
Bridging the Gap between Model Explanations in
Partially Annotated Multi-label Classification

Youngwook Kim1 Jae Myung Kim2 Jieun Jeong1,3

Cordelia Schmid4 Zeynep Akata2,5 Jungwoo Lee1,3*

1Seoul National University 2University of Tübingen 3HodooAI Lab
4Inria, Ecole normale supérieure, CNRS, PSL Research University 5MPI for Intelligent Systems

Abstract

Due to the expensive costs of collecting labels in multi-
label classification datasets, partially annotated multi-label
classification has become an emerging field in computer vi-
sion. One baseline approach to this task is to assume unob-
served labels as negative labels, but this assumption induces
label noise as a form of false negative. To understand the
negative impact caused by false negative labels, we study
how these labels affect the model’s explanation. We observe
that the explanation of two models, trained with full and
partial labels each, highlights similar regions but with dif-
ferent scaling, where the latter tends to have lower attribu-
tion scores. Based on these findings, we propose to boost the
attribution scores of the model trained with partial labels to
make its explanation resemble that of the model trained with
full labels. Even with the conceptually simple approach,
the multi-label classification performance improves by a
large margin in three different datasets on a single pos-
itive label setting and one on a large-scale partial label
setting. Code is available at https://github.com/
youngwk/BridgeGapExplanationPAMC.

1. Introduction
Multi-label image classification is the task of predict-

ing all labels corresponding to a given image. Since web-
crawled images often contain multiple objects/concepts
[3, 32, 35, 44], the importance of this task is rising. How-
ever, it faces a significant issue of huge annotation costs. We
need C binary labels for each training image to provide ex-
haustive annotation for a model that classifies images into C
categories. It acts as a severe obstacle to scaling multi-label
classification datasets.

For this reason, partially annotated multi-label classifi-
cation [2, 11, 13, 17, 21, 24] has recently become an actively
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Figure 1. CAM Observation. We compare the class activation
map (CAM) output from two multi-label classification models:
one trained with full labels (CAMfull) and the other trained with
partial labels and AN assumption (CAMpartial). We observe that the
overall structure of CAMpartial is not much affected by the noisy
false negative labels during training. This observation motivates
us to make CAMpartial similar to CAMfull by boosting its relatively
large attribution scores. Best viewed in color.

studied topic. In this setting, instead of exhaustive annota-
tion, only a few categories are labeled for each training im-
age. We can effectively reduce the burden of annotation by
adopting partial annotation strategies.

One baseline approach for solving a partially annotated
multi-label classification task is assuming unobserved la-
bels as negative labels (Assume Negative, AN) [4,6,36,40].
It is a reasonable assumption since most labels are nega-
tive labels in the multi-label scenario [33]. However, this
assumption causes label noise in a form of false negatives
since the actually positive but unannotated labels are incor-
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rectly assumed to be negative. Since this label noise per-
turbs the learning process of the model [1, 7, 18, 45], recent
studies on a partially annotated multi-label classification fo-
cus on suppressing the influence of label noise by ignoring
or correcting the loss of samples that are likely to be false
negatives [2, 21].

Aside from recent research directions, we delve into
“how” false negative labels influence a multi-label classi-
fication model. We conduct control experiments with two
models. One is the model trained with partial labels and
AN assumption where false negative labels exist. The other
is the model trained with full annotations and thus trained
without false negatives. We compare the class activation
map (CAM) [49] output between the two models to see the
difference in how each model understands the input image
and makes a prediction result.

Figure 1 shows that a model trained with false negatives
still highlights similar regions to one trained with full an-
notation. However, the attribution scores in the highlighted
areas are much small. This observation leads us to think that
if we scale up the damaged score of the highlighted region
in the model trained with false negatives, the explanation of
this model will become similar to that of the model trained
with full annotation.

