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Abstract

We address the problem of surface reconstruction from
unoriented point clouds. Implicit neural representations
(INRs) have become popular for this task, but when infor-
mation relating to the inside versus outside of a shape is
not available (such as shape occupancy, signed distances or
surface normal orientation) optimization relies on heuris-
tics and regularizers to recover the surface. These meth-
ods can be slow to converge and easily get stuck in local
minima. We propose a two-step approach, OG-INR, where
we (1) construct a discrete octree and label what is inside
and outside (2) optimize for a continuous and high-fidelity
shape using an INR that is initially guided by the octree’s
labelling. To solve for our labelling, we propose an en-
ergy function over the discrete structure and provide an ef-
ficient move-making algorithm that explores many possible
labellings. Furthermore we show that we can easily inject
knowledge into the discrete octree, providing a simple way
to influence the result from the continuous INR. We evaluate
the effectiveness of our approach on two unoriented surface
reconstruction datasets and show competitive performance
compared to other unoriented, and some oriented, methods.
Our results show that the exploration by the move-making
algorithm avoids many of the bad local minima reached by
purely gradient descent optimized methods (see Figure 1).

1. Introduction

Surface reconstruction from 3D point clouds has been
studied extensively in computer vision and computer graph-
ics. The task requires estimating a mesh of the shape’s sur-
face from a point cloud sampled from the surface of the
shape. We focus on the reconstruction of watertight 3D
shapes, i.e., shapes that have a well defined interior and ex-
terior. Such shapes are often represented as signed distance
fields (SDFs) or occupancy fields, which can be efficiently
encoded by a neural network [28, 30]. As these representa-
tions are fields parameterized by neural networks, they are
often called neural fields. Furthermore, they implicitly rep-

Figure 1. Our method with a SIREN INR (OG-SIREN, left) com-
pared to SIREN wo n (right) for two shapes from the ShapeNet
dataset. Our octree guidance allows for consistent inside-outside
determinism. On the other hand, SIREN wo n gets stuck in lo-
cal minima from which it cannot escape (due to needing to com-
pletely change the occupancy of certain areas) creating extraneous
surfaces (often called ghost geometries in the literature).

resent the shape by a level set of the field, thus they are also
often referred to as implicit neural representations (INRs).

The broader class of neural fields, including INRs, have
been very popular over the last few years as they can handle
arbitrary topology, are memory efficient, and are continu-
ous with potentially infinite resolution [39, 46]. Among the
INRs for 3D shapes, SDFs are the most popular as they pro-
vide more useful information (distances not just occupancy)
and are required for downstream graphics algorithms such
as sphere tracing and approximate soft shadows [29, 35].

When learning an implicit representation of a shape, a
major difficulty is predicting whether points in space are
inside or outside the shape. Many methods require ori-
ented surface normals for the input points or signed dis-
tances from the surface, which usually are not given by raw
data from scans. While this can be estimated using the line
of sight information [17] or algorithms [4, 6, 15, 21], they
yield noisy predictions that after postprocessing still can
lead to bad results (see Section 4.4). We consider the task
of unoriented surface reconstruction, where such informa-
tion is not available, and only the sampled surface points
are given. We demonstrate that our method performs com-
petitively and sometimes better than oriented methods, even
when they are given the ground truth (GT) normals.
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Figure 2. An illustration of our method, OG-INR. Given an unoriented point cloud (left), we progressively build and label an octree around
the points (middle). The octree at depths 3-7 are shown. Surface leaves of the octree (yellow) are leaves that contain points from the point
cloud, other leaves are labelled as inside (blue) or outside (transparent) by minimizing an energy function. We then train an INR model to
obtain an SDF, using the labelling as supervision for the initial training, after which we can extract a mesh (right).

