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Abstract

The origin of adversarial examples is still inexplicable in
research fields, and it arouses arguments from various view-
points, albeit comprehensive investigations. In this paper,
we propose a way of delving into the unexpected vulnera-
bility in adversarially trained networks from a causal per-
spective, namely adversarial instrumental variable (IV) re-
gression. By deploying it, we estimate the causal relation of
adversarial prediction under an unbiased environment dis-
sociated from unknown confounders. Our approach aims
to demystify inherent causal features on adversarial exam-
ples by leveraging a zero-sum optimization game between a
casual feature estimator (i.e., hypothesis model) and worst-
case counterfactuals (i.e., test function) disturbing to find
causal features. Through extensive analyses, we demon-
strate that the estimated causal features are highly related
to the correct prediction for adversarial robustness, and the
counterfactuals exhibit extreme features significantly devi-
ating from the correct prediction. In addition, we present
how to effectively inoculate CAusal FEatures (CAFE) into
defense networks for improving adversarial robustness.

1. Introduction

Adpversarial examples, which are indistinguishable to hu-
man observers but maliciously fooling Deep Neural Net-
works (DNNs), have drawn great attention in research fields
due to their security threats used to compromise machine
learning systems. In real-world environments, such poten-
tial risks evoke weak reliability of the decision-making pro-
cess for DNNs and pose a question of adopting DNNs in
safety-critical areas [4, 58, 60].

To understand the origin of adversarial examples, semi-
nal works have widely investigated the adversarial vulner-
ability through numerous viewpoints such as excessive lin-
earity in a hyperplane [26], aberration of statistical fluctu-
ations [59, 63], and phenomenon induced from frequency
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Figure 1. Data generating process (DGP) with IV. By deploying Z,
it can estimate causal relation between treatment 7" and outcome

Y under exogenous condition for unknown confounders U.

information [73]. Recently, several works [34, 35, 40]
have revealed the existence and pervasiveness of robust and
non-robust features in adversarially trained networks and
pointed out that the non-robust features on adversarial ex-
amples can provoke unexpected misclassifications.

Nonetheless, there still exists a lack of common consen-
sus [22] on underlying causes of adversarial examples, al-
beit comprehensive endeavors [32,64]. It is because that the
earlier works have focused on analyzing associations be-
tween adversarial examples and target labels in the learning
scheme of adversarial training [42, 54,67,72,77], which is
canonical supervised learning. Such analyses easily induce
spurious correlation (i.e., statistical bias) in the learned as-
sociations, thereby cannot interpret the genuine origin of
adversarial vulnerability under the existence of possibly bi-
ased viewpoints (e.g., excessive linearity, statistical fluc-
tuations, frequency information, and non-robust features).
In order to explicate where the adversarial vulnerability
comes from in a causal perspective and deduce true adver-
sarial causality, we need to employ an intervention-oriented
approach (i.e., causal inference) that brings in estimating
causal relations beyond analyzing merely associations for
the given data population of adversarial examples.

One of the efficient tools for causal inference is in-
strumental variable (IV) regression when randomized con-
trolled trials (A/B experiments) or full controls of unknown
confounders are not feasible options. It is a popular ap-
proach used to identify causality in econometrics [13, 16,

], and it provides an unbiased environment from un-
known confounders that raise the endogeneity of causal in-
ference [55]. In IV regression, the instrument is utilized
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to eliminate a backdoor path derived from unknown con-
founders by separating exogenous portions of treatments.
For better understanding, we can instantiate a case of find-
ing causal relations [9] between education 7" and earnings
Y as illustrated in Fig. 1. Solely measuring correlation be-
tween the two variables does not imply causation, since
there may exist unknown confounders U (e.g., individual
ability, family background, etc.). Ideally, conditioning on
U is the best way to identify causal relation, but it is impos-
sible to control the unobserved variables. David Card [9]
has considered IV as the college proximity Z, which is di-
rectly linked with education 7' but intuitively not related
with earnings Y. By assigning exogenous portion to Z, it
can provide an unbiased environment dissociated from U
for identifying true causal relation between 1" and Y.

Specifically, once regarding data generating process
(DGP) [53] for causal inference as in Fig. 1, the existence of
unknown confounders U could create spurious correlation
generating a backdoor path that hinders causal estimator h
(i.e., hypothesis model) from estimating causality between
treatment 7' and outcome Y (T < U — Y'). By adopt-
ing an instrument Z, we can acquire the estimand of true
causality from & in an unbiased state (Z — 17" — Y). Bring-
ing such DGP into adversarial settings, the aforementioned
controversial perspectives (e.g., excessive linearity, statisti-
cal fluctuations, frequency information, and non-robust fea-
tures) can be regarded as possible candidates of unknown
confounders U to reveal adversarial origins. In most ob-
servational studies, everything is endogenous in practice so
that we cannot explicitly specify all confounders and con-
duct full controls of them in adversarial settings. Accord-
ingly, we introduce IV regression as a powerful causal ap-
proach to uncover adversarial origins, due to its capability
of causal inference although unknown confounders remain.