To this end, we introduce a simple piece-wise linear
function, named BoostLU, that bridges the gap between
the explanation of two models trained with false negatives
and with full annotation each. Concretely, we use the mod-
ified CNN model to get CAM during the forward pass di-
rectly [47], and the logit in the modified CNN model is the
mean of attribution scores of CAM. The BoostLU function
is applied element-wisely to the CAM output of the mod-
ified CNN to boost the scores of the highlighted regions,
thereby compensating for the decrease of attribution scores
in CAM caused by false negatives. It increases the logit
value for positive labels and thus makes a better prediction.
Furthermore, when we combine BoostLU with the recently
proposed methods [21] that explicitly detect and modify
false negatives during training, it helps to detect false neg-
atives better, thus leading to better performance. As a re-
sult, we achieve state-of-the-art performance on PASCAL
VOC [14], MS COCO [28], NUSWIDE [10], and Openim-
ages V3 [23] datasets in a partial label setting.

We summarize the contributions of this paper as follows.

1. We analyze how the false negative labels affect the ex-
planation of the model in a partially annotated multi-
label classification scenario.

2. We propose a simple but effective function, named
BoostLU, that compensates for the damage of false
negatives in a multi-label classification model with lit-
tle extra computational cost.

3. When applied during inference, BoostLU boosts the

baseline method (AN)’s test performance without ad-
ditional training.

4. Combined with recent methods of detecting and mod-
ifying false negatives during training, BoostLU boosts
the state-of-the-art performance on single positive and
large-scale partial label settings.

2. Related Works
Partially annotated multi-label classification. One pri-
mary stream to solve the partially annotated multi-label
classification problem is to view unobserved labels as miss-
ing labels. Earlier works tackled this problem by solving
matrix completion [5, 15, 43] or employing the Bayesian
model [19, 37]. However, these works require loading all
data into memory at once, thus making it infeasible to train
deep neural networks. Curriculum labeling [13] proposed a
bootstrapping strategy using model prediction. IMCL [17],
SE [24], and SST [8] exploited label correlation and image
similarity to generate regularization losses or pseudo-labels
for missing labels. SARB [31] performed a category-wise
mixup on feature space between labeled and unlabeled im-
ages to propagate information into missing labels. Zhou et
al. [50] proposed entropy maximization loss that suppresses
gradients from missing labels to promote learning from ob-
served labels.

Since a significant part of labels is negative in a multi-
label setting [33], there is another stream to treat unob-
served labels as negatives and try to lessen the harmful im-
pact of false negatives. In other words, it views unobserved
labels as noisy labels. ROLE [11] proposed to estimate un-
observed labels while simultaneously regularizing the esti-
mation with an average number of positive labels online.
Kim et al. [21] observed the memorization effect [1] in a
noisy multi-label classification setting that the model learns
from clean labels first. Thus false negative labels are likely
to show large loss values during training. Then they sug-
gested three methods, LL-R, LL-Ct, and LL-Cp, that pre-
vent false negatives from being memorized by rejecting,
temporally correcting, and permanently correcting samples
with large losses, respectively. P-ASL [2] assigned differ-
ent scaling rates between annotated negatives and assumed
negatives. It also ignored losses from categories with high
prediction scores or label prior values. In this work, we look
at false negatives differently and study their effect on model
explanation.
Class activation mapping. Class activation mapping
(CAM) [49] provides information about where the classi-
fication model is attending to generate prediction scores.
There are several follow-up works, including Grad-CAM
[34], which generates model-agnostic attention maps, and
CALM [20], which strengthens the interpretability of atten-
tion maps.
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Since CAM provides localization ability to classification
models, it has been widely used for various vision tasks,
such as weakly supervised object localization [9,12,41,42]
and weakly supervised semantic segmentation [25, 26, 29,
42, 46]. Recently, Zhang et al. [48] utilized CAM in facial
expression recognition in the presence of noisy labels. They
found that the model trained with noisy labels highlights
only part of the features and suggested a random masking
strategy to prevent memorizing partial features. Although
there is a similarity in that they inspected the CAM output
of the model in noisy label situations, our work is different
since we focus on the noisy multi-label classification setting
with another type of noise.

3. Preliminary
This section introduces the formal definition of a par-

tially annotated multi-label classification in §3.1. Next, we
briefly summarize the class activation map (CAM) in §3.2.

