
Imagic: Text-Based Real Image Editing with Diffusion Models

Bahjat Kawar˚ 1,2 Shiran Zada˚ 1 Oran Lang1 Omer Tov1

Huiwen Chang1 Tali Dekel1,3 Inbar Mosseri1 Michal Irani1,3

1Google Research 2Technion 3Weizmann Institute of Science

Input Image

Target Text:

Edited Image

“A bird spreading 
wings”

Target Text: “A sitting dog”

Input Image Edited Image

“A person giving 
the thumbs up”

“Two kissing 
parrots”

Input Image Edited Image

“A goat jumping 
over a cat”

“A children’s drawing
of a waterfall”

Figure 1. Imagic – Editing a single real image. Our method can perform various text-based semantic edits on a single real input image,
including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of 1024ˆ1024
input (real) images, and edited outputs with their respective target texts.

Abstract
Text-conditioned image editing has recently attracted

considerable interest. However, most methods are cur-
rently limited to one of the following: specific editing types
(e.g., object overlay, style transfer), synthetically generated
images, or requiring multiple input images of a common
object. In this paper we demonstrate, for the very first
time, the ability to apply complex (e.g., non-rigid) text-
based semantic edits to a single real image. For exam-
ple, we can change the posture and composition of one
or multiple objects inside an image, while preserving its
original characteristics. Our method can make a stand-
ing dog sit down, cause a bird to spread its wings, etc.
– each within its single high-resolution user-provided nat-
ural image. Contrary to previous work, our proposed
method requires only a single input image and a target
text (the desired edit). It operates on real images, and

˚ Equal contribution.

The first author performed this work as an intern at Google Research.

Project page: https://imagic-editing.github.io/.

does not require any additional inputs (such as image
masks or additional views of the object). Our method,
called Imagic, leverages a pre-trained text-to-image diffu-
sion model for this task. It produces a text embedding
that aligns with both the input image and the target text,
while fine-tuning the diffusion model to capture the image-
specific appearance. We demonstrate the quality and versa-
tility of Imagic on numerous inputs from various domains,
showcasing a plethora of high quality complex semantic
image edits, all within a single unified framework. To better
assess performance, we introduce TEdBench, a highly chal-
lenging image editing benchmark. We conduct a user study,
whose findings show that human raters prefer Imagic to pre-
vious leading editing methods on TEdBench.

1. Introduction
Applying non-trivial semantic edits to real photos has

long been an interesting task in image processing [41].

It has attracted considerable interest in recent years, en-

abled by the considerable advancements of deep learning-

based systems. Image editing becomes especially impres-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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head down”

“A horse with 
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“A brown horse in
”

“A pistachio cake” “A chocolate cake” “A strawberry cake” “A wedding cake”
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holding a frisbee”

“A person making
a heart sign”

“A drawing of a cat”

“A cartoon of a
horse”

“A slice of cake”

Figure 2. Different target texts applied to the same image. Imagic edits the same image differently depending on the input text.

sive when the desired edit is described by a simple natu-

ral language text prompt, since this aligns well with human

communication. Many methods were developed for text-

based image editing, showing promising results and con-

tinually improving [8, 10, 33]. However, the current lead-

ing methods suffer from, to varying degrees, several draw-

backs: (i) they are limited to a specific set of edits such as

painting over the image, adding an object, or transferring

style [6, 33]; (ii) they can operate only on images from a

specific domain or synthetically generated images [20, 43];

or (iii) they require auxiliary inputs in addition to the in-

put image, such as image masks indicating the desired edit

location, multiple images of the same subject, or a text de-

scribing the original image [6, 17, 39, 47, 51].

