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Figure 1. Video instance segmentation (VIS) results of our MaskFreeVIS, trained without using any video or image mask annotation.
By achieving a remarkable 42.5% mask AP on the YouTube-VIS val dataset, with a ResNet-50 backbone, our approach demonstrates that
high-performing VIS can be learned even without any mask annotations.

Abstract

The recent advancement in Video Instance Segmentation
(VIS) has largely been driven by the use of deeper and in-
creasingly data-hungry transformer-based models. How-
ever, video masks are tedious and expensive to annotate,
limiting the scale and diversity of existing VIS datasets. In
this work, we aim to remove the mask-annotation require-
ment. We propose MaskFreeVIS, achieving highly compet-
itive VIS performance, while only using bounding box an-
notations for the object state. We leverage the rich tempo-
ral mask consistency constraints in videos by introducing
the Temporal KNN-patch Loss (TK-Loss), providing strong
mask supervision without any labels. Our TK-Loss finds
one-to-many matches across frames, through an efficient
patch-matching step followed by a K-nearest neighbor se-
lection. A consistency loss is then enforced on the found
matches. Our mask-free objective is simple to implement,
has no trainable parameters, is computationally efficient,
yet outperforms baselines employing, e.g., state-of-the-art
optical flow to enforce temporal mask consistency. We val-
idate MaskFreeVIS on the YouTube-VIS 2019/2021, OVIS
and BDD100K MOTS benchmarks. The results clearly
demonstrate the efficacy of our method by drastically nar-
rowing the gap between fully and weakly-supervised VIS
performance. Our code and trained models are available
at http://vis.xyz/pub/maskfreevis.

1. Introduction

Video Instance Segmentation (VIS) requires jointly de-
tecting, tracking and segmenting all objects in a video from
a given set of categories. To perform this challenging
task, state-of-the-art VIS models are trained with complete
video annotations from VIS datasets [39, 61, 64]. However,
video annotation is costly, in particular regarding object
mask labels. Even coarse polygon-based mask annotation
is multiple times slower than annotating video bounding
boxes [7]. Expensive mask annotation makes existing VIS
benchmarks difficult to scale, limiting the number of object
categories covered. This is particularly a problem for the re-
cent transformer-based VIS models [6,17,57], which tend to
be exceptionally data-hungry. We therefore revisit the need
for complete mask annotation by studying the problem of
weakly supervised VIS under the mask-free setting.

While there exist box-supervised instance segmenta-
tion models [13, 23, 27, 50], they are designed for images.
These weakly-supervised single-image methods do not uti-
lize temporal cues when learning mask prediction, leading
to lower accuracy when directly applied to videos. As a
source for weakly supervised learning, videos contain much
richer information about the scene. In particular, videos ad-
here to the temporal mask consistency constraint, where the
regions corresponding to the same underlying object across
different frames should have the same mask label. In this
work, we set out to leverage this important constraint for
mask-free learning of VIS.
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Temporal One-to-K Patch Correspondence

VIS Mask Prediction at Frame 𝑇 VIS Mask Prediction at Frame 𝑇+1

Figure 2. Our Temporal KNN-patch Loss enforces mask con-
sistency between one-to-k patch correspondences found across
frames, which allow us to cover the cases where: (i) A unique
one-to-one match exists (blue); (ii) Multiple matches are found
due to ambiguities in homogenuous regions (orange) or along im-
age edges (white and yellow); (iii) No match is found due to e.g.
occlusions (green). This allows us to robustly leverage mask con-
sistency constraints in challenging videos.

We propose MaskFreeVIS method, for high performance
VIS without any mask annotations. To leverage temporal
mask consistency, we introduce the Temporal KNN-patch
Loss (TK-Loss), as in Figure 2. To find regions correspond-
ing to the same underlying video object, our TK-Loss first
builds correspondences across frames by patch-wise match-
ing. For each target patch, only the top K matches in the
neighboring frame with high enough matching score are se-
lected. A temporal consistency loss is then applied to all
found matches to promote the mask consistency. Specif-
ically, our surrogate objective function not only promotes
the one-to-k matched regions to reach the same mask prob-
abilities, but also commits their mask prediction to a confi-
dent foreground or background prediction by entropy mini-
mization. Unlike flow-based models [32,45], which assume
one-to-one matching, our approach builds robust and flex-
ible one-to-k correspondences to cope with e.g. occlusions
and homogeneous regions, without introducing additional
model parameters or inference cost.

The TK-Loss is easily integrated into existing VIS meth-
ods, with no architecture modifications required. Dur-
ing training, our TK-Loss simply replaces the conventional
video mask losses in supervising video mask generation.
To further enforce temporal consistency through the video
clip, TK-Loss is employed in a cyclic manner instead of
using dense frame-wise connections. This greatly reduces
memory cost with negligible performance drop.