3.1. Problem Definition

We aim to train a multi-label classification model with
dataset D consisting of pairs of input image x and partially
annotated label y. Each category can have three kinds of
labels: 0, 1, and ϕ. In other words, y ∈ Y = {0, 1, ϕ}C
where ϕ indicates the absence of annotation and C is the
number of total categories. Denote the index set of positive
labels, negative labels, and unannotated labels as I p, I n,
and I ϕ, respectively. We study the setting where labels are
sparsely annotated, i.e., |I p|+ |I n| ≪ |I ϕ|.

A straightforward approach to train the model given par-
tial labels is to treat unannotated labels by assuming nega-
tive (AN) and use binary cross-entropy as a loss function:

LAN =
1

C

 ∑
i∈I p

L+ +
∑

i∈I n∪I ϕ

L−

 (1)

where L+ = − log(σ(gi)), L− = − log(1−σ(gi)) and gi is
a logit for i-th category. However, labels whose true label is
positive but unannotated are incorrectly assumed to be neg-
ative and become false negatives. Denote the index set of
true negative and false negative labels as I tn and I fn, then
I n ∪ I ϕ = I tn ∪ I fn. We set the approach of training
the model with Equation (1) as the baseline method and in-
vestigate the influence of false negatives on the multi-label
classification model.

3.2. Recap CAM

Most CNN architectures consist of several convolution
layers (Convs), followed by a Global Average Pooling
(GAP) layer [27] and a fully connected (FC) layer. Let the
last convolutional feature map be F ∈ RH×W×D, and
a weight matrix of the FC layer be W ∈ RC×D where

(H,W ) and D are the spatial size and channel size of the
feature map, respectively. We can obtain the class activation
map (CAM) [49] for class c (Mc) by

Mc =

D∑
d=1

WcdFd , (2)

where Fd denotes d-th channel of F . Mc explains the
model’s prediction by attributing scores on each pixel.

Instead of performing post-processing to get CAM as in
Equation (2), we can directly get CAM during the forward
pass by reordering the last two layers from Convs-GAP-FC
to Convs-1x1Conv-GAP where 1x1Conv is the one-by-one
convolutional layer with the weight W [47]. The output fea-
ture maps of 1x1Conv become the same as M , and the logit
gc becomes

gc =
1

HW

H∑
i=1

W∑
j=1

(Mc)ij . (3)

Thus, we can interpret each element (Mc)ij as an attribu-
tion score at spatial location (i, j) contributing to the logit
for class c. For the following sections, we utilize this modi-
fied architecture to facilitate the application of our method.

4. Impact of False Negatives on CAM

It is well known that neural networks can memorize
wrong labels due to their large model capacities [45]. Like-
wise, if we train a multi-label classification model with AN
loss (Equation (1)) when given partial labels, the model is
damaged by memorizing false negative labels [21]. It re-
sults in poor performance compared to the model trained
with full labels, which false negatives have not influenced.

To better understand why the model trained with par-
tial labels performs less than that with full labels, we an-
alyze the behavioral difference between these two models.
Concretely, we use a class activation map (CAM) [49] to
explain each model’s prediction and compare the explana-
tion results. We train two multi-label classification models
on a COCO dataset [28] with the same CNN architecture
ResNet-50 [16]: one model with full labels using binary
cross entropy loss and the other with partial labels using
AN loss (Equation (1)). We denote the CAM output from
each model as CAMfull and CAMpartial, respectively.

To analyze the explanation of these two models, we first
compute the Spearman correlation between CAMfull and
CAMpartial on positive labels. We show the distribution of
the correlation values on the test set in Figure 2a. For com-
parison, we consider a 2D Gaussian image centered at the
midpoint and calculate the Spearman correlation coefficient
between this Gaussian image and CAMfull. We observe that
there is mainly a positive correlation between CAMfull and
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Figure 2. CAM Analysis on COCO test set. (a): Distribution of Spearman correlation coefficients between CAMfull and CAMpartial from
the same image. Overall positive correlation implies that CAMpartial has a structure similar to CAMfull. / (b), (c): Boxplot of the average of
top/bottom 5% of attribution scores, respectively. The damage of false negative labels to the model mainly lowers the upper attribution
scores for positive labels while maintaining its overall structure in CAM.