In this paper, we propose a semantic image editing

method that mitigates all the above problems. Given only an

input image to be edited and a single text prompt describing

the target edit, our method can perform sophisticated non-

rigid edits on real high-resolution images. The resulting im-

age outputs align well with the target text, while preserving

the overall background, structure, and composition of the

original image. For example, we can make two parrots kiss
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Figure 3. Schematic description of Imagic. Given a real image and a target text prompt: (A) We encode the target text and get the initial
text embedding etgt, then optimize it to reconstruct the input image, obtaining eopt; (B) We then fine-tune the generative model to improve
fidelity to the input image while fixing eopt; (C) Finally, we interpolate eopt with etgt to generate the final editing result.

or make a person give the thumbs up, as demonstrated in

Figure 1. Our method, which we call Imagic, provides the

first demonstration of text-based semantic editing that ap-

plies such sophisticated manipulations to a single real high-

resolution image, including editing multiple objects. In ad-

dition, Imagic can also perform a wide variety of edits, in-

cluding style changes, color changes, and object additions.

To achieve this feat, we take advantage of the recent suc-

cess of text-to-image diffusion models [47, 50, 53]. Diffu-

sion models are powerful state-of-the-art generative models,

capable of high quality image synthesis [16,22]. When con-

ditioned on natural language text prompts, they are able to

generate images that align well with the requested text. We

adapt them in our work to edit real images instead of syn-

thesizing new ones. We do so in a simple 3-step process, as

depicted in Figure 3: We first optimize a text embedding so

that it results in images similar to the input image. Then, we

fine-tune the pre-trained generative diffusion model (condi-

tioned on the optimized embedding) to better reconstruct

the input image. Finally, we linearly interpolate between

the target text embedding and the optimized one, resulting

in a representation that combines both the input image and

the target text. This representation is then passed to the gen-

erative diffusion process with the fine-tuned model, which

outputs our final edited image.

We conduct several experiments and apply our method

on numerous images from various domains. Our method

outputs high quality images that both resemble the input

image to a high degree, and align well with the target

text. These results showcase the generality, versatility, and

quality of Imagic. We additionally conduct an ablation

study, highlighting the effect of each element of our method.

When compared to recent approaches suggested in the lit-

erature, Imagic exhibits significantly better editing qual-

ity and faithfulness to the original image, especially when

tasked with sophisticated non-rigid edits. This is further

supported by a human perceptual evaluation study, where

raters strongly prefer Imagic over other methods on a novel

benchmark called TEdBench – Textual Editing Benchmark.

We summarize our main contributions as follows:

1. We present Imagic, the first text-based semantic image

editing technique that allows for complex non-rigid edits

on a single real input image, while preserving its overall

structure and composition.

2. We demonstrate a semantically meaningful linear inter-

polation between two text embedding sequences, uncov-

ering strong compositional capabilities of text-to-image

diffusion models.

3. We introduce TEdBench – a novel and challenging com-

plex image editing benchmark, which enables compar-

isons of different text-based image editing methods.

2. Related Work

Following recent advancements in image synthesis qual-

ity [26–29], many works utilized the latent space of pre-

trained generative adversarial networks (GANs) to perform

a variety of image manipulations [3,19,36,43,56,57]. Mul-

tiple techniques for applying such manipulations on real im-

ages were suggested, including optimization-based meth-

ods [1, 2, 25], encoder-based methods [4, 48, 64], and meth-

ods adjusting the model per input [5, 9, 15, 49]. In addition

to GAN-based methods, some techniques utilize other deep

learning-based systems for image editing [8, 12].

More recently, diffusion models were utilized for similar

image manipulation tasks, showcasing remarkable results.

SDEdit [38] adds intermediate noise to an image (possibly

augmented by user-provided brush strokes), then denoises

it using a diffusion process conditioned on the desired edit,

which is limited to global edits. DDIB [62] encodes an input

image using DDIM inversion with a source class (or text),

and decodes it back conditioned on the target class (or text)

to obtain an edited version. DiffusionCLIP [33] utilizes

language-vision model gradients, DDIM inversion [59], and

model fine-tuning to edit images using a domain-specific

diffusion model. It was also suggested to edit images by
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Input Image

“A photo of a bird spreading wings”