We extensively evaluate our MaskFreeVIS on four large-
scale VIS benchmarks, i.e., YouTube-VIS 2019/2021 [61],
OVIS [39], and BDD100K MOTS [64]. MaskFreeVIS
achieves competitive VIS performance without using any
video masks or even image mask labels on all datasets. Val-
idated on various methods and backbones, MaskFreeVIS
achieves 91.25% performance of its fully supervised coun-
terparts, even outperforming a few recent fully-supervised
methods [10, 15, 18, 59] on the popular YTVIS bench-
mark. Our simple yet effective design greatly narrows
the performance gap between weakly-supervised and fully-

Table 1. Mask annotation requirement for state-of-the-art VIS
methods. Results are reported using ResNet-50 as backbone on the
YTVIS 2019 [61] benchmark. Video Mask: using YTVIS video
mask labels. Image Mask: using COCO [30] image mask labels
for image-based pretraining. Pseudo Video: using Pseudo Videos
from COCO images for joint training [57]. MaskFreeVIS achieves
91.5% (42.5 vs. 46.4) of its fully-supervised baseline performance
(Mask2Former) without using any masks during training.

Method
Video
Mask

Image
Mask

Pseudo
Video AP

SeqFormer [57] ✓ ✓ ✓ 47.4
VMT [17] ✓ ✓ ✓ 47.9

Mask2Former [6] ✓ ✓ ✓ 47.8
MaskFreeVIS (ours) ✗ ✓ ✓ 46.6

Mask2Former [6] ✓ ✓ ✗ 46.4
MaskFreeVIS (ours) ✗ ✗ ✗ 42.5

supervised video instance segmentation. It further demon-
strates that expensive video masks, or even image masks, is
not necessary for training high-performing VIS models.

Our contributions are summarized as follows: (i) To uti-
lize temporal information, we develop a new parameter-
free Temporal KNN-patch Loss, which leverages temporal
masks consistency using unsupervised one-to-k patch cor-
respondence. We extensively analyze the TK-Loss through
ablative experiments. (ii) Based on the TK-Loss, we de-
velop the MaskFreeVIS method, enabling training existing
state-of-the-art VIS models without any mask annotation.
(iii) To the best of our knowledge, MaskFreeVIS is the first
mask-free VIS method attaining high-performing segmen-
tation results. We provide qualitative results in Figure 1.
As in Table 1, when integrated into the Mask2Former [6]
baseline with ResNet-50, our MaskFreeVIS achieves 42.5%
mask AP on the challenging YTVIS 2019 benchmark while
using no video or image mask annotations. Our approach
further scales to larger backbones, achieving 55.3% mask
AP on Swin-L backbone with no video mask annotations.

We hope our approach will facilitate achieving label-
efficient video instance segmentation, enabling building
even larger-scale VIS benchmarks with diverse categories
by lifting the mask annotation restriction.

2. Related Work
Video Instance Segmentation (VIS) Existing VIS meth-
ods can be summarized into three categories: two-
stage, one-stage, and transformer-based. Two-stage ap-
proaches [2, 18, 28, 29, 61] extend the Mask R-CNN fam-
ily [11, 19] by designing an additional tracking branch for
object association. One-stage works [4, 26, 31, 62] adopt
anchor-free detectors [49], generally using linear masks ba-
sis combination [3] or conditional mask prediction genera-
tion [48]. For the transformer-based models [6, 12, 46, 57,
63], VisTr [54] firstly adapts the transformer [5] for VIS,
and IFC [15] further improves its efficiency via memory
tokens. Seqformer [57] proposes frame query decompo-
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sition while Mask2Former [6] includes masked attention.
VMT [17] extends Mask Transfiner [16] to video for high-
quality VIS, and IDOL [58] focuses on online VIS. State-
of-the-art VIS methods with growing capacity put lim-
ited emphasis on weak supervision. In contrast, the pro-
posed MaskFreeVIS is the first method targeting mask-free
VIS while attaining competitive performance.
Multiple Object Tracking and Segmentation (MOTS)
Most MOTS methods [1,34,35,53,56] follow the tracking-
by-detection principle. PCAN [18] improves temporal
segmentation by utilizing space-time memory prototypes,
while the one-stage method Unicorn [60] focuses on unifi-
cation of different tracking frameworks. Compared to the
aforementioned fully-supervised MOTS methods, Mask-
FreeVIS focuses on label efficient training without GT
masks by proposing a new surrogate temporal loss which
can be easily integrated on them.
Mask-Free VIS Most mask-free instance segmentation
works [7, 13, 20, 25, 27, 37, 40, 44] are designed for sin-
gle images and thus neglect temporal information. Earlier
works BoxSup [8] and Box2Seg [22] rely on region propos-
als produced by MCG [38] or GrabCut [42], leading to slow
training. BoxInst [50] proposes the surrogate projection and
pixel pairwise losses to replace the original mask learning
loss of CondInst [48], while DiscoBox [23] focuses on gen-
erating pseudo mask labels guided by a teacher model.

Earlier works have investigated the use of videos for
weakly-, semi-, or un-supervised segmentation by leverag-
ing motion or temporal consistency [21,51,52]. Most afore-
mentioned approaches do not address the VIS problem, and
use optical flow for frame-to-frame matching [24, 32, 43].
In particular, FlowIRN [32] explores VIS using only clas-
sification labels and incorporates optical flow to leverage
mask consistency. The limited performance makes the
class-label only or fully-unsupervised setting difficult to de-
ploy in the real world. SOLO-Track [9] aims to train VIS
models without video annotations, and one concurrent work
MinVIS [14] performs VIS without video-based model ar-
chitectures. Unlike the above weakly-supervised training
settings, our MaskFreeVIS is designed for eliminating the
mask annotation requirement for VIS, as we note that video
mask labeling is particularly expensive. MaskFreeVIS en-
ables training VIS models without any video masks, or even
image masks. Despite its simplicity, MaskFreeVIS drasti-
cally reduces the gap between fully-supervised and weakly-
supervised VIS models, making weakly-supervised models
more accessible in practice.