CAMpartial, while the correlation of the control group is dis-
tributed widely but mostly around zero. It implies that the
overall structure (i.e., the attribution ranking among pixels)
of CAMpartial is preserved despite the influence of false neg-
ative labels, therefore having a high Spearman correlation
with CAMfull. We can also visually inspect the similar struc-
ture between CAMpartial and CAMfull in Figure 1, where both
CAMs highlight similar regions.

Since we know that the overall structure is similar be-
tween CAMfull and CAMpartial, we then compare the range
of attribution scores between CAMfull and CAMpartial. Con-
cretely, we compute the mean of the highest 5% of attribu-
tion scores and the lowest 5%, respectively, for each CAM
and summarize the distribution of these values on the test set
in Figure 2b and 2c. Note that we take an average of 5% of
scores to reduce the effect of outliers. We observe that top-
ranking attribution scores of CAMpartial from positive labels
drop sharply compared to CAMfull, while these scores from
negative labels remain similar. Also, there is little difference
in bottom-ranking attribution scores between CAMfull and
CAMpartial, both on positive and negative labels. It implies
that false negatives mainly affect the model’s understanding
in regions with relatively high attribution scores, especially
for positive labels. Consequently, the decrease of attribu-
tion scores at specific regions in CAM leads to a decrease
in the logit value (since logit is the average of attribution
scores on CAM as in Equation (3)), making the model pre-
dicts a lower score for the positive category. The change of
gradient during training can explain the occurrence of this
phenomenon.
Gradient analysis. In Equation (1), recall that the BCE loss
is L+ with a positive target and L− with a negative one.
Their gradients with respect to the logit g are

∂L+

∂g
= σ(g)− 1,

∂L−

∂g
= σ(g) . (4)

For a training image x, the gradient difference on the logit

g between partial label (with AN assumption) and full label
case is given by

1

C

 ∑
i∈I p

∂L+

∂gi
+

∑
i∈I fn

∂L−

∂gi
+

∑
i∈I tn

∂L−

∂gi


− 1

C

 ∑
i∈I p

∂L+

∂gi
+

∑
i∈I fn

∂L+

∂gi
+

∑
i∈I tn

∂L−

∂gi


=

1

C

 ∑
i∈I fn

(
∂L−

∂gi
− ∂L+

∂gi
)

 =
|I fn|
C

.

(5)

Equation (5) shows that the logit receives more gradients
proportional to the number of false negative labels on a par-
tial label setting. Therefore, as training progresses, the addi-
tional gradients from false negatives are gradually accumu-
lated in the logit, making the logit smaller than the model
trained on full labels. Since the logit is equal to the average
of CAM, the attribution scores of CAMpartial become lower
than that of CAMfull.

5. Proposed Method
In this section, we propose a conceptually simple but ef-

fective method to make the model trained with partial la-
bels resemble the model trained with full labels by mim-
icking the explanation. We propose a function BoostLU de-
vised to compensate for the damaged attribution score of the
explanation due to false negatives in §5.1. We then intro-
duce three scenarios that utilize our function through §5.2
∼ §5.4.

5.1. BoostLU

From the modified CNN architecture described in §3.2,
define convolutional layers (Convs-1x1Conv) as Φ. Given
an input image x, its class activation map (CAM) is M =
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Image CAM BoostLU Boosted CAM

Figure 3. Schematic diagram of applying BoostLU. BoostLU is
applied to the model’s CAM output element-wisely to compensate
for the attribution scores damaged by false negative labels.

Φ(x). Our goal is to make the explanation M of the model
trained with partial labels closer to the explanation of the
model trained with full labels, even if we do not have ac-
cess to the full labels, thus improving the prediction perfor-
mance.