“A children’s drawing of a forest”
Figure 4. Multiple edit options. Imagic utilizes a probabilistic model, enabling it to generate multiple options with different random seeds.

synthesizing data in user-provided masks, while keeping the

rest of the image intact [6, 14, 39]. Liu et al. [37] guide a

diffusion process with a text and an image, synthesising im-

ages similar to the given one, and aligned with the given

text. Hertz et al. [20] alter a text-to-image diffusion pro-

cess by manipulating cross-attention layers, providing more

fine-grained control over generated images, and can edit

real images in cases where DDIM inversion provides mean-

ingful attention maps. Textual Inversion [17] and Dream-

Booth [51] synthesize novel views of a given subject given

3–5 images of the subject and a target text (rather than edit a

single image), with DreamBooth requiring additional gen-

erated images for fine-tuning the models. In this work, we

provide the first text-based semantic image editing tool that

operates on a single real image, maintains high fidelity to it,

and applies non-rigid edits given a single free-form natural

language text prompt.

3. Imagic: Diffusion-Based Real Image Editing
3.1. Preliminaries

Diffusion models [22, 58, 60, 66] are a family of gener-

ative models that has recently gained traction, as they ad-

vanced the state-of-the-art in image generation [16, 31, 61,

65], and have been deployed in various downstream appli-

cations such as image restoration [30, 52], adversarial pu-

rification [11, 40], image compression [63], image classifi-

cation [69], and others [13, 18, 32, 44, 55, 67].

The core premise of these models is to initialize with a

randomly sampled noise image xT „ N p0, Iq, then itera-

tively refine it in a controlled fashion, until it is synthesized

into a photorealistic image x0. Each intermediate sample

xt (for t P t0, . . . , T u) satisfies

xt “ ?
αtx0 ` ?

1 ´ αtεt, (1)

with 0 “ αT ă αT´1 ă ¨ ¨ ¨ ă α1 ă α0 “ 1 being hyper-

parameters of the diffusion schedule, and εt „ N p0, Iq.

Each refinement step consists of an application of a neural

network fθpxt, tq on the current sample xt, followed by a

random Gaussian noise perturbation, obtaining xt´1. The

network is trained for a simple denoising objective, aiming

for fθpxt, tq « εt [22, 58]. This leads to a learned image

distribution with high fidelity to the target distribution, en-

abling stellar generative performance.

This method can be generalized for learning conditional

distributions – by conditioning the denoising network on an

auxiliary input y, the network fθpxt, t,yq and its resulting

diffusion process can faithfully sample from a data distribu-

tion conditioned on y. The conditioning input y can be a

low-resolution version of the desired image [54] or a class

label [23]. Furthermore, y can also be on a text sequence

describing the desired image [7, 47, 50, 53]. By incorpo-

rating knowledge from large language models (LLMs) [46]

or hybrid vision-language models [45], these text-to-image
diffusion models have unlocked a new capability – users can

generate realistic high-resolution images using only a text

prompt describing the desired scene. In all these methods, a

low-resolution image is first synthesized using a generative

diffusion process, and then it is transformed into a high-

resolution one using additional auxiliary models.

3.2. Our Method

Given an input image x and a target text which describes

the desired edit, our goal is to edit the image in a way that

satisfies the given text, while preserving a maximal amount

of detail from x (e.g., small details in the background and

the identity of the object within the image). To achieve this

feat, we utilize the text embedding layer of the diffusion

model to perform semantic manipulations. Similar to GAN-

based approaches [43,49,64], we begin by finding meaning-

ful representation which, when fed through the generative

process, yields images similar to the input image. We then

fine-tune the generative model to better reconstruct the in-

put image and finally manipulate the latent representation

to obtain the edit result.
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Increasing η
Input Image Edited Image

Target Text: “A blue car”

Target Text: “A bar stool”
Figure 5. Smooth interpolation. We can smoothly interpolate between the optimized text embedding and the target text embedding,
resulting in a gradual editing of the input image toward the required text as η increases (See animated GIFs in supplementary material).

