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Abstract

The recent success of text-to-image synthesis has taken
the world by storm and captured the general public’s imag-
ination. From a technical standpoint, it also marked a dras-
tic change in the favored architecture to design generative
image models. GANs used to be the de facto choice, with
techniques like StyleGAN. With DALL·E 2, autoregressive
and diffusion models became the new standard for large-
scale generative models overnight. This rapid shift raises
a fundamental question: can we scale up GANs to benefit
from large datasets like LAION? We find that naı̈vely in-
creasing the capacity of the StyleGAN architecture quickly
becomes unstable. We introduce GigaGAN, a new GAN ar-
chitecture that far exceeds this limit, demonstrating GANs
as a viable option for text-to-image synthesis. GigaGAN
offers three major advantages. First, it is orders of mag-
nitude faster at inference time, taking only 0.13 seconds
to synthesize a 512px image. Second, it can synthesize
high-resolution images, for example, 16-megapixel images
in 3.66 seconds. Finally, GigaGAN supports various latent
space editing applications such as latent interpolation, style
mixing, and vector arithmetic operations.

1. Introduction

Recently released models, such as DALL·E 2 [53], Ima-
gen [59], Parti [73], and Stable Diffusion [58], have ushered
in a new era of image generation, achieving unprecedented
levels of image quality and model flexibility. The now-
dominant paradigms, diffusion models and autoregressive
models, both rely on iterative inference. This is a double-
edged sword, as iterative methods enable stable training
with simple objectives but incur a high computational cost
during inference.

Contrast this with Generative Adversarial Networks
(GANs) [5,17,33,51], which generate images through a sin-
gle forward pass and thus inherently efficient. While such
models dominated the previous “era” of generative mod-
eling, scaling them requires careful tuning of the network

architectures and training considerations due to instabilities
in the training procedure. As such, GANs have excelled at
modeling single or multiple object classes, but scaling to
complex datasets, much less an open world, has remained
challenging. As a result, ultra-large models, data, and com-
pute resources are now dedicated to diffusion and autore-
gressive models. In this work, we ask – can GANs continue
to be scaled up and potentially benefit from such resources,
or have they plateaued? What prevents them from further
scaling, and can we overcome these barriers?

We first experiment with StyleGAN2 [34] and observe
that simply scaling the backbone causes unstable training.
We identify several key issues and propose techniques to
stabilize the training while increasing the model capacity.
First, we effectively scale the generator’s capacity by re-
taining a bank of filters and taking a sample-specific linear
combination. We also adapt several techniques commonly
used in the diffusion context and confirm that they bring
similar benefits to GANs. For instance, interleaving both
self-attention (image-only) and cross-attention (image-text)
with the convolutional layers improves performance.

Furthermore, we reintroduce multi-scale training, find-
ing a new scheme that improves image-text alignment and
low-frequency details of generated outputs. Multi-scale
training allows the GAN-based generator to use parameters
in low-resolution blocks more effectively, leading to better
image-text alignment and image quality. After careful tun-
ing, we achieve stable and scalable training of a one-billion-
parameter GAN (GigaGAN) on large-scale datasets, such as
LAION2B-en [63]. Our results are shown in Figure 1.

In addition, our method uses a multi-stage approach [12,
76]. We first generate at 64 × 64 and then upsample to
512 × 512. These two networks are modular and robust
enough to be used in a plug-and-play fashion. We show that
our text-conditioned GAN-based upsampling network can
be used as an efficient, higher-quality upsampler for a base
diffusion model such as DALL·E 2, despite never having
seen diffusion images at training time (Figures 1).

Together, these advances enable our GigaGAN to go
far beyond previous GANs: 36× larger than Style-
GAN2 [34] and 6× larger than StyleGAN-XL [62] and
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A portrait of a human growing colorful 
flowers from her hair. Hyperrealistic
oil painting. Intricate details. 

a blue Porsche 356 parked in 
front of a yellow brick wall.

Eiffel Tower, landscape 
photography

A painting of a majestic royal 
tall ship in Age of Discovery.

A golden luxury motorcycle parked 
at the King's palace. 35mm f/4.5.