Here, unknown confounders U in adversarial settings
easily induce ambiguous interpretation for the adversarial
origin producing spurious correlation between adversarial
examples and their target labels. In order to uncover the
adversarial causality, we first need to intervene on the in-
termediate feature representation derived from a network f
and focus on what truly affects adversarial robustness irre-
spective of unknown confounders U, instead of model pre-
diction. To do that, we define the instrument Z as feature
variation in the feature space of DNNs between adversar-
ial examples and natural examples, where the variation Z
is originated from the adversarial perturbation in the im-
age domain such that Z derives adversarial features 71" for
the given natural features. Note that regarding Z as in-
strument is reasonable choice, since the feature variation
alone does not serve as relevant information for adversar-
ial prediction without natural features. Next, once we find
causality-related feature representations on adversarial ex-
amples, then we name them as causal features Y that can

encourage robustness of predicting target labels despite the
existence of adversarial perturbation as in Fig. 1.

In this paper, we propose adversarial instrumental vari-
able (1V) regression to identify causal features on adversar-
ial examples concerning the causal relation of adversarial
prediction. Our approach builds an unbiased environment
for unknown confounders U in adversarial settings and es-
timates inherent causal features on adversarial examples by
employing generalized method of moments (GMM) [28]
which is a flexible estimation for non-parametric IV regres-
sion. Similar to the nature of adversarial learning [5, 25],
we deploy a zero-sum optimization game [20, 4 1] between
a hypothesis model and test function, where the former tries
to unveil causal relation between treatment and outcome,
while the latter disturbs the hypothesis model from esti-
mating the relation. In adversarial settings, we regard the
hypothesis model as a causal feature estimator which ex-
tracts causal features in the adversarial features to be highly
related to the correct prediction for the adversarial robust-
ness, while the test function makes worst-case counterfac-
tuals (i.e., extreme features) compelling the estimand of
causal features to significantly deviate from correct predic-
tion. Consequently, it can further strengthen the hypothesis
model to demystify causal features on adversarial examples.

Through extensive analyses, we corroborate that the es-
timated causal features on adversarial examples are highly
related to correct prediction for adversarial robustness, and
the test function represents the worst-case counterfactuals
on adversarial examples. By utilizing feature visualiza-
tion [43, 50], we interpret the causal features on adversar-
ial examples in a human-recognizable way. Furthermore,
we introduce an inversion of the estimated causal features
to handle them on the possible feature bound and present a
way of efficiently injecting these CAusal FEatures (CAFE)
into defense networks for improving adversarial robustness.

2. Related Work

In the long history of causal inference, there have been
a variety of works [24,27, 36] to discover how the causal
knowledge affects decision-making process. Among vari-
ous causal approaches, especially in economics, IV regres-
sion [55] provides a way of identifying the causal relation
between the treatment and outcome of interests despite the
existence of unknown confounders, where IV makes the ex-
ogenous condition of treatments thus provides an unbiased
environment for the causal inference.

Earlier works of IV regression [2, 3] have limited the
relation for causal variables by formalizing it with linear
function, which is known as 2SLS estimator [71]. With
progressive developments of machine learning methods, re-
searchers and data scientists desire to deploy them for non-
parametric learning [12,13,16,47] and want to overcome the
linear constraints in the functional relation among the vari-
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ables. As extensions of 2SLS, DeeplV [29], KernellV [61],
and Dual IV [45] have combined DNNs as non-parametric
estimator and proposed effective ways of exploiting them to
perform IV regression. More recently, generalized method
of moments (GMM) [7,20,41] has been cleverly proposed
a solution for dealing with the non-parametric hypothesis
model on the high-dimensional treatments through a zero-
sum optimization, thereby successfully achieving the non-
parametric IV regression.

In parallel with the various causal approaches utilizing
IV, uncovering the origin of adversarial examples is one of
the open research problems that arouse controversial issues.
In the beginning, [26] have argued that the excessive lin-
earity in the networks’ hyperplane can induce adversarial
vulnerability. Several works [59,63] have theoretically ana-
lyzed such origin as a consequence of statistical fluctuation
of data population, or the behavior of frequency information
in the inputs [73]. Recently, the existence of non-robust fea-
tures in DNNs [34, 35] is contemplated as a major cause of
adversarial examples, but it still remains inexplicable [22].

Motivated by IV regression, we propose a way of esti-
mating inherent causal features in adversarial features easily
provoking the vulnerability of DNNs. To do that, we deploy
the zero-sum optimization based on GMM between a hy-
pothesis model and test function [7,20,4 1]. Here, we assign
the role of causal feature estimator to hypothesis model and
that of generating worst-case counterfactuals to test func-
tion disturbing to find causal features. This strategy results
in learning causal features to overcome all trials and tribula-
tions regarded as various types of adversarial perturbation.