More formally, as depicted in Figure 3, our method con-

sists of 3 stages: (i) we optimize the text embedding to find

one that best matches the given image in the vicinity of the

target text embedding; (ii) we fine-tune the diffusion models

to better match the given image; and (iii) we linearly inter-

polate between the optimized embedding and the target text

embedding, in order to find a point that achieves both fi-

delity to the input image and target text alignment. We now

turn to describe each step in more detail.

Text embedding optimization The target text is first

passed through a text encoder [46], which outputs its cor-

responding text embedding etgt P R
Tˆd, where T is the

number of tokens in the given target text, and d is the to-

ken embedding dimension. We then freeze the parameters

of the generative diffusion model fθ, and optimize the tar-

get text embedding etgt using the denoising diffusion ob-

jective [22]:

Lpx, e, θq “ Et,ε

”
}ε ´ fθpxt, t, eq}22

ı
, (2)

where t„Uniformr1, T s, xt is a noisy version of x (the in-

put image) obtained using ε„N p0, Iq and Equation 1, and

θ are the pre-trained diffusion model weights. This results

in a text embedding that matches our input image as closely

as possible. We run this process for relatively few steps, in

order to remain close to the initial target text embedding,

obtaining eopt. This proximity enables meaningful linear

interpolation in the embedding space, which does not ex-

hibit linear behavior for distant embeddings.

Model fine-tuning Note that the obtained optimized em-

bedding eopt does not necessarily lead to the input image x
exactly when passed through the generative diffusion pro-

cess, as our optimization runs for a small number of steps

(see top left image in Figure 7). Therefore, in the second

stage of our method, we close this gap by optimizing the

model parameters θ using the same loss function presented

in Equation 2, while freezing the optimized embedding.

This process shifts the model to fit the input image x at the

point eopt. In parallel, we fine-tune any auxiliary diffusion

models present in the underlying generative method, such

as super-resolution models. We fine-tune them with the

same reconstruction loss, but conditioned on etgt, as they

will operate on an edited image. The optimization of these

auxiliary models ensures the preservation of high-frequency

details from x that are not present in the base resolution.

Empirically, we found that at inference time, inputting etgt
to the auxiliary models performs better than using eopt.

Text embedding interpolation Since the generative dif-

fusion model was trained to fully recreate the input image

x at the optimized embedding eopt, we use it to apply the

desired edit by advancing in the direction of the target text

embedding etgt. More formally, our third stage is a sim-

ple linear interpolation between etgt and eopt. For a given

hyperparameter η P r0, 1s, we obtain

ē “ η ¨ etgt ` p1 ´ ηq ¨ eopt, (3)

which is the embedding that represents the desired edited

image. We then apply the base generative diffusion process

using the fine-tuned model, conditioned on ē. This results in

a low-resolution edited image, which is then super-resolved

using the fine-tuned auxiliary models, conditioned on the

target text. This generative process outputs our final high-

resolution edited image x̄.

3.3. Implementation Details
Our framework is general and can be combined with

different generative models. We demonstrate it using two

different state-of-the-art text-to-image generative diffusion

models: Imagen [53] and Stable Diffusion [50].

Imagen [53] consists of 3 separate text-conditioned dif-

fusion models: (i) a generative diffusion model for 64ˆ64-

pixel images; (ii) a super-resolution (SR) diffusion model

turning 64ˆ64-pixel images into 256ˆ256 ones; and

(iii) another SR model transforming 256ˆ256-pixel images
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Figure 6. Method comparison. We compare SDEdit [38],
DDIB [62], and Text2LIVE [8] to our method. Imagic success-
fully applies the desired edit, while preserving the original image
details well.

into the 1024ˆ1024 resolution. By cascading these 3 mod-

els [23] and using classifier-free guidance [24], Imagen con-

stitutes a powerful text-guided image generation scheme.