We propose OG-INR, which uses a discrete representa-
tion in conjunction with the continuous INR representation
(see Figure 2). Given an input unoriented point cloud, we
progressively build an octree from the input points and de-
termine which leaf nodes are surface leaves (i.e., leaves that
contain a point). We also label all other leaves as inside or
outside leaves (if they should be within or outside the shape
respectively). To do this we minimize an energy function
that trades off the watertight surface property, that every
surface point should border with the inside and outside of
the shape, with a minimal surface constraint. We then train
standard INR architectures, initially guiding the training by
the octree labelling, and show that the INR converges much
faster and is less prone to large failure regions.

Our main contributions are:
• We introduce a novel method to guide the initial stage

of INR training. It uses a labelled octree structure to
allow the INR to converge significantly faster and alle-
viates the local minima problem of INRs.

• We propose an energy function over octree labels that
captures the task of surface reconstruction. It balances
the constraint of maintaining known surface regions
with minimising the overall surface area.

• We provide an efficient move-making algorithm to
optimize the energy function, which explores many
inside-outside possibilities in a structured manner.

• Our discrete representation is easily understandable
and human-modifiable, giving an intuitive method for
applying changes to the resulting SDF.

2. Related Work
Unsupervised Surface Reconstruction. Representing

shapes with INRs was popularized by DeepSDF [30], where
a ReLU network directly models an SDF using GT SDF
supervision. SAL [1] instead uses unsigned distance su-
pervision, approximated from the input point cloud, as an

unsupervised and unoriented approach. SALD [2] showed
that adding unoriented normal supervision improved upon
this, and IGR [14] further added the eikonal constraint loss
(see Equation 5) that has been widely adopted [5, 22, 34].
NSP [45] addresses the task by solving a kernel regression
problem but needs input normals. PHASE [22] introduces
a novel loss inspired by the phase transition problem that
encourages boundary crossings at the surface points.

However, as the inputs to INRs are low dimensional, they
are biased to low frequency solutions that do not recover
high fidelity detail [36]. To introduce high frequencies,
SIREN [34] uses sine activations and Fourier Feature Net-
works [36] use a fixed Fourier encoding. While being able
to reconstruct high fidelity shapes with a modest number of
parameters, these methods are hard to train as the high fre-
quencies overfit quickly. A different approach is parametric
encoding [29, 35], where spatial regions are represented by
trainable parameters (often using an octree structure). We
cover such methods in the next subsection.

Note that IGR and SIREN can operate without normals,
which we refer to by “IGR wo n” and “SIREN wo n”.

Octrees for Surface Reconstruction. Octrees were first
introduced by Meagher [27] as an efficient data structure for
representing and manipulating 3D data, and are now used
extensively. The classic method Poisson Surface Recon-
struction (PSR) [18] and its followup SPSR [19] use octrees
to structure their implicit functions.

Early works on using octrees with neural networks in-
clude HSP [16] and OGN [38], who train encoder-decoder
networks to learn octrees with occupancy values, and Oct-
Net [32] and O-CNN [40], who implement 3D CNNs that
operate over octrees rather than voxel grids for shape anal-
ysis tasks. O-CNN’s descendants [41, 43] build on this and
adapt it to shape generation, completion and reconstruction.

More recently octrees have been used in INRs for rep-
resenting fine details efficiently. OctField [37] and NSVF
[23] both learn local implicit functions for individual octree
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nodes. NGLOD [35] and ACORN [26] instead learn a sin-
gle INR, but store trainable parameters at octree node ver-
tices to encode spatial regions. IMLSNet [24] uses O-CNN
to predict both an octree and oriented points per octree node
to represent the surface using implicit moving least squares.

However, previous octree reconstruction methods were
supervised, trained on GT SDF/occupancy of either the cur-
rent shape or a separate training set. Recently Dual Oc-
tree Graph CNNs [42] addressed the unsupervised setting,
where they learn local features on the dual graph of an oc-
tree. However their method has parameters that need unsu-
pervised training, and they require input normals.