In the previous section, we observe that when a multi-
label classification model is trained with AN loss, the way
the model understands images is damaged by false nega-
tives. However, we also find that this damage is mainly
focused on a drop in the relatively high attribution scores
while the overall spatial structure of CAM is preserved.
Based on these findings, we conjecture that if the dam-
aged high attribution scores are scaled up in the model
trained with partial labels, CAMpartial will become similar
to CAMfull. To achieve this, we devise a piece-wise linear
function that boosts the attribution scores that are above a
certain threshold:

f(x) =

{
αx+ (1− α)β, x ≥ β

x, x < β ,
(6)

where α is a scaling factor with α > 1, and β is a threshold
determining whether to boost the score. Since top-ranking
attribution scores on CAM tend to have large positive val-
ues for positive labels and around zero for negative labels
(as seen in Figure 2b), we search for the values of β around
zero. Since we empirically observe no significant difference
in model performance for different β (these results are re-
ported in the Appendix), we only consider the simplest case
of β = 0. Then we can rewrite Equation (6) in a ReLU-like
form as

BoostLU(x) = max(x, αx) . (7)

By applying BoostLU to each element of CAM, as il-
lustrated in Figure 3, BoostLU boosts positive attribution
scores by α times, which are the main target to be damaged
by false negatives, while maintaining the negative scores
unchanged. These selectively boosted attribution scores are
aggregated through the GAP layer to produce a logit value
as

g(x) = (GAP ◦ BoostLU ◦ Φ)(x) . (8)

From now on, we will consider three different scenarios for
applying BoostLU in multi-label classification.

5.2. Usage 1: BoostLU in inference only

Since the idea of BoostLU comes from analyzing the
CAM of a model which finished training with AN loss, we
first propose to apply BoostLU only during the inference
phase of that model. Initially, this model produces low log-
its for categories whose label is positive. However, apply-
ing BoostLU increases the corrupted attribution scores and
produces higher logits. At the same time, boosting effect is
not much for categories whose label is negative; therefore,
its logits remain almost the same. As a result, prediction
scores are better separated between samples with positive
and negative labels, improving average precision.

5.3. Usage 2: BoostLU in both training and infer-
ence

Next, we consider applying BoostLU during the training
phase with AN loss and the inference phase. The gradient
of logit g with respect to the attribution score on CAM at
location (i, j) (i.e., Mij) then becomes

∂g

∂Mij
=

{
α/HW, Mij ≥ 0

1/HW, Mij < 0 .
(9)

Compared to the case that does not use BoostLU, where
every spatial location gets a uniform gradient of 1/HW ,
the locations with positive attribution scores receive gradi-
ents boosted by α times. Thanks to the boosted gradients,
these locations are encouraged to produce higher attribution
scores during training when the model receives a positive
label. Also, when a true negative label comes in, these loca-
tions are encouraged to produce lower attribution scores.

However, in practice, we observe only marginal im-
provement in model performance. It is because the boosted
gradients have an adverse effect when false negatives come
in as input. That is, BoostLU also boosts the wrong direc-
tion of gradients from false negatives, which can be easily
seen by combining Equation (4) and (9):

∂L−

∂Mij
=

∂L−

∂g
· ∂g

∂Mij
(10)

Note that ∂L−/∂g has a wrong sign for false negatives, and
it decreases CAM values.

5.4. Usage 3: Combination with Large Loss Modi-
fication

To alleviate the problem mentioned above, we propose
combining our BoostLU with recent studies [2, 21] that
detect and treat suspicious false negatives while training
multi-label classification models. We especially adopt three
methods, i.e., LL-R, LL-Ct, and LL-Cp [21], since they
work on several partial label settings. When these meth-
ods are combined with BoostLU, they suppress the side ef-
fects caused by false negatives. As a result, the model can
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take full advantage of the boosted gradients from the pos-
itive labels during training. Moreover, because these com-
bined methods consider samples with relatively high pre-
diction scores among unobserved labels as false negatives,
BoostLU helps the model detect more false negatives by
boosting their logit values.