3. Adversarial IV Regression

Our major goal is estimating inherent causal features on
adversarial examples highly related to the correct predic-
tion for adversarial robustness by deploying IV regression.
Before identifying causal features, we first specify problem
setup of IV regression and revisit non-parametric I'V regres-
sion with generalized method of moments (GMM).

Problem Setup. We start from conditional moment re-
striction (CMR) [1, 11] bringing in an asymptotically effi-
cient estimation with IV, which reduces spurious correla-
tion (i.e., statistical bias) between treatment 7" and outcome
of interest Y caused by unknown confounders U [51] (see
their relationships in Fig. 1). Here, the formulation of CMR
can be written with a hypothesis model h, so-called a causal
estimator on the hypothesis space # as follows:

Er[yr(h) | Z] =0, ey

where Y : H — R? denotes a generalized residual func-
tion [13] on treatment 7', such that it represents ¢ (h) =
Y — h(T) considered as an outcome error for regression
task. Note that 0 € R? describes zero vector and d indicates

the dimension for the outcome of interest Y, and it is also
equal to that for the output vector of the hypothesis model h.
The treatment is controlled for being exogenous [49] by the
instrument. In addition, for the given instrument Z, mini-
mizing the magnitude of the generalized residual function
1) implies asymptotically restricting the hypothesis model h
not to deviate from Y, thereby eliminating the internal spu-
rious correlation on h from the backdoor path induced by
confounders U.

3.1. Revisiting Non-parametric I'V regression

Once we find a hypothesis model h satisfying CMR with
instrument Z, we can perform IV regression to endeavor
causal inference using h under the following formulation:
Er[W(T) | Z] = [,ep h(t)AP(T =t | Z), where P in-
dicates a conditional density measure. In fact, two-stage
least squares (2SLS) [2,3,71] is a well-known solver to ex-
pand IV regression, but it cannot be directly applied to more
complex model such as non-linear model, since 2SLS is de-
signed to work on linear hypothesis model [52]. Later, [29]
and [61] have introduced a generalized 2SLS for non-linear
model by using a conditional mean embedding and a mix-
ture of Gaussian, respectively. Nonetheless, they still raise
an ill-posed problem yielding biased estimates [7,20,45,78]
with the non-parametric hypothesis model h on the high di-
mensional treatment 7', such as DNNs. It stems from the
curse nature of two-stage methods, known as forbidden re-
gression [3] according to Vapnik’s principle [17]: “do not
solve a more general problem as an intermediate step”.

To address it, recent studies [7,20,41] have employed
generalized method of moments (GMM) to develop IV re-
gression and achieved successful one-stage regression alle-
viating biased estimates. Once we choose a moment to rep-
resent a generic outcome error with respect to the hypothe-
sis model and its counterfactuals, GMM uses the moment to
deliver infinite moment restrictions to the hypothesis model,
beyond the simple constraint of CMR. Expanding Eq. (1),
the formulation of GMM can be written with a moment, de-
noted by m : H x G — R as follows (see Appendix A):

m(h,g) =Ezr[r(h)-g9(Z)]
=Ez[Er[yr(h) | Z]-9(Z2)] =0, @
CMR

where the operator - specifies inner product, and ¢ € G
denotes test function that plays a role in generating infi-
nite moment restrictions on test function space G, such that
its output has the dimension of R%. The infinite number
of test functions expressed by arbitrary vector-valued func-
tions {g1,92,---} € G cues potential moment restrictions
(i.e., empirical counterfactuals) [8] violating Eq. (2). In
other words, they make it easy to capture the worst part of
IV which easily stimulates the biased estimates for hypoth-
esis model h, thereby helping to obtain more genuine causal
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relation from A by considering all of the possible counter-
factual cases g for generalization.

However, it has an analogue limitation that we cannot
deal with infinite moments because we only handle observ-
able finite number of test functions. Hence, recent studies
construct maximum moment restriction [20, 44, 78] to effi-
ciently tackle the infinite moments by focusing only on the
extreme part of IV, denoted as sup,.g m(h, g) in a closed-
form expression. By doing so, we can concurrently mini-
mize the moments for the hypothesis model to fully satisfy
the worst-case generalization performance over test func-
tions. Thereby, GMM can be re-written with min-max op-
timization thought of as a zero-sum game between the hy-
pothesis model £ and test function g:

hmelqr_llzlel m(h, g) NgélﬁmaXEZTWT( )-9(Z)], ()

where the infinite number of test functions can be replaced
with the non-parametric test function in the form of DNNs.
Next, we bridge GMM of Eq. (3) to adversarial settings and

unveil the adversarial origin by establishing adversarial IV
regression with maximum moment restriction.