A hot air balloon in shape of a 
heart. Grand Canyon

low poly bunny with cute eyes A cube made of denim on a wooden 
table

GigaGAN (4K)Input Real-ESRGAN SD Upscaler GigaGAN (1K)

GigaGAN Upscaler (4096px, 16Mpix, 3.66s)

Input artwork (128px) Real-ESRGAN (1024px, 0.06s)

SD Upscaler (1024px, 7.75s) GigaGAN Upscaler (1024px, 0.13s)

Figure 1. Our model, GigaGAN, shows GAN frameworks can also be scaled up for general text-to-image synthesis and super-
resolution tasks, generating a 512px output at an interactive speed of 0.13s, and 4096px within 3.7s. Selected examples at 2K
resolution (text-to-image synthesis) and 1k or 4k resolutions (super-resolution) are shown. For the super-resolution task, we use
the caption of “Portrait of a colored iguana dressed in a hoodie.” and compare our model with the text-conditioned upscaler of
Stable Diffusion [57] and unconditional Real-ESRGAN [26]. Please zoom in for more details. See our arXiv paper and website
for more uncurated comparisons.
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XMC-GAN [75]. While our 1B parameter count is still
lower than the largest synthesis models, such as DALL·E
2 (5.5B), and Parti (20B), we have not yet observed a qual-
ity saturation regarding the model size. GigaGAN achieves
a zero-shot FID of 9.09 on COCO2014, lower than the FID
of DALL·E 2, Parti-750M, and Stable Diffusion.

Furthermore, GigaGAN has three major practical ad-
vantages compared to diffusion and autoregressive models.
First, it is orders of magnitude faster, generating a 512px
image in 0.13 seconds. Second, it can synthesize ultra high-
res images at 4k resolution in 3.66 seconds. Third, it is
endowed with a controllable, latent vector space that lends
itself to well-studied controllable image synthesis applica-
tions, such as prompt mixing (Figure 4), style mixing (Fig-
ure 5), and prompt interpolation (Figures A7 and A8).

In summary, our model is the first GAN-based method
that successfully trains a billion-scale model on billions
of real-world complex Internet images. This suggests that
GANs are still a viable option for text-to-image synthe-
sis and should be considered for future aggressive scaling.
Please visit our website for additional results.

2. Related Works
Text-to-image synthesis. Generating a realistic image
given a text description, explored by early works [42,85], is
a challenging task. A common approach is text-conditional
GANs [55, 56, 67, 71, 76, 83] on specific domains [68]
and datasets with a closed-world assumption [41]. With
the development of diffusion models [13, 21], autoregres-
sive (AR) transformers [10], and large-scale language en-
coders [50, 52], text-to-image synthesis has shown remark-
able improvement on an open-world of arbitrary text de-
scriptions. GLIDE [46], DALL·E 2 [53], and Imagen [59]
are representative diffusion models that show realistic out-
puts with the aid of a pretrained language encoder [50, 52].
AR models, such as DALL·E [54], Make-A-Scene [16],
CogView [14, 15], and Parti [73] also achieve amazing re-
sults. While these models exhibit unprecedented image
synthesis ability, they require time-consuming iterative pro-
cesses to achieve high-quality image sampling.

GAN-based image synthesis. GANs [17] have been one
of the primary families of generative models for natural
image synthesis. As the sampling quality and diversity
of GANs improve [31–34, 36, 51, 60], GANs have been
deployed to various computer vision and graphics appli-
cations, such as text-to-image synthesis [55], image-to-
image translation [23, 27, 37, 47, 48, 82], and image edit-
ing [1,6,49,81]. Notably, StyleGAN-family models [32,34]
have shown impressive ability in image synthesis tasks for
single-category domains [1, 25, 49, 70, 84]. Other works
have explored class-conditional GANs [5, 29, 62, 74, 79] on
datasets with a fixed set of object categories.