3. Method

We propose MaskFreeVIS to tackle video instance seg-
mentation (VIS) without using any video or even image
mask labels. Our approach is generic and can be di-
rectly applied to train state-of-the-art VIS methods, such as
Mask2Former [6] and SeqFormer [57]. In Sec. 3.1, we first

present the core component of MaskFreeVIS: the Temporal
KNN-patch Loss (TK-Loss), which leverages temporal con-
sistency to supervise accurate mask prediction, without any
human mask annotations. In Sec. 3.2, we then describe how
to integrate the TK-Loss with existing spatial weak segmen-
tation losses for transformer-based VIS methods, to achieve
mask-free training of VIS approaches. Finally, we intro-
duce image-based pretraining details of our MaskFreeVIS
in Sec. 3.2.3.

3.1. MaskFreeVIS

In this section, we introduce the Temporal KNN-patch
Loss, illustrated in Figure 3. It serves as an unsupervised
objective for mask prediction that leverages the rich spatio-
temporal consistency constraints in unlabelled videos.

3.1.1 Temporal Mask Consistency

While an image constitutes a single snapshot of a scene,
a video provides multiple snapshots displaced in time.
Thereby, a video depicts continuous change in the scene.
Objects and background move, deform, are occluded, expe-
rience variations in lighting, motion blur, and noise, leading
to a sequence of different images that are closely related
through gradual transformations.

Consider a small region in the scene (Fig. 2), belonging
either to an object or background. The pixels corresponding
to the projection of this region should have the same mask
prediction in every frame, as they belong to the same under-
lying physical object or background region. However, the
aforementioned dynamic changes in the video lead to sub-
stantial appearance variations, serving as a natural form of
data augmentation. The fact that the pixels corresponding
to the same underlying object region should have the same
mask prediction under temporal change therefore provides a
powerful constraint, i.e., temporal mask consistency, which
can be used for mask supervision [21, 24, 32, 51, 52].

The difficulty in leveraging the temporal mask consis-
tency constraint stems from the problem of establishing reli-
able correspondences between video frames. Objects often
undergo fast motion, deformations, etc., resulting in sub-
stantial appearance change. Furthermore, regions in the
scene may be occluded or move out of the image from one
frame to the other. In such cases, no correspondence exist.
Lastly, videos are often dominated by homogenous regions,
such as sky and ground, where the establishment of one-to-
one correspondences are error-prone or even ill-defined.

The problem of establishing dense one-to-one corre-
spondences between subsequent video frames, known as
optical flow, is a long-standing and popular research topic.
However, when attempting to enforce temporal mask con-
sistency through optical flow estimation [24,32,43], one en-
counters two key problems. 1) The one-to-one assumption
of optical flow is not suitable in cases of occlusions, ho-
mogenous regions, and along single edges, where the corre-
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Figure 3. Temporal KNN-patch Loss has four steps: 1) Patch Candidate Extraction: Patch candidates searching across frames with radius
R. 2) Temporal KNN-Matching: Match k high-confidence candidates by patch affinities. 3) Consistency loss: Enforce mask consistency
objective (Eq. 2) among the matches. 4) Cyclic Tube Connection: Temporal loss aggregation in the 5-frame tube, detailed in Figure 4.

spondence is either nonexistent, undefined, ambiguous, un-
certain, or very difficult to determine. 2) State-of-the-art
optical flow estimation rely on large and complex deep net-
works, with large computational and memory requirements.

Instead of using optical flow, we aim to design a sim-
ple, efficient, and parameter-free approach that effectively
enforces the temporal mask consistency constraint.

3.1.2 Temporal KNN-patch Loss

Our Temporal KNN-patch Loss (TK-Loss) is based on
a simple and flexible correspondence estimation across
frames. In contrast to optical flow, we do not restrict our
formulation to one-to-one correspondences. Instead, we es-
tablish one-to-K correspondences. This include the con-
ventional one-to-one (K = 1), where a unique well-defined
match exists. However, this allows us to also handle the
cases of nonexistent correspondences (K = 0) in case
of occlusions, and one-to-many (K ≥ 2) in case of ho-
mogenous regions. In cases where multiple matches are
found, these most often belong to the same underlying ob-
ject or background due to their similar appearance, as in
Figure 2. This further benefits our mask consistency ob-
jective through denser supervision. Lastly, our approach is
simple to implement, with negligible computational over-
head and no learnable parameters. Our approach is in Fig-
ure 3, and contains four main steps, which are detailed next.
1) Patch Candidate Extraction: Let Xt

p denote an N×N
target image patch centered at spatial location p = (x, y) in
frame t. Our aim is to find a set of corresponding positions
St→t̂
p = {p̂i}i in frame number t̂ that represent the same

object region. To this end, we first select candidate locations
p̂ within a radius R such that ∥p− p̂∥ ≤ R. Such windowed
patch search exploits spatial proximity across neighboring
frames in order to avoid an exhaustive global search. For a
fast implementation, the windowed search is performed for
all target image patches Xt

p in parallel.
2) Temporal KNN-Matching: We match patch candidate
patches through a simple distance computation,

dt→t̂
p→p̂ =

∥∥∥Xt
p −X t̂

p̂

∥∥∥, (1)