We optimize the text embedding using the 64ˆ64 dif-

fusion model and the Adam [34] optimizer for 100 steps

and a fixed learning rate of 1e´3. We then fine-tune the

64ˆ64 diffusion model by continuing Imagen’s training

for 1500 steps for our input image, conditioned on the

optimized embedding. In parallel, we also fine-tune the

64ˆ64 Ñ 256ˆ256 SR diffusion model using the target

text embedding and the original image for 1500 steps, in or-

der to capture high-frequency details from the original im-

age. We find that fine-tuning the 256ˆ256 Ñ 1024ˆ1024
model adds little to no effect to the results, therefore we opt

to use its pre-trained version conditioned on the target text.

This entire optimization process takes around 8 minutes per

image on two TPUv4 chips.

Afterwards, we interpolate the text embeddings accord-

ing to Equation 3. Because of the fine-tuning process, using

η“0 will generate the original image, and as η increases,

the image will start to align with the target text. To main-

tain both image fidelity and target text alignment, we choose

an intermediate η, usually residing between 0.6 and 0.8 (see

Figure 9). We then generate with Imagen [53] with its pro-

vided hyperparameters. We find that using the DDIM [59]

sampling scheme generally provides slightly improved re-

sults over the more stochastic DDPM scheme.

In addition to Imagen, we also implement our method

with the publicly available Stable Diffusion model (based

on Latent Diffusion Models [50]). This model applies the

diffusion process in the latent space (of size 4ˆ64ˆ64) of a

pre-trained autoencoder, working with 512ˆ512-pixel im-

ages. We apply our method in the latent space as well. We

optimize the text embedding for 1000 steps with a learning

rate of 2e´3 using Adam [34]. Then, we fine-tune the dif-

fusion model for 1500 steps with a learning rate of 5e´7.

This process takes 7 minutes on a single Tesla A100 GPU.

4. Experiments
4.1. Qualitative Evaluation

We applied our method on a multitude of real images

from various domains, with simple text prompts describ-

ing different editing categories such as: style, appearance,

color, posture, and composition. We collect high-resolution

free-to-use images from Unsplash and Pixabay. After op-

timization, we generate each edit with 8 random seeds and

choose the best result. Imagic is able to apply various edit-

ing categories on general input images and texts, as we

show in Figure 1 and the supplementary material. We exper-

iment with different text prompts for the same image in Fig-

ure 2, showing the versatility of Imagic. Since the underly-

ing generative diffusion model that we utilize is probabilis-

tic, our method can generate different results for a single

image-text pair. We show multiple options for the same edit

using different random seeds in Figure 4, slightly tweak-

ing η for each seed. This stochasticity allows the user to

choose among these different options, as natural language

text prompts can generally be ambiguous and imprecise.

While we use Imagen [53] in most of our experiments,

Imagic is agnostic to the generative model choice. Thus,

we also implement Imagic with Stable Diffusion [50]. In

Figure 5 (and in the supplementary material) we show that

Imagic successfully performs complex non-rigid edits also

using Stable Diffusion while preserving the image-specific

appearance. Furthermore, Imagic (using Stable Diffusion)

exhibits smooth semantic interpolation properties as η is

changed. We hypothesize that this smoothness property is a

byproduct of the diffusion process taking place in a seman-

tic latent space, rather than in the image pixel space.

4.2. Comparisons

We compare Imagic to the current leading general-

purpose techniques that operate on a single input real-world

image, and edit it based on a text prompt. Namely, we

compare our method to Text2LIVE [8], DDIB [62], and

SDEdit [38]. We use Text2LIVE’s default provided hyper-

parameters. We feed it with a text description of the tar-
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Input Image: , Target Text: “A photo of a pistachio cake” 

η=0.000 η=1.000η=0.125 η=0.250 η=0.375 η=0.500 η=0.625 η=0.750 η=0.875

Figure 7. Embedding interpolation. Varying η with the same seed, using the pre-trained (top) and fine-tuned (bottom) models.
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Imagic DDIB
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60%
80%
100%
Imagic Text2LIVE