3.2. Demystifying Adversarial Causal Features

To demystify inherent causal features on adversarial ex-
amples, we first define feature variation Z as the instrument,
with adversarially trained DNNs denoted by f as follows:

Z = fi(Xe) = flX) = Fagy —

where f; outputs a feature representation in [ intermedi-
ate layer, X represents natural inputs, and X indicates ad-
versarial examples with adversarial perturbation € such that
X. = X + €. In the sense that we have a desire to uncover
how adversarial features Fqy, truly estimate causal features
Y which are outcomes of our interests, we set the treatment
to T" = F,4 and set counterfactual treatment with a test
function to Tcr = Fhawral + 9(2).

Note that, if we naively apply test function g to ad-
versarial features 7' to make counterfactual treatment 7cg
such that Tcp = ¢(T'), then the outputs (i.e., causal fea-
tures) of hypothesis model h(Tcr) may not be possibly ac-
quired features considering feature bound of DNNs f. In
other words, if we do not keep natural features in estimat-
ing causal features, then the estimated causal features will
be too exclusive features from natural ones. This results
in non-applicable features considered as an imaginary fea-
ture we cannot handle, since the estimated causal features
are significantly manipulated ones only in a specific inter-
mediate layer of DNNs. Thus, we set counterfactual treat-
ment to Tcrp = Fhawra + g(Z). This is because above for-
mation can preserve natural features, where we first sub-
tract natural features from counterfactual treatment such
that 7" = Tcrp — Frawra = ¢(Z) and add the output Y of

F, natural » (4)

llh

hypothesis model to natural features for recovering causal
features such that Y = Y’ + Flyyrat = A(T") 4+ Fraura- In
brief, we intentionally translate causal features and counter-
factual treatment not to deviate from possible feature bound.

Now, we newly define Adversarial Moment Restriction
(AMR) including the counterfactuals computed by the test
function for adversarial examples, as follows: Er [tz (h) |
Z] = 0. Here, the generalized residual function o7z (h) =
Y’ — h(T’) in adversarial settings deploys the translated
causal features Y’. Bring them together, we re-formulate
GMM with counterfactual treatment to fit adversarial IV re-
gression, which can be written as:

min max Bz [Eq ()7 (h) | Z] 9(2)] = Ez [ 2(h)g(2)],
———— ———

heH geG

AMR
®)
where it satisfies Eq[1)7:(h) | Z] = 17+ z(h) because Z
corresponds to only one translated counterfactual treatment
T = g(Z). Here, we cannot directly compute the gener-
alized residual function 7|z (h) = Y" — h(1") in AMR,
since there are no observable labels for the translated causal
features Y’ on high-dimensional feature space. Instead, we
make use of onehot vector-valued target label G € RX (K :
class number) corresponding to the natural input X in clas-
sification task. To utilize it, we alter the domain of com-
puting GMM from feature space to log-likelihood space
of model prediction by using the log-likelihood function:
Q(w) = log fi+ (Fraural + w), where fi describes the sub-
sequent network returning classification probability after [
intermediate layer. Accordingly, the meaning of our causal
inference is further refined to find inherent causal features
of correctly predicting target labels even under worst-case
counterfactuals. To realize it, Eq. (5) is modified with mo-

ments projected to the log-likelihood space as follows:
min maxE, [z (R) - (0 g)(2)] ©

= Ez[{Giog — (20 h)(T")} - (R0 9)(2)],

where w% ,(h) indicates the generalized residual function
on the log-likelihood space, the operator o symbolizes func-
tion composition, and G/, is log-target label such that sat-
isfies Glog = log G. Each element (k = 1,2,--- , K) of
log = 0 when it is G*) = 1 and has

Gl(fg) = —oo when it is G*) = 0. To implement it, we just

log-target label has el

ignore the element G} (k) — _ 0 and use another only.

So far, we constmct GMM based on AMR in Eq. (6),
namely AMR-GMM, to behave adversarial IV regression.
However, there is absence of explicitly regularizing the
test function, thus there happens generalization gap be-
tween ideal and empirical moments (see Appendix B).
Thereby, it violates possible feature bounds of the test func-
tion and brings in imbalanced predictions on causal infer-
ence (see Fig. 4). To become a rich test function, previ-
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ous works [7,20,41, 68] have employed Rademacher com-
plexity [6,37,74] that provides tight generalization bounds
for a family of functions. It has a strong theoretical foun-
dation to control a generalization gap, thus it is related to
various regularizers used in DNNs such as weight decay,
Lasso, Dropout, and Lipschitz [21, 65,69, 76]. In AMR-
GMM, it plays a role in enabling the test functions to find
out the worst-case counterfactuals within adversarial feature
bound. Following Appendix B, we build a final objective of
AMR-GMM with rich test function as follows:

i Ez [y 7 (h)-(R09)(2)]—|Ez[Z—9(Z)]|*. (7
min max Bz [0, (h)-(Q09)(2)|—|E2lZ~g(D)]*. ()
Please see details of AMR-GMM algorithm in Appendix
D. For the proof of its convergence, we borrow the concept
of Lewis et al. [41] with Set Identification [14] and Lips-
chitz [6] to finding e-equilibrium of the zero-sum game.