In this paper, we change the data regimes from single-
or multi-categories datasets to extremely data-rich situa-
tions. We make the first expedition toward training a large-
scale GAN for text-to-image generation on a vast amount
of web-crawled text and image pairs, such as LAION2B-
en [63] and COYO-700M [7]. Existing GAN-based text-to-
image synthesis models [39,55,67,71,75,76,83] are trained
on relatively small datasets, such as CUB-200 (12k train-
ing pairs), MSCOCO (82k) and LN-OpenImages (507k).
Also, those models are evaluated on associated validation
datasets, which have not been validated to perform large-
scale text-image synthesis like diffusion or AR models.

Concurrent with our method, StyleGAN-T [61] and
GALIP [66] share similar goals and make complementary
insights to ours.

3. Method
We train a generator G(z, c) to predict an image x ∈

RH×W×3 given a latent code z ∼ N (0, 1) ∈ R128 and
text-condition c. We use a discriminator D(x, c) to judge
the realism of the fake image, as compared to a sample from
the training database D, which contains image-text pairs.

Although GANs [5, 31, 33] can successfully generate re-
alistic images on single- and multi-category datasets [11,33,
72], open-ended text-conditioned synthesis on Internet im-
ages remains challenging. We hypothesize that the current
limitation stems from its reliance on convolutional layers.
That is, the same convolution filters are challenged to model
the general image synthesis function for all text condition-
ing across all locations of the image. In this light, we seek
to inject more expressivity into our parameterization by dy-
namically selecting convolution filters based on the input
conditioning and by capturing long-range dependence via
the attention mechanism.

Below, we discuss our key contributions to making Con-
vNets more expressive (Section 3.1), followed by our de-
signs for the generator (Section 3.2) and discriminator (Sec-
tion 3.3). Lastly, we introduce a new, fast GAN-based up-
sampler model that can improve the inference quality and
speed of our method and diffusion models such as Ima-
gen [59] and DALL·E 2 [53] (Section 3.4).

3.1. Modeling complex contextual interaction

Baseline StyleGAN generator. We base our architecture
off the conditional version of StyleGAN2 [34], comprised
of two networks G = G̃ ◦ M . The mapping network
w = M(z, c) maps the inputs into a “style” vector w,
which modulates a series of upsampling convolutional lay-
ers in the synthesis network G̃(w) to map a learned constant
tensor to an output image x. Convolution is the main engine
to generate all output pixels, with the w vector as the only
source of information to model conditioning.
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Figure 2. GigaGAN’s text-to-image generator. First, we extract text embeddings using a pretrained CLIP model and a learned encoder
T . The local text descriptors are fed to the generator using cross-attention. The global text descriptor, along with a latent code z, is fed to
a mapping network M to produce style code w. The style code modulates the main generator using our style-adaptive kernel selection,
shown on the right. The generator outputs an image pyramid by converting the intermediate features into RGB images. To achieve higher
capacity, we use multiple attention and convolution layers at each scale. We also use a separate upsampler, that is not shown in this diagram.

Sample-adaptive kernel selection. To handle the highly
diverse distribution of internet images, we aim to increase
the capacity of convolution kernels. However, increasing
the width of the convolution layers becomes too demanding,
as the same operation is repeated across all locations.

We propose an efficient way to enhance the expressivity
of convolutional kernels by creating them on-the-fly based
on the text conditioning, as illustrated in Figure 2 (right).
In this scheme, we instantiate a bank of N filters {Ki ∈
RCin×Cout×K×K}Ni=1, instead of one, that takes a feature f ∈
RCin at each layer. The style vector w ∈ Rd then goes
through an affine layer [Wfilter, bfilter] ∈ R(d+1)×N to predict
a set of weights to average across the filters, to produce an
aggregated filter K ∈ RCin×Cout×K×K .