Figure 8. User study results. Preference rates (with 95%
confidence intervals) for image editing quality of Imagic over
SDEdit [38], DDIB [62], and Text2LIVE [8].

get object (e.g., “dog”) and one of the desired edit (e.g.,
“sitting dog”). For SDEdit and DDIB, we apply their pro-

posed technique with the same Imagen [53] model and tar-

get text prompt that we use. We keep the diffusion hyper-

parameters from Imagen, and choose the intermediate dif-

fusion timestep for SDEdit independently for each image

to achieve the best target text alignment without drastically

changing the image contents. For DDIB, we provide an ad-

ditional source text.

Figure 6 shows editing results of different methods. For

SDEdit and Imagic, we sample 8 images using different ran-

dom seeds and display the result with the best alignment

to both the target text and the input image. As can be ob-

served, our method maintains high fidelity to the input im-

age while aptly performing the desired edits. When tasked

with a complex non-rigid edit such as making a dog sit,

our method significantly outperforms previous techniques.

Imagic constitutes the first demonstration of such sophisti-

cated text-based edits applied on a single real-world image.

We verify this claim through a user study in subsection 4.3.

4.3. TEdBench and User Study
Text-based image editing methods are a relatively recent

development, and Imagic is the first to apply complex non-

rigid edits. As such, no standard benchmark exists for eval-

uating non-rigid text-based image editing. We introduce

TEdBench (Textual Editing Benchmark), a novel collection

of 100 pairs of input images and target texts describing a de-

sired complex non-rigid edit. We hope that future research

will benefit from TEdBench as a standardized evaluation set

for this task.

We quantitatively evaluate Imagic’s performance via an
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Figure 9. Editability–fidelity
tradeoff. CLIP score (target
text alignment) and 1´LPIPS
(input image fidelity) as func-
tions of η, averaged over 150
inputs. Edited images tend to
match both the input image and
text in the highlighted area.

extensive human perceptual evaluation study on TEdBench,

performed using Amazon Mechanical Turk. Participants

were shown an input image and a target text, and were

asked to choose the better editing result from one of two op-

tions, using the standard practice of Two-Alternative Forced

Choice (2AFC) [8,35,42]. The options to choose from were

our result and a baseline result from one of: SDEdit [38],

DDIB [62], or Text2LIVE [8]. In total, we collected 9213
answers, whose results are summarized in Figure 8. As can

be seen, evaluators exhibit a strong preference towards our

method, with a preference rate of more than 70% across all

considered baselines. See supplementary material for more

details about the user study and method implementations.

4.4. Ablation Study
Fine-tuning and optimization We generate edited im-

ages for different η values using the pre-trained 64 ˆ 64
diffusion model and our fine-tuned one, in order to gauge

the effect of fine-tuning on the output quality. We use the

same optimized embedding and random seed, and qualita-

tively evaluate the results in Figure 7. Without fine-tuning,

the scheme does not fully reconstruct the original image

at η “ 0, and fails to retain the image’s details as η in-

creases. In contrast, fine-tuning imposes details from the

input image beyond just the optimized embedding, allowing

our scheme to retain these details for intermediate values of

η, thereby enabling semantically meaningful linear interpo-

lation. Thus, we conclude that model fine-tuning is essential

for our method’s success. Furthermore, we experiment with

the number of text embedding optimization steps in the sup-

plementary material. Our findings suggest that optimizing

the text embedding with a smaller number of steps limits

our editing capabilities, while optimizing for more than 100
steps yields little to no added value.
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Interpolation intensity As can be observed in Figure 7,

fine-tuning increases the η value at which the model strays

from reconstructing the input image. While the optimal η
value may vary per input (as different edits require differ-

ent intensities), we attempt to identify the region in which

the edit is best applied. To that end, we apply our editing

scheme with different η values, and calculate the outputs’

CLIP score [21, 45] w.r.t. the target text, and their LPIPS

score [68] w.r.t. the input image subtracted from 1. A higher

CLIP score indicates better output alignment with the target

text, and a higher 1´LPIPS indicates higher fidelity to the

input image. We repeat this process for 150 image-text in-

puts, and show the average results in Figure 9. We observe

that for η values smaller than 0.4, outputs are almost identi-

cal to the input images. For η P r0.6, 0.8s, the images begin

to change (according to LPIPS), and align better with the

text (as the CLIP score rises). Therefore, we identify this

area as the most probable for obtaining satisfactory results.

