in this table do not use inverted softmax [5].

in three aspects. (1) Global receptive field. In contrast to
cosine similarity, which only operates at the element level,
Banzhaf Interaction operates at the set level to leverage the
global context. (2) Robustness. Cosine similarity fluctuates
by visual and language style. In contrast, Banzhaf Interac-
tion measures the relative value of benefit and opportunity
cost to be robust to the style deviation. (3) Flexibility. Our
framework can use other characteristic functions ϕ besides
similarity, which is left for future work to explore. There-
fore, Banzhaf Interaction is a promising interaction score to
enhance cross-modal representation learning.

4. Experiments

4.1. Experimental Settings

Datasets. MSRVTT [50] contains 10K YouTube
videos, each with 20 text descriptions. We follow the train-
ing protocol in [16, 30] and evaluate on the 1K-A testing
split [56]. ActivityNet Captions [21] consists of densely
annotated temporal segments of 20K YouTube videos. We
use the 10K training split to train the model and report the
performance on the 5K “val1” split. DiDeMo [1] contains
10K videos annotated 40K text descriptions. We follow the
training and evaluation protocol in [32]. MSRVTT-QA [49]
is based on the MSRVTT and has 243K VideoQA pairs.

Metrics. We choose Recall at rank K (R@K), Median
Rank (MdR), and mean rank (MnR) [16] to evaluate the re-
trieval performance. We choose answer accuracy to evaluate
the video question answering performance.

Implementation Details. Since the calculation of the
exact Banzhaf Interaction is an NP-hard problem [34], exist-
ing methods mainly use sampling-based methods [2, 23] to

obtain unbiased estimates. To speed up the computation of
Banzhaf Interaction for many data instances, we pre-train a
tiny model to learn a mapping from a set of input features to
a result using MSE loss. The tiny model consists of 2 CNN
layers and a self-attention layer. The input is the similarity
matrix of video frames and text tokens, and the output is the
estimation of Banzhaf Interaction. We refer the reader to Ap-
pendix for the details. For text-video retrieval, we utilize the
CLIP (ViT-B/32) [40] as the pre-trained model. For video
question answering, we use the target vocabulary and train a
fully connected layer on top of the final language features to
classify the answer. More details are in the Appendix.

4.2. Comparison with State-of-the-art

In Tab. 2, we show the results of our method on MSRVTT,
ActivityNet Captions, and DiDeMo datasets. Our model con-
sistently outperforms the recently proposed state-of-the-art
methods on both text-to-video retrieval and video-to-text
retrieval tasks. Tab. 3 shows the results of our method for
video-question answering. Massive experiments on text-
video retrieval and video-question answering tasks demon-
strate the superiority and flexibility of our method.

4.3. Ablation Study

Effect of the prediction header of R. To explore
the impact of the structure of the prediction header on our
method, we compare several popular structures in Tab. 4. We
find that the combination of CNN and attention (“CNN+SA”)
can capture both local and global interaction, so it is benefi-
cial for predicting the fine-grained relationship.

Ablation about components. As shown in Tab. 5,
Banzhaf Interaction boosts the baseline with the improve-
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Methods Accuracy (%)↑

VQA-T [52] 41.5
SiaSamRea [55] 41.6
MERLOT [57] 43.1
Co-Tokenization [38] 45.7
EMCL-QA [20] 45.8

HBI (Ours) 46.2

Table 3. Video-question
answering performance on
MSRVTT-QA dataset.

Method Text->Video
R@1↑ R@5↑ R@10↑ MnR↓

Baseline 46.6 73.1 83.0 13.3

MLP 47.2 73.7 83.5 12.3
CNN 47.3 73.5 83.7 12.2
MLP+SA 46.6 74.0 83.7 12.3
CNN+SA 48.6 74.6 83.4 12.0

Table 4. Effect of the predic-
tion header on MSRVTT dataset.
“SA” is the self-attention module.

R
@

1

R
@

1

Text→Video Video→Text

(a) Hyper-parameter 𝛼 (b) Hyper-parameter 𝛽

Figure 6. Effect of the hyper-parameters on MSRVTT dataset. α
and β are the hyper-parameters in Eq. 8 and Eq. 9, respectively.