K =

N∑
i=1

Ki · softmax
(
W⊤

filterw + bfilter
)
i

(1)

The filter is then used in the regular convolution pipeline
of StyleGAN2, with the second affine layer [Wmod, bmod] ∈
R(d+1)×Cin for weight (de-)modulation [34].

gadaconv(f ,w) =
(
(W⊤

modw + bmod
)
⊗K) ∗ f , (2)

where ⊗ and ∗ represent (de-)modulation and convolution.
At a high level, the softmax-based weighting can be

viewed as a differentiable filter selection process based on
input conditioning. Furthermore, since the filter selection
process is performed only once at each layer, the selection
process is much faster than the actual convolution, decou-
pling compute complexity from the resolution. Our method
shares a spirit with dynamic convolutions [19, 28, 65, 69] in
that the convolution filters dynamically change per sample,
but differs in that we explicitly instantiate a larger filter bank
and select weights based on a separate pathway conditional
on the w-space of StyleGAN.

Interleaving attention with convolution. Since the con-
volutional filter operates within its receptive field, it can-
not contextualize itself in relationship to distant parts of
the images. One way to incorporate such long-range re-
lationships is using attention layers gattention. While recent
diffusion-based models [13,22,58] have commonly adopted
attention mechanisms, StyleGAN architectures are predom-
inantly convolutional with the notable exceptions such as
BigGAN [5], GANformer [24], and ViTGAN [38].

We aim to improve the performance of StyleGAN by in-
tegrating attention layers with the convolutional backbone.
However, simply adding attention layers to StyleGAN of-
ten results in training collapse, possibly because the dot-
product self-attention is not Lipschitz, as pointed out by
Kim et al. [35]. As the Lipschitz continuity of discrimina-
tors has played a critical role in stable training [2,18,43,44],
we use the L2-distance instead of the dot product as the at-
tention logits to promote Lipschitz continuity [35], similar
to ViTGAN [38].

To further improve performance, we find it crucial to
match the architectural details of StyleGAN, such as equal-
ized learning rate [31] and weight initialization from a unit
normal distribution. We scale down the L2 distance logits
to roughly match the unit normal distribution at initializa-
tion and reduce the residual gain from the attention layers.
We further improve stability by tying the key and query ma-
trix [38], and applying weight decay.

In the synthesis network G̃, the attention layers are inter-
leaved with each convolutional block, leveraging the style
vector w as an additional token. At each attention block,
we add a separate cross-attention mechanism gcross-attention
to attend to individual word embeddings [3]. We use each
input feature tensor as the query, and the text embeddings
as the key and value of the attention mechanism.
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3.2. Generator design

Text and latent-code conditioning. First, we extract the
text embedding from the prompt. Previous works [54, 59]
have shown that leveraging a strong language model is es-
sential for producing strong results. To do so, we tokenize
the input prompt (after padding it to C = 77 words, follow-
ing best practices [54, 59]) to produce conditioning vector
c ∈ RC×1024, and take the features from the penultimate
layer [59] of a frozen CLIP feature extractor [50]. To allow
for additional flexibility, we apply additional attention lay-
ers T on top to process the word embeddings before pass-
ing them to the MLP-based mapping network. This results
in text embedding t = T (Etxt(c)) ∈ RC×1024. Each com-
ponent ti of t captures the embedding of the ith word in
the sentence. We refer to them as tlocal = t{1:C}\EOT ∈
R(C−1)×1024. The EOT (“end of text”) component of t ag-
gregates global information, and is called tglobal ∈ R1024.
We process this global text descriptor, along with the latent
code z ∼ N (0, 1), via an MLP mapping network to extract
the style w =M(z, tglobal).

(tlocal, tglobal) = T (Etxt(c)),

w =M(z, tglobal).
(3)

Different from the original StyleGAN, we use both the text-
based style code w to modulate the synthesis network G̃ and
the word embeddings tlocal as features for cross-attention.

x = G̃(w, tlocal). (4)

Similar to earlier works [42, 53, 59], the text-image align-
ment visually improves with cross-attention.