4. Analyzing Properties of Causal Features

In this section, we first notate several conjunctions of
feature representation from the result of adversarial IV
regression with AMR-GMM as: (i) Adversarial Feature
(Adv): Foawa + Z, (i) CounterFactual Feature (CF):
Frawra + 9(Z), (iil) Counterfactual Causal Feature (CC):
Frawra + (h 0 ¢)(Z), and (iv) Adversarial Causal Fea-
ture (AC): Fhaura + h(Z). By using them, we estimate
adversarial robustness computed by classification accuracy
for which the above feature conjunctions are propagated
through f;, where standard attacks generate feature vari-
ation Z and adversarial features T'. Note that, implementa-
tion of all feature representations is treated at the last convo-
lutional layer of DNNs f as in [35], since it mostly contains
the high-level object concepts and has the unexpected vul-
nerability for adversarial perturbation due to high-order in-
teractions [18]. Here, average treatment effects (ATE) [33],
used for conventional validation of causal approach, is re-
placed with adversarial robustness of the conjunctions.

4.1. Validating Hypothesis Model and Test Function

After optimizing hypothesis model and test function us-
ing AMR-GMM for adversarial IV regression, we can then
control endogenous treatment (i.e., adversarial features) and
separate exogenous portion from it, namely causal features,
in adversarial settings. Here, the hypothesis model finds
causal features on adversarial examples, highly related to
correct prediction for adversarial robustness even with the
adversarial perturbation. On the other hand, the test func-
tion generates worst-case counterfactuals to disturb esti-
mating causal features, thereby degrading capability of hy-
pothesis model. These learning strategy enables hypothesis
model to estimate inherent causal features overcoming all
trials and tribulations from the counterfactuals. Therefore,
the findings of the causal features on adversarial examples
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Figure 2. Adversarial robustness of Adv, CF, CC, AC on VGG-16
and ResNet-18 under three attack modes: FGSM [26], PGD [42],
CW [10] for CIFAR-10 [38] and ImageNet [19].

has theoretical evidence by nature of AMR-GMM to over-
come various types of adversarial perturbation. Note that,
our IV setup posits homogeneity assumption [31], a more
general version than monotonicity assumption [2], that ad-
versarial robustness (i.e., average treatment effects) consis-
tently retains high for all data samples despite varying nat-
ural features Fj 1 depending on data samples.

As illustrated in Fig. 2, we intensively examine the av-
erage treatment effects (i.e., adversarial robustness) for the
hypothesis model and test function by measuring classifi-
cation accuracy of the feature conjunctions (i.e., Adv, CF,
CC, AC) for all dataset samples. Here, we observe that
the adversarial robustness of CF is inferior to that of CC,
AC, and even Adv. Intuitively, it is an obvious result since
the test function violating Eq. (7) forces feature representa-
tion to be the worst possible condition of extremely deviat-
ing from correct prediction. For the prediction results for
CC and AC, they show impressive robustness performance
than Adv with large margins. Since AC directly leverages
the feature variation acquired from adversarial perturbation,
they present better adversarial robustness than CC obtained
from the test function outputting the worst-case counterfac-
tuals on the feature variation. Intriguingly, we notice that
both results from the hypothesis model generally show con-
stant robustness even in a high-confidence adversarial at-
tack [10] fabricating unseen perturbation. Such robustness
demonstrates the estimated causal features have ability to
overcome various types of adversarial perturbation.

4.2. Interpreting Causal Effects and Visual Results

We have reached the causal features in adversarial ex-
amples and analyzed their robustness. After that, our next
question is ”Can the causal features per se have seman-
tic information for target objects?”. Recent works [23, 35]
have investigated to figure out the semantic meaning of fea-
ture representation in adversarial settings, we also utilize
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Figure 3. Feature visualization results of representing natural features, Adv, AC, and CF. From the top row, CIFAR-10, SVHN, and

ImageNet are sequentially used for the feature visual interpretation.

the feature visualization method [43, 48, 50] on the input
domain to interpret the feature conjunctions in a human-
recognizable manner. As shown in Fig. 3, we can generally
observe that the results of natural features represent seman-
tic meaning of target objects. On the other hand, adversarial
features (Adv) compel its feature representation to the ori-
ent of adversarially attacked target objects.

As aforementioned, the test function distracts treatments
to be worst-case counterfactuals, which exacerbates the fea-
ture variation from adversarial perturbation. Thereby, the
visualization of CF is remarkably shifted to the violated
feature representation for target objects. For instance, as
in ImageNet [19] examples, we can see that the visualiza-
tion of CF displays Hen and Langur features, manipulated
from Worm fence and Croquet ball, respectively. We note
that red flowers in original images have changed into red
cockscomb and patterns of hen feather, in addition, peo-
ple either have changed into distinct characteristics of lan-
gur, which accelerates the disorientation of feature repre-
sentation to the worst counterfactuals. Contrastively, the
visualization of AC displays a prominent exhibition and se-
mantic consistency for target objects, where we can recog-
nize their semantic information by themselves and explica-
ble to human observers. By investigating visual interpreta-
tions, we reveal that feature representations acquired from
the hypothesis model and test function both have causally
semantic information, and their roles are in line with the
theoretical evidence of our causal approach. In brief, we
validate semantic meaning of causal features immanent in
high-dimensional space despite the counterfactuals.