Note that while they provide a good sense of text or image

alignment on average, CLIP score and LPIPS are imprecise

measures that rely on neural network backbones, and their

values noticeably differ for each different input image-text

pair. As such, they are not suited for reliably choosing η
for each input in an automatic way, nor can they faithfully

assess an editing method’s performance.

4.5. Limitations

We identify two main failure cases of our method: In

some cases, the desired edit is applied very subtly (if at all),

therefore not aligning well with the target text. In other

cases, the edit is applied well, but it affects extrinsic image

details such as zoom or camera angle. We show examples

of these two failure cases in the first and second row of Fig-

ure 10, respectively. When the edit is not applied strongly

enough, increasing η usually achieves the desired result, but

it sometimes leads to a significant loss of original image de-

tails (for all tested random seeds) in a handful of cases. As

for zoom and camera angle changes, these usually occur be-

fore the desired edit takes place, as we progress from a low

η value to a large one, which makes circumventing them dif-

ficult. We demonstrate this in the supplementary material,

and include additional failure cases in TEdBench as well.

These limitations can possibly be mitigated by optimiz-

ing the text embedding or the diffusion model differently,

or by incorporating cross-attention control akin to Hertz et

al. [20]. We leave those options for future work. Also, since

our method relies on a pre-trained text-to-image diffusion

model, it inherits the model’s generative limitations and bi-

ases. Therefore, unwanted artifacts are produced when the

desired edit involves generating failure cases of the under-

lying model. For instance, Imagen is known to show sub-

standard generative performance on human faces [53]. Ad-

ditionally, the optimization required by Imagic (and other

Input Image

Target Text:

Edited Image

“A photo of a

Target Text: “A photo of

Input Image Edited Image

“Pizza with

Figure 10. Failure cases. Insufficient consistency with the target
text (top), or changes in camera viewing angle (bottom).

editing methods [8]) is slow, and may hinder their direct

deployment in user-facing applications.

5. Conclusions and Future Work
We propose a novel image editing method called Imagic.

Our method accepts a single image and a simple text prompt

describing the desired edit, and aims to apply this edit while

preserving a maximal amount of details from the image.

To that end, we utilize a pre-trained text-to-image diffusion

model and use it to find a text embedding that represents

the input image. Then, we fine-tune the diffusion model to

fit the image better, and finally we linearly interpolate be-

tween the embedding representing the image and the target

text embedding, obtaining a semantically meaningful mix-

ture of them. This enables our scheme to provide edited im-

ages using the interpolated embedding. Contrary to other

editing methods, our approach can produce sophisticated

non-rigid edits that may alter the pose, geometry, and/or

composition of objects within the image as requested, in

addition to simpler edits such as style or color. It requires

the user to provide only a single image and a simple target

text prompt, without the need for additional auxiliary inputs

such as image masks.

Our future work may focus on further improving the

method’s fidelity to the input image and identity preserva-

tion, as well as its sensitivity to random seeds and to the

interpolation parameter η. Another intriguing research di-

rection would be the development of an automated method

for choosing η for each requested edit.

Societal Impact Our method aims to enable complex

editing of real world images using textual descriptions of

the target edit. As such, it is prone to societal biases of the

underlying text-based generative models, albeit to a lesser

extent than purely generative methods since we rely mostly

on the input image for editing. However, as with other ap-

proaches that use generative models for image editing, such

techniques might be used by malicious parties for synthe-

sizing fake imagery to mislead viewers. To mitigate this,

further research on the identification of synthetically edited

or generated content is needed.
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