Synthesis network. Our synthesis network consists of a
series of upsampling convolutional layers, with each layer
enhanced with the adaptive kernel selection (Equation 1)
and followed by our attention layers.

fℓ+1 = gℓxa(g
ℓ
attn(g

ℓ
adaconv(fℓ,w),w), tlocal), (5)

where gℓxa, gℓattn, and gℓadaconv denote the l-th layer of cross-
attention, self-attention, and weight (de-)modulation layers.
We find it beneficial to increase the depth of the network by
adding more blocks at each layer. In addition, our genera-
tor outputs a multi-scale image pyramid with L = 5 levels,
instead of a single image at the highest resolution, simi-
lar to MSG-GAN [30] and AnycostGAN [40]. We refer to
the pyramid as {xi}L−1

i=0 = {x0,x1, ...,x4}, with spatial
resolutions {Si}L−1

i=0 = {64, 32, 16, 8, 4}, respectively. The
base level x0 is the output image x. Each image of the pyra-
mid is independently used to compute the GAN loss, as dis-
cussed in Section 3.3. We follow the findings of StyleGAN-
XL [62] and turn off the style mixing and path length reg-
ularization [34]. We include more training details in our
arXiv version.

𝑡!

Sweep through multi-scale input

R/F R/F R/FR/F R/F

𝜙

Convolutional
Self-attention

𝑥"

𝜓#

Text conditioning

Multi-scale output

Figure 3. Our discriminator consists of two branches for pro-
cessing the image and the text conditioning tD . The text branch
processes the text similar to the generator (Figure 2). The image
branch receives an image pyramid and makes independent predic-
tions for each image scale. Moreover, the predictions are made
at all subsequent scales of the downsampling layers, making it a
multi-scale input, multi-scale output (MS-I/O) discriminator.

3.3. Discriminator design

As shown in Figure 3, our discriminator consists of sep-
arate branches for processing text with the function tD and
images with function ϕ. The prediction of real vs. fake
is made by comparing the features from the two branches
using function ψ. We introduce a new way of making pre-
dictions on multiple scales. Finally, we use additional CLIP
and Vision-Aided GAN losses [36] to improve stability.

Text conditioning. First, to incorporate conditioning into
discriminators, we extract text descriptor tD from text c.
Similar to the generator, we apply a pretrained text encoder,
such as CLIP [50], followed by a few learnable attention
layers. In this case, we only use the global descriptor.

Multiscale image processing. We observe that the early,
low-resolution layers of the generator become inactive,
using small dynamic ranges irrespective of the provided
prompts. StyleGAN2 [34] also observes this phenomenon,
concluding that the network relies on the high-resolution
layers, as the model size increases. As recovering perfor-
mance in low frequencies, which contains complex struc-
ture information, is crucial, we redesign the model architec-
ture to provide training signals across multiple scales.

Recall the generator produces a pyramid {xi}L−1
i=0 , with

the full image x0 at the pyramid base. MSG-GAN [30] im-
proves performance by making a prediction on the entire
pyramid at once, enforcing consistency across scales. How-
ever, in our large-scale setting, this harms stability, as this
limits the generator from making adjustments to its initial
low-res output.
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Instead, we process each level of the pyramid indepen-
dently. As shown in Figure 3, each level xi makes a
real/fake prediction at multiple scales i < j ≤ L. For exam-
ple, the full x0 makes predictions at L = 5 scales, the next
level x1 makes predictions at 4 scales, and so on. In total,
our discriminator produces L(L−1)

2 predictions, supervising
multi-scale generations at multiple scales.

To extract features at different scales, we define a feature
extractor ϕi→j : RXi×Xi×3 → RXD

j ×XD
j ×Cj . Practically,

each sub-network ϕi→j is a subset of full ϕ ≜ ϕ0→L, with
i > 0 indicating late entry and j < L indicating early exit.
Each layer in ϕ consists of self-attention, followed by con-
volution with a stride 2. The final layer flattens the spatial
extent into a 1 × 1 tensor, producing output resolutions at
{XD

j } = {32, 16, 8, 4, 1}. This allows us to inject lower-
resolution images on pyramid into intermediate layers [31].
As we use a shared feature extractor across different levels
and most of the added predictions are made at low resolu-
tions, the increased computation overhead is manageable.