4.3. Validating Conditions of IV Setup

The instrumental variable needs to satisfy the following
three valid conditions in order to successfully achieve non-
parametric IV regression based on previous works [29,45]:
independent of the outcome error such that ¢» L Z (Uncon-
foundedness) where 1 denotes outcome error, and do not

VGG ResNet WRN
CIFAR SVHN Tiny CIFAR SVHN Tiny CIFAR SVHN Tiny
fie(T) 4438 521 215 465 554 242 487 56.7 255

P 0.9 0.8 0.8 0.9 0.8 0.7 0.9 0.9 0.8

Table 1. Empirical validation for three conditions of our IV setup.
fi+(T) and f;1 (Z) indicates model performance (%) of adversar-
ial robustness by propagating adversarial features 7" and feature
variation Z with subsequent network, respectively. The last row
represents Pearson correlation: p = Cov(Z,T)/ozor.

directly affect outcomes such that Z L Y | T', ¢ (Exclusion
Restriction) but only affect outcomes through a connection
of treatments such that Cov(Z,T') # 0 (Relevance).

For Unconfoundedness, various works [42,54,67,72,77]
have proposed adversarial training robustifying DNNs f
with adversarial examples inducing feature variation that
we consider as IV to improve robustness. In other words,
when we see them in a perspective of IV regression, we
can regard them as the efforts satisfying CMR in DNNs f
for the given feature variation Z. Aligned with our causal
viewpoints, the first row in Tab. 1 shows the existence of ad-
versarial robustness with adversarial features 1'. Therefore,
we can say that our IV (i.e., feature variation) on adversari-
ally trained models satisfies valid condition of Unconfound-
edness, so that IV is independent of the outcome error.

For Exclusion Restriction, feature variation Z itself can-
not serve as enlightening information to model predic-
tion without natural features, because only propagating the
residual feature representation has no effect to model pre-
diction by the learning nature of DNNs. Empirically, the
second row in Tab. 1 demonstrates that Z cannot be helpful
representation for prediction. Thereby, our IV is not en-
couraged to be correlated directly with the outcome, and it
satisfies valid condition of Exclusion Restriction.

For Relevance, when taking a look at the estimation pro-
cedure of adversarial feature 71" such that T = Z + FpLawral,
feature variation Z explicitly has a causal influence on 7'
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Method CIFAR-10 SVHN Tiny-ImageNet
Natural FGSM PGD CW., AP DLR AA Nawral FGSM PGD CW, AP DLR AA Nawral FGSM PGD CW., AP DLR AA
ADV 78.5 49.8 448 426 432 429 407 919 648 521 489 480 485 452 532 253 215 21.0 202 208 19.6
ADVcare 78.4 522 479 441 464 445 427 915 67.0 553 50.0 513 49.6 461 @ 52.6 260 228 221 218 220 21.0
TRADES 79.5 504 457 432 444 429 418 919 664  53.6 49.1 49.1 477 452 528 259 225 219 215 21.8 207
o TRADEScare ~ 77.0 51.6 479 440 47.0 439 427 903 678 561 500 53.6 49.1 475 521 265 236 22.6 225 226 216
g MART 79.7 524 472 434 455 438 420 92.6 66.6 542 479 496 47.1 444 531 250 215 212 204 210 199
MART care 783 542 497 439 481 445 427 913 67.6 573 495 542 483 464 53.0 256 223 216 213 215 205
AWP 78.0 517 482 435 472 434 426 908 655 566 504 540 497 486 526 280 257 236 248 235 228
AWPCAre 774 548 514 442 502 449 435 919 679 586 512 559 511 497 529 288 264 242 256 241 234
HELP 77.4 51.8 483 439 473 439 429 91.2 65.8 56.6 509 539 502 488 53.0 28.3 259 239 251 238 231
HELPcrg 75.6 544 514 446 504 448 437 915 673 585 51.6 562 514 500 526 294 271 247 264 244 239
ADV 82.0 521 465 448 448 448 430 928 704 554 513 509 510 475 572 273 242 232 228 232 218
ADVcare 82.6 559 507 476 49.0 477 462 925 73.6 589 538 549 52.6 498 563 286 257 247 244 246 235
TRADES 83.0 550 498 475 483 473 46.1 93.2 728 577 526 530 515 489  56.5 284 253 244 242 243 232
% TRADEScare  80.7 56.6 514 485 504 483 467 913 739 596 541 567 532 513 545 296 274 263 265 262 254
%‘ MART 835 56.1  50.1 47.1 483 470 455 937 742 583 517 532 508 478 571 274 242 232 229 232 222
& MARTcame 82.1 573 519 481 502 48.0 462 922 749 610 534 573 518 497 559 286 259 246 247 245 235
AWP 81.2 55.3 51.6 480 505 478 469 922 71.1 598 543 568 536 520 56.2 30.5 28.5 262 276 262 255
AWPcArE 81.5 578 542 494 529 490 478 93.4 74.0 609 550 578 548 527 56.6 314 292 271 284 27.0 265
HELP 80.5 55.8 52.1 484 51.1 485 474 92.6 72.0 59.8 544 56,6 539 520 56.1 31.0 286 263 277 263 257
HELPCApg 80.6 578 545 494 531 495 485 929 739 613 553 588 546 528 554 320 297 274 292 278 273
ADV 84.3 545 487 478 470 479 456 940 718 567 532 519 528 49.0 60.9 298 255 258 242 260 239
ADVcare 85.7 585 533 513 518 515 495 937 757 591 549 540 541 502  60.6 311 273 272 258 274 254
TRADES 86.3 57.1 521 508 506 507 49.0 938 740 581 539 530 534 499  60.8 305 264 267 250 268 246
z TRADEScare 837 586 545 520 532 520 501 924 756 610 557 580 58.0 530 603 31.7 282 283 270 285 265
; MART 86.5 58.5 52,6 500 507 499 480 94.2 75.0 580 531 528 528 489 60.7 299 256 259 240 255 236
MART AR 85.7 59.8 546 514 527 509 493 93.0 76.5 619 549 572 538 507 60.4 31.2 275 268 255 270 251
AWP 83.7 58.0 547 513 537 512 50.1 932 73.4 60.8 559 575 555 536 61.9 355 32.8 31.0 31.6 31.1 29.6
AWPCArg 84.6 60.6 569 524 555 523 511 942 769 627 575 592 571 546 614 366 342 323 332 325 308
HELP 83.8 586 549 516 538 516 503 935 734 608 565 57.6 56.1 540 618 359 330 313 318 313 298
HELPCArg 83.1 60.5 571 527 560 52.6 513 94.0 76.6 626 57.7 588 572 550 61.1 370 347 32.6 338 328 312