LI Banzhaf Deep LD Self Text->Video
Interaction Supervision Distillation R@1↑ R@5↑ R@10↑ MnR↓

46.6 73.1 83.0 13.3

! 47.4 74.2 82.8 12.1
! 47.2 74.1 82.6 12.0
! ! 47.6 73.8 83.2 11.9

! ! 48.2 73.0 83.1 12.0
! ! ! 48.6 74.6 83.4 12.0

Table 5. Ablation study about the importance of each
part of our method on MSRVTT dataset.

Na
v No

v Na
t No

t
Text->Video

R@1↑ R@5↑ R@10↑ Rsum↑ MnR↓

- - - - 47.5 73.7 83.0 204.2 12.0

9 3 18 4 48.2 75.2 82.7 206.1 12.4
6 3 12 4 48.3 74.3 83.1 205.7 12.3
6 2 12 3 48.7 74.5 82.6 205.8 12.2
3 2 6 3 48.6 74.6 83.4 206.6 12.0

Table 6. The efficiency of the cluster module.
Na

− and No
− denote the number of clusters at

the action level and event level, respectively.

Method Iteration Inference
Time↓ Time↓

CLIP4Clip [32] 1.63 s 16.28 s
DRL [45] 1.65 s 16.74 s
EMCL-Net [20] 1.72 s 17.68 s
TS2-Net [31] 2.57 s 19.91 s

Baseline 2.06 s 18.06 s
HBI (Ours) 3.14 s 19.17 s

Table 7. Time consumption
on MSRVTT dataset.

ment up to 0.8% at R@1. Moreover, deep supervision and
self-distillation significantly improve the generalization abil-
ity. Our full model achieves the best performance and out-
performs the baseline by 2.0% at R@1 for text-to-video
retrieval. This demonstrates that the three parts are benefi-
cial for aligning videos and texts.

The efficiency of the cluster module. The ablation
results are provided in Tab. 6. N−

v and N−
t denote the num-

ber of visual and textual clusters, respectively. The first
row represents the baseline without the cluster module. We
find that large numbers of clusters may make similar to-
kens classified in different clusters. From Tab. 6, we take
the {Na

v , N
o
v , N

a
t , N

o
t } as {3, 2, 6, 3} to get the best perfor-

mance on the sum of recall at rank {1, 5, 10} (Rsum).
The efficiency of our method. In Tab. 7, we calculate

iteration time and inference time using two Tesla V100 GPUs
on MSRVTT dataset. Since the Banzhaf Interaction can be
removed during inference, our method only takes additional
1s for processing the test set. This result demonstrates the
superiority of our efficient design.

Parameter sensitivity. The parameter α is the hyper-
parameter that trades off LC and LI . We evaluate the scale
range setting α ∈ [0.3, 1.7] as shown in Fig. 6a. From
Fig. 6a, we adopt α = 1.0 to achieve the best performance.
In Fig. 6b, we show the influence of the hyper-parameter β.
We evaluate the scale range setting β ∈ [0.5, 3.5]. We find
that the model achieves the best performance at β = 2.0, so
we set β = 2.0 as default in practice.

4.4. Qualitative Analysis

To better understand the proposed method, we show the
visualization of the hierarchical interaction in Fig. 5. We find
that the semantic similarities between coalitions are gener-

ally higher than the semantic similarities between individual
frames and individual words. For example, the coalition
“{two, men, talking, after, a}” has a high semantic similar-
ity with the video coalition representing the men talking
action. On the contrary, when these words interact with the
corresponding frame as individuals, they show low semantic
similarity. Interestingly, the model uses the word “fire” in-
stead of the phrase “one puts out a fire” to understand the
video-text pair. This is due to insufficient training data, the
model can not understand the low-frequency phrase. The vi-
sualization illustrates that the proposed method can be used
as a tool for visualizing the cross-modal interaction and help
us understand the cross-modal model.

5. Conclusion
In this paper, we creatively model cross-modal representa-

tion learning as a multivariate cooperative game by formulat-
ing video and text as players in a cooperative game. Specif-
ically, we propose Hierarchical Banzhaf Interaction (HBI)
to value possible correspondence between video frames and
text words for sensitive and explainable cross-modal contrast.
Although manually labeling the fine-grained relationships
between videos and text is unavailable, our method shows a
promising alternative to obtaining fine-grained labels based
on Banzhaf Interaction. More encouragingly, our method
can also serve as a visualization tool to promote the under-
standing of cross-modal interaction.
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