Multi-scale input, multi-scale output adversarial loss.
In total, our training objective consists of discriminator
losses, along with our proposed matching loss, to encour-
age the discriminator to take into account the conditioning:

VMS-I/O(G,D) =

L−1∑
i=0

L∑
j=1

VGAN(Gi, Dij) + Vmatch(Gi, Dij),

(6)

where VGAN is the standard, non-saturating GAN loss [17].
To compute the discriminator output, we train predictor ψ,
which uses text feature tD to modulate image features ϕ(x):

Dij(x, c) = ψj(ϕi→j(xi), tD) + Conv1×1(ϕi→j(xi)),
(7)

where ψj is implemented as a 4-layer 1× 1 modulated con-
volution, and Conv1×1 is added as a skip connection to ex-
plicitly maintain an unconditional prediction branch [45].

Matching-aware loss. The previous GAN terms measure
how closely the image x matches the conditioning c, as well
as how realistic x looks, irrespective of conditioning. How-
ever, during early training, when artifacts are obvious, the
discriminator tends to make a decision independent of con-
ditioning and hesitates to account for the conditioning.

To enforce the discriminator to incorporate conditioning,
we match x with a random, independently sampled condi-
tion ĉ, and present them as a fake pair:

Vmatch = Ex,c,ĉ

[
log(1 + exp(D(x, ĉ)))

+ log(1 + exp(D(G(c), ĉ))
]
,

(8)

where (x, c) and ĉ are separately sampled from pdata. This
loss has previously been explored in text-to-image GAN

works [55,76], except we find that enforcing the Matching-
aware loss on generated images fromG, as well real images
x, leads to clear gains in performance (Table A2).

CLIP contrastive loss. We further leverage off-the-shelf
pretrained models as a loss function [36, 60, 64]. In par-
ticular, we enforce the generator to produce outputs that
are identifiable by the pre-trained CLIP image and text en-
coders [50], Eimg and Etxt, in the contrastive cross-entropy
loss that was used to train them originally.

LCLIP = E{cn}

[
− log

exp(Eimg(G(c0))
⊤Etxt(c0))∑

n exp(Eimg(G(c0))⊤Etxt(cn)
)
]
,

(9)

where {cn} = {c0, . . . } are sampled captions from the
training data.

Vision-Aided adversarial loss. Lastly, we build an addi-
tional discriminator that uses the CLIP model as a back-
bone, known as Vision-Aided GAN [36]. We freeze the
CLIP image encoder, extract features from the intermedi-
ate layers, and process them through a simple network with
3× 3 conv layers to make real/fake predictions.

We also incorporate conditioning through modulation, as
in Equation 7. To stabilize training, we also add a fixed ran-
dom projection layer, as proposed by Projected GAN [60].
We refer to this as LVision(G) (omitting the learnable dis-
criminator parameters for clarity).

Our final objective is V(G,D) = VMS-I/O(G,D) +
LCLIP(G) + LVision(G), with weighting between the terms
specified in Table A1.

3.4. GAN-based upsampler
Furthermore, GigaGAN framework can be easily ex-

tended to train a text-conditioned super-resolution model,
capable of upsampling the outputs of the base GigaGAN
generator to obtain high-resolution images at 512px or 4k
resolution. By training our pipeline in two separate stages,
we can afford a higher capacity 64px base model within the
same computational resources.

In the upsampler, the synthesis network is rearranged
to an asymmetric U-Net architecture, which processes the
64px input through 3 downsampling residual blocks, fol-
lowed by 6 upsampling residual blocks with attention layers
to produce the 512px image. There exist skip connections
at the same resolution, similar to CoModGAN [78]. The
model is trained with the same losses as the base model, as
well as the LPIPS Perceptual Loss [77] with respect to the
ground truth high-resolution image. Vision-Aided GAN is
not used for the upsampler. During training and inference
time, we apply moderate Gaussian noise augmentation to
reduce the gap between real and GAN-generated images.
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Figure 4. Prompt mixing. GigaGAN can directly control the
style with text prompts. Here we generate three outputs using the
prompts “a X on tabletop”, shown in the “no mixing” column.
Then we re-compute the text embeddings t and the style codes w
using the new prompts “a X with the texture of Y on tabletop”,
such as “a cube with the texture of crochet on tabletop”, and apply
them to the second half layers of the generator, achieving layout-
preserving fine style control. Cross-attention mechanism automat-
ically localizes the style to the object of interest.