SAP [31] truly addresses the unsupervised and unori-
ented task by making the PSR pipeline differentiable. Start-
ing from an oriented point cloud of a sphere, they use
Chamfer loss to guide that point cloud to a dense, oriented
representation. Their method is fast and among state-of-
the-art, however it can fail drastically and often does not
produce a watertight mesh (see Section 4). It is also hard to
adapt to different applications and losses, unlike INRs.

Initialization for INRs. Due to the difficulty of training
INRs, initialization is very important [1, 5]. However re-
gardless of input, most methods initialize to a sphere. These
include SAL [1] and its descendants [2, 14, 22], DiGS [5]
and IDF [47]. This gives many important properties, such as
biasing shape interior to the domain’s center and satisfying
the eikonal condition at the start of training, but it is prob-
lematic for shapes with sharp concavities. Our method, on
the other hand, provides firm guidance for both the eikonal
constraint and the shape based on the input point cloud, and
thus does not bias the training toward convex objects.

Energy Minimization. Discrete energy minimization
has been used extensively in both 2D and 3D vision for seg-
mentation and object labelling [9, 10]. An energy function
encodes our preference over the joint assignment to a set of
variables, e.g., binary variables representing occupancy of
voxels in 3D space. The goal of energy minimization is to
find an assignment to the variables with minimal cost. This
is NP-hard in general and a number of approximation al-
gorithms have been proposed [9]. One class of algorithms,
known as move-making, start with an initial assignment and
iteratively evaluates changes to a subset of the variables
(called a move). If the change results in lower energy then
the move is accepted, otherwise the changed values are re-
verted. Moves are repeatedly tried until no further reduction
in energy is found. Iterated Conditional Modes (ICM) [8] is
the simplest example, where each move involves changing a
single variable and so is very efficient, but it is prone to get-
ting stuck in local minima. Generalized ICM improves on
this by allowing multiple variables to change in a move, but
it is very costly. Our method is a variant of generalized ICM
specialized to our problem, where we introduce restrictions
on the move space improve efficiency.

Algorithm 1 Overall octree labeling algorithm

1: procedure LABELOCTREE(χ, di, k, C)
2: O = CreateOctree(χ,di)
3: Initialization(O)
4: for j in 0, . . . , k do
5: if j ̸= 0 then
6: ExpandTree(O)
7: end if ▷ Now at depth d = di + j
8: Grow(O)
9: for s in C do

10: makeMove(O, s)
11: end for
12: end for
13: return O
14: end procedure

3. OG-INR: Octree Guided Shape INRs

3.1. Problem Formulation

Let χ = {xi}i∈I be a point cloud sampled from a sur-
face S = ∂V of some watertight volume V ⊂ D where
D ⊂ R3 is compact. We wish to reconstruct the surface S.
We choose to represent S as the zero-level set of a signed
distance function (SDF), and thus wish to train a neural net-
work Φ to output signed distances for all points x ∈ D,

Φ(x, θ) = (−1)o(x)d(x,S) (1)

where θ are the model parameters, o(x) is the occupancy
of point x (1 if inside and 0 if outside) and d(x,S) is the
distance from x to its closest point on S.

3.2. Overview

We first aim to produce a rough and discrete, but glob-
ally consistent, occupancy determination for our domain by
solving for an inside-outside labelling on nodes of an oc-
tree. To do this we propose an energy function that com-
bines both the watertight surface property and the minimal
surface objective. Despite this energy being intractable to
solve exactly, we provide a domain-guided move-making
algorithm to get low energy solutions (see Section 3.3).

We then design additional INR loss terms to guide INRs
using our octree labelling (see Section 3.4). These losses
quickly guide the INR towards a rough but globally con-
sistent representation that allows it to avoid many bad local
minima. Since these loss terms are agnostic to INR archi-
tecture, our method can work with any INR model.