6. Experiments
To validate the efficacy of our proposed method, we

report our experimental results on two partial label set-
tings: single positive label (§6.1) and large-scale partial la-
bel (§6.2). In both sections, we adopt mean Average Preci-
sion (mAP) as an evaluation metric and report the perfor-
mance on a test set using the model weight with the highest
mAP in the validation set. We fix our hyperparameters as
α = 5, β = 0. Next, we present analysis results on §6.3.

6.1. Single positive label

Datasets. We target four multi-label classification datasets:
PASCAL VOC 2012 [14], MS COCO 2014 [28],
NUSWIDE [10], and CUB [38]. Each dataset is annotated
for 20 classes, 80 classes, 81 concepts, and 312 attributes.
Since they are fully annotated, we only keep one positive
label and drop the rest of the labels for every training image
to build a single positive label setting identical to [11].
Hyperparameter settings. For a fair comparison, we set
the same search space as [11, 50]: {8, 16} for batch size
and {10−2, 10−3, 10−4, 10−5} for learning rate. We train
the model for 10 epochs with Adam optimizer [22]. LL-R,
LL-Ct, and LL-Cp [21] have a hyperparameter ∆rel that
controls the slope of increase in the modification rate. We
set ∆rel = 0.5 for LL-R, 0.2 for LL-Ct, and 0.1 for LL-Cp,
respectively. We set a 10x learning rate for the last 1x1Conv
layer.
Implementation details. We also follow identical config-
urations as [11, 21, 50]. Specifically, 20% of the original
training set is used for validation. ResNet-50 [16] CNN
backbone pre-trained on ImageNet [44] is used as a feature
extractor. Each image is resized to 448x448 before being
fed to CNN, and only random horizontal flipping is used
for data augmentation during training. Note that some cat-
egories do not have positive labels in the CUB dataset on a
generated single positive label setting. In these categories,
we do not apply BoostLU when training as the benefit from
the boosted gradient becomes weakened.
Results of ablation study. We first conduct ablation stud-
ies on PASCAL VOC and COCO datasets. Its results are
reported in Table 1. First, we show the performance of the
model trained with AN loss in the first row. In the second
row, it can be seen that when BoostLU is applied during
inference of this model, its test performance is improved
even without additional training. It confirms the property
of BoostLU that compensates for the damaged attribution

BoostLU BoostLU LL-R Performance
in inference in training in training VOC COCO

86.10 64.58

✓ 87.31 66.27

✓ ✓ 86.73 65.33

✓ 88.24 70.60

✓ ✓ 87.18 68.45

✓ ✓ 88.90 70.87

✓ ✓ ✓ 89.27 72.82

Table 1. Ablation study on BoostLU and LL-R. We test seven
combinations of using BoostLU and LL-R [21] on VOC and
COCO datasets. Training a model with both LL-R and BoostLU
and applying BoostLU during inference shows the best mAP.

Methods VOC COCO NUS CUB

Full Label 89.42 76.78 52.08 30.90
AN 85.89 64.92 42.27 18.31
LS [30] 87.90 67.15 43.77 16.26
ASL [33] 87.76 68.78 46.93 18.81
ROLE [11] 87.77 67.04 41.63 13.66
ROLE + LI [11] 88.26 69.12 45.98 14.86
EM [50] 89.09 70.70 47.15 20.85
EM + APL [50] 89.19 70.87 47.59 21.84
LL-R [21] 88.27 70.70 48.76 19.56

+ BoostLU (Ours) 89.29 72.89 49.59 19.80
LL-Ct [21] 87.79 70.29 48.08 19.06

+ BoostLU (Ours) 88.61 71.78 48.37 19.25
LL-Cp [21] 87.44 70.27 47.92 19.21

+ BoostLU (Ours) 87.81 71.41 48.61 19.34

Table 2. Experimental results on various datasets with single
positive label setting. Each number shows the average of mAP
in three experiments. A bold number means the best performance.
Results of methods except for LL-R, LL-Ct, and LL-Cp are taken
from [50]. We report the reimplemented results for LL-R, LL-Ct,
and LL-Cp with the same hyperparameter search space as [11,50].

score. However, if we further apply BoostLU while train-
ing (third row), the performance improvement is lower than
when BoostLU is applied only during inference. We can ob-
serve the side effect of BoostLU that the gradient received
by the region with a positive attribution score is boosted
even for false negative labels.