Our GigaGAN framework becomes particularly effec-
tive for the super-resolution task compared to the diffusion-
based models, which cannot afford as many sampling steps
as the base model at high resolution. The LPIPS regression
loss also provides a stable learning signal. We believe that
our GAN upsampler can serve as a drop-in replacement for
the super-resolution stage of other generative models.

4. Experiments
Systematic, controlled evaluation of large-scale text-to-

image synthesis tasks is difficult, as most existing mod-
els are not publicly available. Training a new model from
scratch would be prohibitively costly, even if the train-
ing code were available. Still, we compare our model
to recent text-to-image models, such as Imagen [59], La-
tent Diffusion Models (LDM) [58], Stable Diffusion [57],
and Parti [73], based on the available information, while
acknowledging considerable differences in the training
dataset, number of iterations, batch size, and model size. In
addition to text-to-image results, we evaluate our model on
ImageNet class-conditional generation and unconditional
super-resolution in our arXiv, for an apples-to-apples com-
parison with other methods at a more controlled setting.

For quantitative evaluation, we mainly use the Fréchet
Inception Distance (FID) [20] for measuring the realism of
the output distribution and the CLIP score for evaluating the
image-text alignment. All our models are trained and eval-
uated on A100 GPUs. For more information about training
and evaluation of GigaGAN, please refer to the arXiv ver-

“A Toy sport
sedan, CG
art.”

Coarse styles
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s

Figure 5. Style mixing. Our GAN-based architecture retains a
disentangled latent space, enabling us to blend the coarse style of
one sample with the fine style of another. All outputs are generated
with the prompt “A Toy sport sedan, CG art.” The corresponding
latent codes are spliced together to produce a style-swapping grid.

sion.

4.1. Text-to-image synthesis

We proceed to train a larger model by increasing the
capacity of the base generator and upsampler to 652.5M
and 359.1M, respectively. This results in an unprece-
dented size of GAN model, with a total parameter count
of 1.0B. Table 1 compares the performance of our end-
to-end pipeline to various text-to-image generative mod-
els [4, 9, 46, 53, 54, 57–59, 73, 80]. Note that there exist dif-
ferences in the training dataset, the pretrained text encoders,
and even image resolutions. For example, GigaGAN ini-
tially synthesizes 512px images, which are resized to 256px
before evaluation.

Table 1 shows that GigaGAN exhibits a lower FID than
DALL·E 2 [53], Stable Diffusion [57], and Parti-750M [73].
While our model can be optimized to better match the fea-
ture distribution of real images than existing models, the
quality of the generated images is not necessarily better (see
our arXiv for more samples). We acknowledge that this may
represent a corner case of zero-shot FID on COCO2014
dataset and suggest that further research on a better evalu-
ation metric is necessary to improve text-to-image models.
Nonetheless, we emphasize that GigaGAN is the first GAN
model capable of synthesizing promising images from ar-
bitrary text prompts and exhibits competitive zero-shot FID
with other text-to-image models.

4.2. Super-resolution for large-scale image synthesis
We separately evaluate the performance of the GigaGAN

upsampler in a text-conditional upsampling task. We com-
bine the Stable Diffusion [57] 4x Upscaler and 2x Latent
Upscaler to establish an 8x upscaling model (SD Upscaler).
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Table 1. Comparison to recent text-to-image models. Model
size, total images seen during training, COCO FID-30k, and in-
ference speed of text-image models. ∗ denotes that the model
has been evaluated by us. GigaGAN achieves a lower FID than
DALL·E 2 [53], Stable Diffusion [57], and Parti-750M [73], while
being much faster than competitive methods. GigaGAN and SD-
v1.5 require 4,783 and 6,250 A100 GPU days, and Imagen and
Parti need approximately 4,755 and 320 TPUv4 days for training.