As we assume our domain is compact, we first normalize
the point cloud to fit within the unit sphere in 3D, and then
set our domain as D = [−1.1, 1.1]3.
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Figure 3. Our algorithm demonstrated on a 2D quadtree example. The black dots are our input point cloud, the yellow squares are surface
leaves, and the blue and gray squares are non-surface leaves labelled as inside and outside respectively.

3.3. Octree Construction and Labelling

Setup. We present our octree labelling algorithm in Al-
gorithm 1, which takes in point cloud χ, an initial depth to
build the octree to di, a number of further depth expansions
k (the final octree has depth df = di + k) and a set of move
set sizes C. We set d = 3, k = 4 and C = [1, 2, 10, 10000]
in our experiments. The algorithm returns a labelled octree
O = (N ,Lns,Ls, y) where

• N are the nodes of the octree. The octree is built by
repeatedly expanding nodes containing or near points
from χ, so it is highly unbalanced.

• L ⊂ N are the leaf nodes, and thus L partitions D.
Furthermore, we define surface leaves Ls ⊂ L to be
leaves that contain points from the point cloud (colored
yellow in Figure 2 and Figure 3) and all other leaves to
be non-surface leaves Lns = L \ Ls.

• y is the binary occupancy label vector indexed by non-
surface leaves ℓ ∈ Lns denoting whether the space
defined by each ℓ is inside, yℓ = 1, or outside, yℓ = 0.

We will construct our algorithm so that the neighbours of
every surface leaf ℓ is at the same depth. Thus let ns

ℓ and nns
ℓ

be the number of its surface and non-surface neighbours and
n
(1)
ℓ (y) and n

(0)
ℓ (y) be the number of inside and outside

neighbors w.r.t. labelling y. Then nns
ℓ = n

(1)
ℓ (y)+n

(0)
ℓ (y)

and ns
ℓ + ns

ℓ = 26 (or 8 for our 2D example in Figure 3).
We will constantly refer to the boundary as the leaves

touching the boundary of D and the inside-outside border to
be the non-surface leaves who have a non-surface neighbor
with a different label (different occupancy value).

We determine inside-outside occupancy based on three
properties: (1) surface property: surfaces should separate

inside and outside regions, (2) minimal surface constraint:
the total surface area of the shape’s surface S should be as
small as possible, (3) boundary constraint: the boundary of
the domain D should be outside.

Energy function. We propose an energy function over
labellings y = {y | yi ∈ {0, 1}, i ∈ Lns} based on the
first two criteria, the third is hard-coded at the start of the
algorithm. For the surface property, ideally every surface
leaf would have both inside and outside neighbours, how-
ever it may only have surface leaf neighbours which contain
both inside and outside regions by definition (see Figure 3
C,D,G,H, some surface leafs have no inside neighbours).
For the minimal surface constraint, we only create surfaces
when adjacent non-surface leaves have different labellings
(note surface leaves are fixed), so we want to minimise this.

For the surface property, we want every surface leaf ℓ
to have some amount of both inside and outside neigh-
bours, where surface neighbours partially count towards
both. Thus, we aim for γ(1)

ℓ = γ(1) − η(1)ns
ℓ non-surface

inside neighbors and γ
(0)
ℓ = γ(0) − η(0)ns

ℓ non-surface out-
side neighbors where γ(·), η(·) are hyperparameters. Then
the energy cost for a surface leaf ℓ is

ESP
ℓ (y) = max

{
γ
(1)
ℓ − n

(1)
ℓ (y), γ

(0)
ℓ − n

(0)
ℓ (y), 0

}
. (2)

For the minimal surface constraint, we want to minimise
the total surface area between every pair of non-surface
neighbors with different labellings. Then for two non-
surface leaves ℓ, ℓ′, our energy cost is

EMSC
ℓ,ℓ′ (y) = aℓℓ′ |yℓ − yℓ′ | (3)

where aℓℓ′ is the (surface) area in common between them
(note aij = 0 if they are not adjacent).
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The two criteria can be formalized as an energy function
over labellings y = {yi ∈ {0, 1} | i ∈ Lns} by

E(y) =
∑
j∈Ls

ESP
j (y) + λ

∑
i,j∈Lns

EMSC
i,j (y) (4)

where λ is a hyperparameter.