In the fourth row, we show the performance of LL-R,
which rejects large losses during training. We then train the
model by applying both LL-R and BoostLU during train-
ing and BoostLU during inference. Its performance is re-
ported in the final row, and its improvement is much more
significant than the case where LL-R is not applied (+0.63
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Methods Group 1 Group 2 Group 3 Group 4 Group 5 All Classes

CNN-RNN [39] 68.76 69.70 74.18 78.52 84.61 75.16
Curriculum Labeling [13] 70.37 71.32 76.23 80.54 86.81 77.05
IMCL [17] 70.95 72.59 77.64 81.83 87.34 78.07
P-ASL [2] 73.19 78.61 85.11 87.70 90.61 83.03
LL-R [21] 77.76 79.07 81.94 84.51 89.36 82.53

+ BoostLU (Ours) 79.28 80.81 83.32 85.63 90.27 83.86
LL-Ct [21] 77.76 79.18 81.97 84.46 89.51 82.58

+ BoostLU (Ours) 79.43 80.75 83.41 85.70 90.41 83.94
LL-Cp [21] 77.49 79.22 81.89 84.51 89.18 82.46

+ BoostLU (Ours) 79.53 81.04 83.40 85.85 90.39 84.04

Table 3. Experimental results on a OpenImages V3 dataset. Each group includes 1,000 classes without overlapping. Group 1 has the
smallest annotations, and Group 5 has the most. The number of annotations increases as the group number increases. LL-R, LL-Ct, and
LL-Cp are reimplemented and the other results are borrowed from [2]. A bold number shows the best performance.

v.s. +1.03 on PASCAL, and +0.75 v.s. +2.22 on COCO).
Thanks to LL-R filtering out false negatives, the side ef-
fect of the boosted gradient becomes minimized. Moreover,
since our BoostLU helps LL-R detect false negatives, its
advantage is further amplified. We also find in the last three
rows that when we combine BoostLU with LL-R, applying
BoostLU either during training or during inference results
in a performance drop compared to applying it during both
phases. This shows that BoostLU plays a vital role both in
training and inference, together with large loss modifica-
tion methods. In particular, it is crucial to apply BoostLU
during inference to achieve high performance. Additional
discussion about this is described in the Appendix.

From now on, we will only report the experimental re-
sults using the configuration of the last row (BoostLU in
inference + BoostLU in training + LL-R in training).
Comparison with prior arts. We compare our results with
recent state-of-the-art: Label Smoothing (LS) [30], Asym-
metric loss (ASL) [33], ROLE (with LinearInit) [11], and
Entropy-maximization loss (EM) with Asymmetric Pseudo-
Labeling (APL) [50]. We train the network three times and
report the average test performance.

The results are shown in Table 2. We find that apply-
ing BoostLU in both training and inference consistently
improves the performance of LL-R, LL-Ct, and LL-Cp in
all datasets, only with little additional computational cost.
It achieves +1.02, +0.82, and +0.37 mAP improvement in
VOC, as well as +2.19, +1.49, and +1.14 mAP improvement
in COCO, respectively. Especially the performance of LL-
R + BoostLU shows the most significant increase, achieving
state-of-the-art performance and reaching closest to the full
label performance on VOC, COCO, and NUSWIDE. It also
surpasses the previous state-of-the-art method EM+APL
which does not use AN assumption on these datasets. How-
ever, the performance improvement is not that large in CUB.

Since CUB has an annotation for attributes, the number of
false negative labels is much higher, and this may increase
the side effect of BoostLU when applied during training.