Model Type # Param. # Images FID-30k ↓ Inf. time

25
6

DALL·E [54] Diff 12.0B 1.54B 27.50 -
GLIDE [46] Diff 5.0B 5.94B 12.24 15.0s
LDM [58] Diff 1.5B 0.27B 12.63 9.4s
DALL·E 2 [53] Diff 5.5B 5.63B 10.39 -
Imagen [59] Diff 3.0B 15.36B 7.27 9.1s
eDiff-I [4] Diff 9.1B 11.47B 6.95 32.0s
Parti-750M [73] AR 750M 3.69B 10.71 -
Parti-3B [73] AR 3.0B 3.69B 8.10 6.4s
Parti-20B [73] AR 20.0B 3.69B 7.23 -
LAFITE [80] GAN 75M - 26.94 0.02s

51
2

SD-v1.5∗ [57] Diff 0.9B 3.16B 9.62 2.9s
Muse-3B [9] AR 3.0B 0.51B 7.88 1.3s
GigaGAN GAN 1.0B 0.98B 9.09 0.13s

Table 2. Text-conditioned 128→1024 super-resolution on ran-
dom 10K LAION samples, compared against unconditional Real-
ESRGAN [26] and Stable Diffusion Upscaler [57]. GigaGAN en-
joys the fast speed of a GAN-based model while achieving better
FID, patch-FID [8], CLIP score, and LPIPS [77].

Model # Param. Inf. time FID-10k ↓ pFID ↓ CLIP ↑ LPIPS↓

Real-ESRGAN [26] 17M 0.06s 8.60 22.8 0.314 0.363
SD Upscaler [57] 846M 7.75s 9.39 41.3 0.316 0.523

GigaGAN 693M 0.13s 1.54 8.90 0.322 0.274

We also use the unconditional Real-ESRGAN [26] as an-
other baseline. Table 2 measures the performance of the
upsampler on random 10K images from the LAION dataset
and shows that our GigaGAN upsampler significantly out-
performs the other upsamplers in realism scores (FID and
patch-FID [8]), text alignment (CLIP score) and closeness
to the ground truth (LPIPS [77]).

4.3. Controllable image synthesis
In Figure 4, we show that the disentangled style manip-

ulation can be controlled via text inputs. In detail, we can
compute the text embedding t and style code w using dif-
ferent prompts and apply them to different layers of the gen-
erator. This way, we gain not only the coarse and fine style
disentanglement but also an intuitive prompt-based maneu-
ver in the style space.

StyleGANs are known to possess a linear latent space
useful for image manipulation, called the W-space. Like-
wise, we perform coarse and fine-grained style swapping
using style vectors w. Similar to the W-space of Style-
GAN, Figure 5 illustrates that GigaGAN maintains a disen-
tangled W-space, suggesting existing latent manipulation
techniques of StyleGAN can transfer to GigaGAN. Further-
more, our model possesses another latent space of text em-
bedding t = [tlocal, tglobal] prior to W , and we explore its
potential for image synthesis.

Figure 6. Failure cases. Our outputs with the same prompts as
DALL·E 2. Each column conditions on “a teddy bear on a skate-
board in Times Square”, “a Vibrant portrait painting of Salvador
Dali with a robotic half face”, and “A close up of a handpalm with
leaves growing from it”. Compared to production-grade models
such as DALL·E 2, our model exhibits limitations in realism and
compositionality. See our website for uncurated comparisons.

5. Discussion and Limitations
Our experiments provide a conclusive answer about the

scalability of GANs: our new architecture can scale up to
model sizes that enable text-to-image synthesis. However,
the visual quality of our results is not yet comparable to
production-grade models like DALL·E 2. Figure 6 shows
several instances where our method fails to produce high-
quality results when compared to DALL·E 2, in terms of
photorealism and text-to-image alignment for the same in-
put prompts used in their paper.

Nevertheless, we have tested capacities well beyond
what is possible with a naı̈ve approach and achieved com-
petitive results with autoregressive and diffusion models
trained with similar resources while being orders of magni-
tude faster and enabling latent interpolation and stylization.
Our GigaGAN architecture opens up a whole new design
space for large-scale generative models and brings back key
editing capabilities that became challenging with the transi-
tion to autoregressive and diffusion models. We expect our
performance to improve with larger models.
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