In our ablative experiments (Sec. 4.3), we found the L2

norm to be the most effective patch matching metric. We se-
lect the top K matches with smallest patch distance dt→t̂

p→p̂.
Lastly low-confidence matches are removed by enforcing a
maximal patch distance D as dt→t̂

p→p̂ < D. The remaining
matches form the set St→t̂

p = {p̂i}i for each location p.
3) Consistency loss: Let M t

p ∈ [0, 1] denote the predicted
binary instance mask of an object, evaluated at position p in
frame t. To ensure temporal mask consistency constraints,
we penalize inconsistent mask predictions between a spatio-
temporal point (p, t) and its estimated corresponding points
in St→t̂

p . In particular we use the following objective,

Lt→t̂
f =

1

HW

∑
p

∑
p̂i∈St→t̂

p

Lcons(M
t
p,M

t̂
p̂i
), (2)

where mask consistency is measured as

Lcons(M
t
p,M

t̂
p̂) = −log

(
M t

pM
t̂
p̂+(1−M t

p)(1−M t̂
p̂)
)
. (3)

Note that Eq. (3) only attains its minimum value of zero if
both predictions indicate exactly background (M t

p = M t̂
p̂ =

0) or foreground (M t
p = M t̂

p̂ = 1). The objective does thus
not only promote the two mask predictions to achieve the
same probability value M t

p = M t̂
p̂, but also to commit to a

certain foreground or background prediction.
4) Cyclic Tube Connection: Suppose the temporal tube
consists of T frames. We compute the temporal loss for
the whole tube in a cyclic manner, as in Figure 4. The start
frame is connected to the end frame, which introduces direct
long-term mask consistency across the two temporally most
distant frames. The temporal TK-Loss for the whole tube is
given by

Ltemp =

T∑
t=1

{
Lt→(t+1)

f if t < T − 1

Lt→0
f if t = T − 1.

(4)

Compared to inter-frame dense connections in Figure 4,
we find the cyclic loss to achieve similar performance but
greatly reduce the memory usage as validated in the exper-
iment section.
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Dense Connections (10)
Sequential Connections (4)
Cyclic Connections (Ours, 5)

Figure 4. Illustration of different frame-wise tube connection set-
tings (connection number) in the temporal loss design.

3.2. Training MaskFreeVIS

In this section, we describe how to train state-of-the-art
VIS methods using our TK-Loss, without any mask anno-
tations. Our MaskFreeVIS approach is jointly supervised
with spatial-temporal surrogate losses, and is easily inte-
grated with existing transformer-based methods. We also
detail mask-free image-based pre-training for MaskFree-
VIS to fully eliminate mask usage during training.

3.2.1 Joint Spatio-temporal Regularization

To train MaskFreeVIS, in addition to our proposed Tem-
poral KNN-patch Loss for temporal mask consistency, we
leverage existing spatial weak segmentation losses to jointly
enforce intra-frame consistency.
Spatial Consistency To explore spatial weak supervi-
sion signals from image bounding boxes and pixel color,
we utilize the representative Box Projection Loss Lproj and
Pairwise Loss Lpair in [50], to replace the supervised mask
learning loss. The Projection Loss Lproj enforces the pro-
jection P ′ of the object mask onto the x⃗-axis and y⃗-axis of
image to be consistent with its ground-truth box mask. For
the temporal tube with T frames, we concurrently optimize
all predicted frame masks of the tube as,

Lproj =

T∑
t=1

∑
d∈{x⃗,y⃗}

D(P ′
d(M

t
p), P

′
d(M

t
b)), (5)

where D denotes dice loss, P ′ is the projection function
along x⃗/y⃗-axis direction, M t

p and M t
b denote predicted in-

stance mask and its GT box mask at frame t respectively.
The object instance index is omitted here for clarity.

The Pairwise Loss Lpair, on the other hand, constrains
spatially neighboring pixels of single frame. For pixel of
locations p′i and p′j of with color similarity ⩾ σpixel, we en-
force their predicted mask labels to be consistent, following
Eq. (3) as,

Lpair =
1

T

T∑
t=1

∑
p′
i∈H×W

Lcons(M
t
p′
i
,M t

p′
j
). (6)

The spatial losses are combined with a weight factor λpair:

Lspatial = Lproj + λpairLpair. (7)

Temporal Consistency We adopt the Temporal KNN-
patch Loss in Sec. 3.1.2 as Ltemp to leverage temporal mask
consistency. The overall spatio-temporal objective Lseg for
optimizing video segmentation is summarized as,

Lseg = Lspatial + λtempLtemp. (8)

3.2.2 Integration with Transformer-based Methods

Existing works [13, 48] on box-supervised segmentation
losses are coupled with either one-stage or two-stage de-
tectors, such as Faster R-CNN [41] and CondInst [48], and
only address the single image case. However, state-of-the-
art VIS methods [6, 57] are based on transformers. These
works perform object detection via set prediction, where
predicted instance masks need to be matched with mask an-
notations when evaluating the loss. To integrate mask-free
VIS training with transformers, one key modification is in
this instance-sequence matching step.