6.2. Large-scale partial label

Dataset. We target a partially annotated OpenImages V3
[23] dataset which consists of 3.4M training images, 41,620
validation images, and 125,436 test images with 5,000 train-
able classes (having more than 30 human-verified samples
in the training set and 5 in the valid or test sets). We sort
these classes in ascending order by the number of annota-
tions in the training set and divide them into five groups of
equal size 1,000. We report the mAP score averaged within
each group and the entire 5,000 classes.
Implementation details. We use ImageNet [44] pre-trained
ResNet-101 [16] as a feature extractor, the same as prior
works. We follow [21] to set the learning rate as 2 × 10−5

and batch size as 288. We train the model for 20 epochs and
set ∆rel = 0.005. We resize every image to 224x224 reso-
lution and perform a random horizontal flip during training.
We set a 10x learning rate for the last 1x1Conv layer.
Results. We compare our results with prior works: CNN-
RNN [39], Curriculum Labeling [13], IMCL [17], and P-
ASL [2]. As shown in Table 3, BoostLU also works well in
a real partial label scenario. Combined with LL-R, LL-Ct,
and LL-Cp, it boosts their performance by a large margin:
improvement of +1.33, +1.36, and +1.58 mAP, respectively.
All of the combined methods surpass other previous meth-
ods and achieve state-of-the-art performance. In particular,
LL-Cp + BoostLU shows the highest 84.04 mAP.

6.3. Analysis

Qualitative results. Figure 4 visualizes the CAM results
from four different methods. The category corresponding to
the CAM is shown above the image. The prediction score,
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Figure 4. Qualitative results. Categories and their corresponding
prediction scores are displayed above the images and CAM results.
LL-R + BoostLU is the closest to the explanation and prediction
score of the model trained with full labels.

obtained by averaging attribution scores on CAM and ap-
plying sigmoid activation, is shown above each CAM. First,
column (c) shows that a model trained with AN loss gives
low prediction scores due to the damage of false negatives.
Although this model highlights similar regions for a given
input image, the attribution scores of the corresponding re-
gions are considerably shrunk compared to column (b).

When we perform inference by attaching BoostLU to
this model, it can be seen in column (d) that BoostLU suc-
cessfully recovers the model’s explanation, yielding high
prediction scores. For LL-R + BoostLU in column (e), its
model explanation is further improved due to the role of LL-
R and BoostLU during training which further accelerates
the improvement of the attribution score of the highlighted
region. It is the most similar to the explanation of the model
trained with full annotation (column (b)) compared to other
methods.
Synergy effect of BoostLU and large loss modification
methods during training. We train LL-R and LL-R +
BoostLU on the COCO dataset with the same ∆rel = 0.5 to
make both models reject the same number of samples dur-
ing training. We then inspect how many of the rejected sam-
ples are false negative labels. Figure 5 shows the number of
false negative labels rejected by each model per epoch. It
can be seen that after the warmup phase (first epoch), LL-R
+ BoostLU rejects more false negatives than LL-R in ev-
ery epoch. It is because BoostLU boosts the logit value of
false negative samples, thus boosting the large loss mod-
ification methods’ ability to detect false negatives. At the
same time, it also reduces the number of true negative sam-

1 3 5 7 9
Epoch

40k

60k

80k

100k

# 
of

 re
je

ct
ed

 F
N

s

LL-R
LL-R + BoostLU

Figure 5. Comparison of the number of rejected false negative
labels. BoostLU helps LL-R detect more false negative labels in
every epoch.

ples that the model incorrectly rejects, further contributing
to performance improvement.

7. Conclusion
In this paper, we studied the effect of false negative

labels on model explanation when assuming unobserved
labels as negatives in a partially annotated multi-label
classification situation. We found that the overall spatial
shape of the explanation tends to be preserved, but the scale
of attribution scores is significantly affected. Based on these
findings, we proposed a conceptually simple piece-wise
linear function BoostLU that compensates for the damaged
attribution scores. Through several experiments, we con-
firmed that BoostLU successfully contributed to bridging
the explanation of the model closer to the explanation of the
model trained with full labels. Furthermore, combined with
large loss modification methods, it achieved state-of-the-art
performance on several multi-label datasets.
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