Table 2. Comparison of adversarial robustness and improvement from CAFE on five defense baselines: ADV, TRADES, MART, AWP,
HELP, trained with VGG-16, ResNet-18, WideResNet-34-10 for three datasets under six attacks: FGSM, PGD, CW ., AP, DLR, AA.

This is because, in our IV setup, the treatment 7" is directly
estimated by instrument Z given natural features Fjaural-
By using all data samples, we empirically compute Pear-
son correlation coefficient to prove existence of highly re-
lated connection between them as described in the last row
of Tab. 1. Therefore, our IV satisfies Relevance condition.

5. Inoculating CAusal FEatures for Robustness

Next, we explain how to efficiently implant the causal
features into various defense networks for robust networks.
To eliminate spurious correlation of networks derived from
the adversary, the simplest approach is utilizing the hypoth-
esis model to enhance robustness. However, there is a re-
alistic obstacle that it works only when we already identify
what is natural inputs and their adversarial examples in in-
ference phase. Therefore, it is not feasible approach to di-
rectly exploit the hypothesis model to improve robustness.

To address it, we introduce an inversion of causal fea-
tures (i.e., causal inversion) reflecting those features on in-
put domain. It takes an advantage of well representing
causal features within allowable feature bound regarding
network parameters of the preceding sub-network f; for the
given adversarial examples. In fact, causal features are ma-
nipulated on an intermediate layer by the hypothesis model
h, thus they are not guaranteed to be on possible feature
bound. The causal inversion then serves as a key in re-
solving it without harming causal prediction much, and its
formulation can be written with causal perturbation using

distance metric of KL divergence Dk, as:

Ocausal = Zﬁ‘gﬁ min Dgp (flJr(FAC) H f(X5)) ,
<

®)

where Fc indicates adversarial causal features distilled by
hypothesis model h, and d.,u5, denotes causal perturbation
to represent causal inversion X uusa such that X =
X +0causal- Note that, so as not to damage the information of
natural input during generating the causal inversion X aysal,
we constraint the perturbation § to [, within ~-ball, as
known as perturbation budget, to be human-imperceptible
one such that [|6]| ., < . Appendix C shows the statistical
distance away from confidence score for model prediction
of causal features, compared with that of causal inversion,
natural input, and adversarial examples. As long as being
capable of handling causal features using the causal inver-
sion such that Fixc = f1(Xcausal)» we can now develop how
to inoculate CAusal FEatures (CAFE) to defense networks
as a form of empirical risk minimization (ERM) with small
population of perturbation e, as follows:

! r\r|1a)<('y Lpefense + DKL(flJr(FAC) || fl+(Fadv)) ;
o ©)

where Lpefense Specifies a pre-defined loss such as [42, 54,

,72,77] for achieving a defense network f on network
parameter space F, and S denotes data samples such that
(X,G) ~ S. The rest term represents a causal regularizer

minEg
fer
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serving as causal inoculation to make adversarial features
F,qv assimilate causal features Fac. Specifically, while
Lbpefense Tobustifies network parameters against adversarial
examples, the regularizer helps to hold adversarial features
not to stretch out from the possible bound of causal features,
thereby providing networks to backdoor path-reduced fea-
tures dissociated from unknown confounders. More details
for training algorithm of CAFE are attached in Appendix E.