Since only ground-truth bounding boxes are available for
box sequence matching, as an initial attempt, we first pro-
duce bounding box predictions from the estimated instance
masks. Then, we employ the sequential box matching cost
function used in VIS methods [55, 57]. To compute match-
ing cost for whole sequence, L1 loss and generalized IoU
loss for each individual bounding box is averaged across
the frames. However, we observe the matching results of
frame-wise averaging can easily be affected by a single out-
lier frame, especially under weak segmentation setup, lead-
ing to instability during training and performance decrease.
Spatio-temporal Box Mask Matching Instead of using
the aforementioned frame-wise matching, we empirically
find spatio-temporal box-to-mask matching to produce sub-
stantial improvement under the weak segmentation setting.
We first convert each predicted instance mask to a bounding
box mask, and convert the ground-truth box to box mask.
We then randomly sample a equal number of points from the
ground-truth box mask sequence and predicted box mask
sequence, respectively. Different from Mask2Former [6],
we only adopt the dice IoU loss to compute sequence
matching cost. We find that cross-entropy accumulates er-
rors per pixel, leading to imbalanced values between large
and small objects. In contrast, the IoU loss in normalized
per object, leading to a balanced metric. We study different
instance sequence matching strategies under the mask-free
VIS setting in the ablation experiments.

3.2.3 Image-based MaskFreeVIS Pre-training

Most VIS models [6, 57, 61] are initialized from a model
pretrained on the COCO instance segmentation dataset. To
completely eliminate mask supervision, we pretrain our
MaskFreeVIS on COCO using only box supervision. We
adopt the spatial consistency loss described in Sec. 3.2.1
on single frame to replace the original GT mask losses in
Mask2Former [6], while following the same image-based
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training setup on COCO. Thus, we provide two training
settings in our experiments, one eliminates both image and
video mask during training, while the other adopts weights
pretrained with COCO mask annotations. In both cases, no
video mask annotations are used.

4. Experiments
4.1. Datasets

YTVIS 2019/2021 We perform experiments on the large-
scale YouTube-VIS [61] 2019 and 2021. YTVIS 2019 in-
cludes 2,883 videos of 131k annotated object instances be-
longing to 40 categories. To handle more complex cases,
YTVIS 2021 updates YTVIS 2019 with additional 794
videos for training and 129 videos for validation, including
more tracklets with confusing motion trajectories.
OVIS We also train and evaluate on OVIS [39], a VIS
benchmark on occlusion learning. OVIS consists of in-
stance masks covering 25 categories with 607, 140 and 154
videos for train, valid and test respectively.
BDD100K MOTS We further report results of Mask-
FreeVIS on the large-scale self-driving benchmark
BDD100K [64] MOTS. The dataset annotates 154 videos
(30,817 images) for training, 32 videos (6,475 images) for
validation, and 37 videos (7,484 images) for testing.

4.2. Implementation Details

Our proposed approach only requires replacing the orig-
inal video mask loss in state-of-the-art VIS methods. In
particular, we adopt Mask2Former [6] and SeqFormer [57]
due to their excellent VIS results. Unless specified, we kept
all other training schedules and settings the same as in the
original methods. For the Temporal KNN-patch Loss, we
set the patch size to 3×3, search radius to 5 and K = 5. We
adopt the L2 distance as the patch matching metric and set
the matching threshold to 0.05. On YTVIS 2019/2021, the
Mask2Former based models are trained with AdamW [33]
with learning rate 10−4 and weight decay 0.05. The learn-
ing rate decays by 10 times at with a factor of 2/3. We
set batch size to 16, and train 6k/8k iterations on YTVIS
2019/2021. For experiments on OVIS and BDD100K, we
adopted the COCO mask pretrained models by VITA and
Unicorn. For the sampled temporal tube at training, we use
5 frames with shuffling instead of 2 frames for better tem-
poral regularization. The compared baselines are adjusted
accordingly. During testing, since there is no architecture
modification, the inference of MaskFreeVIS is the same to
the baselines. More details are in the Supp. file.

4.3. Ablation Experiments

We perform detailed ablation studies for MaskFreeVIS
using ResNet-50 as backbone on the YTVIS 2019 val set.
We adopt the COCO box-pretrained model as initialization
to eliminate all mask annotations from the training. Tak-
ing Mask2Former [6] as the base VIS method, we analyze

Table 2. Different temporal matching schemes under the mask-
free training setting on YTVIS2019 val. ‘Param’ indicates whether
the matching scheme brings extra model parameters.

Temporal Matching Scheme Param AP AP50 AP75 AR1 AR10

Baseline (No Matching) ✗ 38.6 65.9 38.8 38.4 47.7

Flow-based Matching ✓ 40.2 66.3 41.9 40.5 49.1
Temporal Deformable Matching ✓ 39.6 65.9 40.1 39.9 48.6
Learnable Pixel Matching ✓ 39.5 65.7 40.2 39.7 48.4
Learnable Patch Matching ✓ 40.6 66.5 42.6 40.3 49.2

3D Pairwise Matching ✗ 39.4 65.0 41.7 40.2 48.0

Temporal KNN-Matching (Ours) ✗ 42.5 66.8 45.7 41.2 51.2

the impact of individual proposed components. Moreover,
we study several alternative solutions for temporal matching
and influence of different hyper-parameters to TK-Loss.
Comparison on Temporal Matching Schemes Table 2
compares our Temporal KNN-Matching to four alternative
frame-wise matching approaches for enforcing temporal
mask consistency. Flow-based Matching employs the pre-
trained optical flow model RAFT [45] to build pixel corre-
spondence [32]. Temporal Deformable Matching adopts
the temporal deformable kernels [47] to predict the pixel
offsets between the target and alignment frame. Instead
of using raw patches, Learnable Pixel/Patch Matching
employs jointly learned deep pixel/patch embeddings via
three learnable FC layers, which are then used to compute
the affinities in a soft attention-like manner. 3D Pairwise
Matching directly extends Lpair designed for spatial images
to the temporal dimension, where pairwise affinity loss is
computed among pixels not only in within the frame but
also across multiple frames.

In Table 2, compared to Flow-based Matching with one-
to-one pixel correspondence, our paramter-free Temporal
KNN-Matching with one-to-K improves by about 2.3 AP.
The prediction of flow-based models are not reliable in case
of occlusions and homogeneous regions, and are also in-
fluenced by the gap between the training dataset and real-
world video data. For the above mentioned deformable
and learnable matching schemes, since there are only weak
bounding box labels during training, the temporal match-
ing relation is learnt implicitly. We empirically observe the
instability during training with limited improvement under
the mask-free training setting. For direct generalization of
Lpair, it only leads to 0.8 mask AP performance improve-
ment. Despite the simplicity and efficiency of the TK-loss,
it significantly improves VIS performance by 3.9 mask AP.
Effect of Temporal KNN-patch Loss MaskFreeVIS is
trained with joint spatio-temporal losses. In Table 3, to eval-
uate the effectiveness of each loss component, we compare
the performance of MaskFreeVIS solely under the spatial
pairwise loss [50] or our proposed TK-Loss. Compared to
the 2.0 mask AP improvement by the spatial pairwise loss,
the TK-Loss substantially promotes the mask AP from 36.6
to 41.6, showing the advantage of our flexible one-to-K
patch correspondence design in leveraging temporal con-
sistency. We show the VIS results in Figure 5 to visualize
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Table 3. Effect of the Spatial Pairwise loss and our Temporal
KNN-patch Loss on YTVIS2019 val.

Box Proj Pairwise TK-Loss AP AP50 AP75 AR1 AR10

✓ 36.6 66.5 36.2 37.1 45.0
✓ ✓ 38.6↑2.0 65.9 38.8 38.4 47.7
✓ ✓ 41.6↑5.0 68.4 43.5 40.1 50.5
✓ ✓ ✓ 42.5↑5.9 66.8 45.7 41.2 51.2

Table 4. Effect of using max K
matches on YTVIS2019 val.

K AP AP50 AP75 AR1

1 40.8 65.8 44.1 40.3
3 41.9 66.9 45.1 41.9
5 42.5 66.8 45.7 41.2
7 42.3 67.1 44.6 40.6

Table 5. Patch Matching met-
rics comparison. NCC is Norm.
Cross-Correlation.

Metric AP AP50 AP75 AR1

NCC 41.7 66.7 43.4 41.4
L1 41.2 66.2 43.6 40.3
L2 42.5 66.8 45.7 41.2

Table 6. Impact of search radius
R on YTVIS2019 val.

R AP AP50 AP75 AR1

1 39.6 65.7 40.2 39.7
3 41.3 66.6 43.0 40.3
5 42.5 66.8 45.7 41.2
7 42.3 67.1 44.6 40.6

Table 7. Influence of patch size
N on YTVIS2019 val.

N AP AP50 AP75 AR1

1 40.1 65.2 42.2 40.0
3 42.5 66.8 45.7 41.2
5 42.1 68.7 44.4 42.1
7 41.5 66.3 44.8 41.3

the effectiveness of each loss component.
Analysis of Temporal KNN-patch Loss In Table 4, we
study the influence of K, the maximum number of matches
selected in Temporal KNN-patch Loss. The best result is
obtained for K = 5, while K = 1 only allows for the one-
to-one and no-match cases. The improvement from 40.8
mask AP to 42.5 mask AP reveals the benefit brought by
the flexible one-to-many correspondence design. We also
analyze the matching metric in Table 5, search radius in Ta-
ble 6, and patch size in Table 7 (see Sec. 3.1.2 for details).
When patch size N is increased from 1 to 3 in Table 7, the
performance of MaskFreeVIS is improved by 2.4 AP, vali-
dating the importance of patch structure in robust matching.
Effect of the Cyclic Tube Connection We compare three
frame-wise tube connection schemes (Figure 4) for the TK-
Loss in Table 8. While dense connection brings forth the
best performance, it doubles the training memory with mi-
nor improvement compared to Cyclic connection. Compar-
ing to Sequential connection, our Cyclic connection benefits
from long-range consistency, improving the performance of
0.6 mask AP with an affordable memory cost growth.
Table 8. Comparison of the tube connection schemes, illustrated in
Fig. 4. The tube consist of 5 frames. ‘Mem’ denotes the memory
consumption per sampled video by the TK-Loss during training.