6. Experiments
6.1. Implementation and Experimental Details

We conduct exhaustive experiments on three datasets and
three networks to verify generalization in various condi-
tions. For datasets, we take CIFAR-10 [38], SVHN [46],
and Tiny-ImageNet [39]. To train the three datasets, we
adopt standard networks: VGG-16 [60], ResNet-18 [30],
and an advanced large network: WideResNet-34-10 [75].

For attacks, we use perturbation budget 8/255 for
CIFAR-10, SVHN and 4/255 for Tiny-ImageNet with two
standard attacks: FGSM [26], PGD [42], and four strong at-
tacks: CW, [10], and AP (Auto-PGD: step size-free), DLR
(Auto-DLR: shift and scaling invariant), AA (Auto-Attack:
parameter-free) introduced by [15]. PGD, AP, DLR have 30
steps with random starts where PGD has step sizes 0.0023
and 0.0011 respectively, and AP, DLR have momentum co-
efficient p = 0.75. CW, uses gradient clamping for /.
with CW objective [10] on £ = 0 in 100 iterations. For de-
fenses, we adopt a standard defense baseline: ADV [42] and
four strong defense baselines: TRADES [77], MART [67],
AWP [72], HELP [54]. We generate adversarial examples
using PGD [42] on perturbation budget 8/255 where we set
10 steps and 0.0072 step size in training. Especially, adver-
sarially training for Tiny-ImageNet is a computational bur-
den, so we employ fast adversarial training [70] with FGSM
on the budget 4/255 and its 1.25 times step size. For all
training, we use SGD [57] with 0.9 momentum and learning
rate of 0.1 scheduled by Cyclic [62] in 120 epochs [56, 70].

6.2. Comparing Adversarial Robustness

We align the above five defense baselines with our ex-
periment setup to fairly validate adversarial robustness.
From Eq. (8), we first acquire causal inversion to straightly
deal with causal features. Next, we employ the causal in-
version to carry out causal inoculation to all networks by
adding the causal regularizer to the pre-defined loss of the
defense baselines from scratch, as described in Eq. (9).
Tab. 2 demonstrates CAFE boosts the five defense baselines
and outperforms them even on the large network and large
dataset, so that we verify injecting causal features works
well in all networks. Appendix F shows ablation study for
CAFE without causal inversion to identify where the effec-
tiveness comes from, and it additionally demonstrates the
power of test function in CAFE and the stability of CAFE.

1.0 1.0
== CIFAR-10 mm CIFAR-10
== SVHN == SVHN

w/ Regularizer w/o Regularizer

(b) Balance Ratio

Figure 4. Displaying box distribution statistics of Rademacher dis-
tance and balance ratio for prediction results, compared with w/
Regularizer and w/o Regularizer on two datasets for VGG-16.

6.3. Ablation Studies on Rich Test Function
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(a) Rademacher Distance

To validate that the regularizer truely works in practice,
we measure Rademacher Distance and display its box dis-
tribution as illustrated in Fig. 4 (a). Here, we can appar-
ently observe the existence of the regularization efficiency
through narrowed generalization gap. Concretely, both me-
dian and average of Rademacher Distance for the regular-
ized test function are smaller than the non-regularized one.
Next, in order to investigate how rich test function helps
causal inference, we examine balance ratio of prediction
results for the hypothesis model, which is calculated as #
of minimum predicted classes divided by # of maximum
predicted classes. If the counterfactual space deviates from
possible feature bound much, the attainable space that hy-
pothesis model can reach is only restricted areas. Hence,
the hypothesis model may predict biased prediction results
for the target objects. As our expectation, we can observe
the ratio with the regularizer is largely improved than non-
regularizer for both datasets as in Fig. 4 (b). Consequently,
we can summarize that rich test function acquired from the
localized Rademacher regularizer serves as a key in improv-
ing the generalized capacity of causal inference.

7. Conclusion

In this paper, we build AMR-GMM to develop adver-
sarial IV regression that effectively demystifies causal fea-
tures on adversarial examples in order to uncover inexpli-
cable adversarial origin through a causal perspective. By
exhaustive analyses, we delve into causal relation of adver-
sarial prediction using hypothesis model and test function,
where we identify their semantic information in a human-
recognizable way. Further, we introduce causal inversion to
handle causal features on possible feature bound of network
and propose causal inoculation to implant CAusal FEatures
(CAFE) into defenses for improving adversarial robustness.
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