Tube Connect Connect Num. Mem (MB) AP AP50 AP75 AR1

Dense 10 1526 42.7 68.0 44.3 41.5
Sequential 4 631 41.9 66.5 44.7 41.2
Cyclic (Ours) 5 773 42.5 66.8 45.7 41.2

Comparison on Sequence Matching Functions Besides
TK-Loss, we analyze the influence of sequence matching
cost functions for transformer-based VIS methods under the
mask-free setting. In Table 9, we identify the substantial ad-
vantage of Spatio-temporal box-mask matching over frame-
wise cost averaging [55,57]. As discussed in Sec. 3.2.2, we

Mask2Fomer + BoxInst (Baseline) Mask2Former (Oracle)Mask2Fomer + TK-Loss (Ours)

Figure 5. Qualitative results comparison between using Spa-
tial Pairwise loss [50], our TK-Loss, and Mask2Former (oracle)
trained with GT video and image masks.
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Figure 6. Results on YTVIS 2019 val with various percentages
of the YTVIS training data. Baseline denotes Mask2Former [6]
trained with GT video boxes using BoxInst [50], while Oracle de-
notes Mask2Former trained with GT video masks.

Table 9. Comparison of Set Matching Cost Functions on
YTVIS2019 val. ST-BoxMask denotes our Spatio-temporal Box
Mask matching. w/o CE denotes removing cross-entropy cost.

Matching Cost Function AP AP50 AP75 AR1 AR10

Frame-wise Averaging [55, 57] 37.6 64.2 39.5 37.5 45.7
ST-BoxMask 40.8 67.8 42.2 40.0 49.2

ST-BoxMask w/o CE 42.5 66.8 45.7 41.2 51.2

achieve further gain by removing the object size imbalanced
cross-entropy cost computation.
Training on Various Amounts of Data To further study
label-efficient VIS, we validate the effect of MaskFreeVIS
under various percentages of the YTVIS 2019 training data.
We uniformly sample frames and their labels for each video,
and set the minimum sampled number of frames to 1. Fig-
ure 6 presents the experimental results, which shows the
consistent large improvement (over 3.0 AP) brought by our
TK-Loss under various amount of data. In particular, we
note that our approach with 50% data even outperforms the
fully-supervised model with 10% training data.

4.4. Comparison with State-of-the-art Methods

We compare MaskFreeVIS with the state-of-the-art
fully/weakly supervised methods on benchmarks YTVIS
2019/2021, OVIS and BDD100K MOTS. We integrate
MaskFreeVIS on four representative methods [6,12,57,60],
attaining consistent large gains over the strong baselines.
YTVIS 2019/2021 Table 10 compares the performance
on YTVIS 2019. Using R50/R101 as backbone and with
the same training setting, MaskFreeVIS achieves 42.5/45.8
AP, improving 3.9/5.0 AP over the strong baseline adopt-
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Table 10. Comparison on YTVIS 2019. I: using COCO mask pre-
trained model as initialization. V: using YTVIS video masks dur-
ing training. ∗: using pseudo mask from COCO images for joint
training [57]. M2F: Mask2Former [6], SeqF: SeqFormer [57].
Method Mask Back- AP AP50 AP75 AR1 AR10

ann. bone

Fully-supervised:
PCAN [18] I+V R50 36.1 54.9 39.4 36.3 41.6
EfficientVIS [59] I+V R50 37.9 59.7 43.0 40.3 46.6
InsPro [10] I+V R50 40.2 62.9 43.1 37.6 44.5
IFC [15] I+V R50 42.8 65.8 46.8 43.8 51.2
VMT∗ [17] I+V R50 47.9 - 52.0 45.8 -
SeqF∗ [57] I+V R50 47.4 69.8 51.8 45.5 54.8
M2F I+V R50 46.4 68.0 50.0 - -
M2F∗ I+V R50 47.8 69.2 52.7 46.2 56.6

Prev. Weakly-supervised:
FlowIRN [32] - R50 10.5 27.2 6.2 12.3 13.6
SOLO-Track [9] I R50 30.6 50.7 33.5 31.6 37.1

Mask-free:
M2F + Flow Consist [45] - R50 40.2 66.3 41.9 40.5 49.1
M2F + BoxInst [50] - R50 38.6 64.2 38.5 38.0 46.8
M2F + MaskFreeVIS - R50 42.5↑3.9 66.8 45.7 41.2 51.2
M2F + MaskFreeVIS I R50 43.8↑5.2 70.7 46.9 41.5 52.3
M2F + MaskFreeVIS∗ I R50 46.6↑8.0 72.5 49.7 44.9 55.7
Fully-supervised:
M2F V R101 45.6 72.6 48.9 44.3 54.5
M2F I+V R101 49.2 72.8 54.2 - -
M2F∗ I+V R101 49.8 73.6 55.4 48.0 58.0
SeqF∗ I+V R101 49.0 71.1 55.7 46.8 56.9

Mask-free:
M2F + BoxInst [50] - R101 40.8 67.8 42.2 40.0 49.2
M2F + MaskFreeVIS - R101 45.8↑5.0 70.8 48.6 45.3 55.2
M2F + MaskFreeVIS I R101 47.3↑6.5 75.4 49.9 44.6 55.2
M2F + MaskFreeVIS∗ I R101 48.9↑8.1 74.9 54.7 44.9 57.0
SeqF + MaskFreeVIS∗ I R101 48.6 74.0 52.2 45.9 57.2
Fully-supervised:
M2F I+V SwinL 60.4 84.4 67.0 - -

Mask-free:
M2F + BoxInst [50] - SwinL 49.8 73.2 55.5 48.2 58.1
M2F + MaskFreeVIS - SwinL 54.3↑4.5 82.6 61.1 50.2 61.3
M2F + MaskFreeVIS∗ I SwinL 55.3↑5.5 82.5 60.8 50.7 62.2

ing BoxInst [50] losses. MaskFreeVIS, without any mask
labels, even significantly outperforms some recent fully-
supervised methods such as EfficientVIS [59] and In-
sPro [10]. On R50/R101/Swin-L, our MaskFreeVIS con-
sistently attains over 91% of its fully-supervised counterpart
trained with both GT image and video masks. We also ob-
serve similar larger performance growth over the baseline
on YTVIS 2021 in Table 11. The excellent performance
substantially narrows the performance gap between fully-
supervised and weakly-supervised VIS.
OVIS We also conduct experiments on OVIS in Table 12
using R50 as backbone. We integrate MaskFreeVIS with
VITA [12], promoting the baseline performance from 12.1
to 15.7 under the mask-free training setting.
BDD100K MOTS Table 13 further validates our approach
on BDD100K MOTS. Integrated with Unicorn [60], Mask-
FreeVIS achieves 23.8 mMOTSA by improving over 4.9
points over the strong baseline and thus surpassing the fully-

1This work is supported in part by Research Grant Council of the Hong
Kong SAR under grant no. 16201420 and Huawei Technologies.

Table 11. Comparison on YTVIS 2021. Refer to Table 10 for the
symbol abbreviations.

Method Mask Back- AP AP50 AP75 AR1 AR10

ann. bone

Fully-supervised:
MaskTrack [61] I+V R50 28.6 48.9 29.6 26.5 33.8
IFC [15] I+V R50 36.6 57.9 39.3 - -
SeqF∗ [57] I+V R50 40.5 62.4 43.7 36.1 48.1
M2F I+V R50 40.6 60.9 41.8 - -

Mask-free:
M2F + BoxInst [50] - R50 32.1 52.8 34.4 31.0 38.1
M2F + MaskFreeVIS - R50 36.2↑4.1 60.8 39.2 34.6 45.6
M2F + MaskFreeVIS I R50 37.2↑5.1 61.9 40.3 35.3 46.1
M2F + MaskFreeVIS∗ I R50 40.9↑8.8 65.8 43.3 37.1 50.5
Fully-supervised:
M2F I+V R101 42.4 65.9 45.8 - -

Mask-free:
M2F + BoxInst [50] - R101 33.3 55.2 32.5 32.1 41.9
M2F + MaskFreeVIS - R101 37.3↑4.0 61.6 39.4 34.1 45.6
M2F + MaskFreeVIS I R101 38.2↑4.9 62.4 40.0 34.9 46.2
M2F + MaskFreeVIS∗ I R101 41.6↑8.3 66.2 44.8 36.3 49.2

Table 12. State-of-the-art comparison on the OVIS using R50.

Method AP AP50 AP75 AR1 AR10

Fully-supervised:
CrossVIS [62] 14.9 32.7 12.1 10.3 19.8
Mask2Former [6] 17.3 37.3 15.1 10.5 23.5
VMT [17] 16.9 36.4 13.7 10.4 22.7
VITA [12] 19.6 41.2 17.4 11.7 26.0

Video Mask-free:
VITA [12] + BoxInst [50] 12.1 28.3 10.2 8.8 17.9
VITA [12] + MaskFreeVIS 15.7↑3.6 35.1 13.1 10.1 20.4

Table 13. State-of-the-art comparison on the BDD100K segmen-
tation tracking validation set.

Method mMOTSA↑ mMOTSP↑ mIDF↑ ID sw.↓ mAP↑

Fully-supervised:
STEm-Seg [1] 12.2 58.2 25.4 8732 21.8
QDTrack-mots-fix [36] 23.5 66.3 44.5 973 25.5
PCAN [18] 27.4 66.7 45.1 876 26.6
Unicorn [60] 29.6 67.7 44.2 1731 32.1

Video Mask-free:
Unicorn [60] + BoxInst [50] 18.9 58.7 36.3 3298 22.1
Unicorn [60] + MaskFreeVIS 23.8↑4.9 66.7 44.9 2086 24.8

supervised QDTrack-mots [36]. The consistent large gains
on four benchmarks and four base VIS methods validates
the generalizability of our MaskFreeVIS.

5. Conclusion
MaskFreeVIS is the first competitive VIS method that

does not need any mask annotations during training. The
strong results lead to a remarkable conclusion: mask la-
bels are not a necessity for high-performing VIS. Our key
component is the unsupervised Temporal KNN-patch Loss,
which replaces the conventional video masks losses by
leveraging temporal mask consistency constraints. Our ap-
proach greatly reduces the long-standing gap between fully-
supervised and weakly-supervised VIS on four large-scale
benchmarks. MaskFreeVIS thus opens up many opportuni-
ties for researchers and practitioners for label-efficient VIS.
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