3.3.1 Octree Creation and Labelling Algorithm

The energy function in Equation 4 is non-trivial to mini-
mize. It is a discrete energy minimisation problem with
hard unary terms (the boundary constraint), pairwise terms
(Equation 3 which is essentially a smoothness constraint)
and n-ary terms (Equation 2). The n-ary term however is
not concave, so we cannot use existing methods to perform
exact inference using graph-cuts [13, 20].

Instead, we employ a move-making algorithm [9] with
moves specialized for our task (see Figure 3). We first hard
code the boundary constraint (leaves on the boundary of
the domain are outside) and initialize all other leaves to
inside. To be efficient, we (1) only consider moves that
change leaves from inside to outside (never the other way
around), (2) require such moves include an inside leaf from
the inside-outside border, (3) iteratively grow such poten-
tial moves, and (4) apply moves at multiple depths. We also
have a grow stage to remove extraneous inside leaves with-
out needing guidance from the energy function. We now de-
scribe the stages of our algorithm, depicted in Algorithm 1.

Octree Creation. We start with a single node n0 cov-
ering the whole space D. We then recursively expand any
node (into 8 equally sized child nodes) that contains points
from χ in it until depth di is reached. Note that every sur-
face leaf is at depth d.

Initialisation. We hard code our boundary condition and
set every other leaf node to inside (see Figure 3 A).

Grow Stage. We first expand any neighbor of a surface
leaf that is not also at the current depth d (new leaves keep
the label of its parent). We repeatedly expand the outside re-
gion changing inside leaves to outside if they stick out from
a plane, i.e., have at least 26/2 + 1 = 14 outside neighbors
(or 8/2 + 1 = 5 for our 2D example in Figure 3). Finally
we expand nodes that are on the inside-outsider border and
are not at the current octree depth.

Move-Making Stage. To overcome local minima we
propose sets of leaves to change from inside to outside in a
single move. Sets are constructed as follows. Starting with
an inside leaf on the border we greedily add neighboring in-
side leaves to the set, selecting the neighbor which results
in lowest energy, and calculate the cost of the current move
set. Note that the energy can temporarily increase. We do
this until there are no inside neighbors remaining or a max-
imum set size s is reached.1 If any of these moves result

1In practice we include additional early stopping criteria to avoid moves

in a decrease in energy, we apply the move with the largest
decrease, We repeat the above for different starting leaves
and for multiple increasing set sizes s ∈ C.

Figure 3 illustrates this process in 2D. After reaching la-
belling (E), all single variable changes (s = 1) are consid-
ered, resulting in (F). Observe that the inside-outside bor-
der has been refined but larger regions are still incorrectly
labelled. Considering larger moves as shown in (G) fixes
many of these regions, with further refinements being made
at deeper levels of the octree as shown in (H). We explain
this 2D example in more detail in the supplemental mate-
rial, including why we cannot reach a lower energy from
fixing certain regions until a deeper level is reached.

Expanding. We find that labelling at multiple depths
is faster and more stable than directly labelling the largest
depth. Note that expanding completely changes Ls and
adds more nodes to Lns, and thus expands y. We keep the
labels for previous non-surface leaves, and assign all the
new non-surface leaves to inside.

3.4. SDF learning

We use the octree to guide the SDF learning. Given an
INR, we train it with the combination of four losses. The
first two are the standard losses in the literature [1, 2, 5, 14,
34], the surface loss to enforce that the input point cloud
should lie on the zero level set and the eikonal loss [14] to
enforce that the gradient has magnitude one everywhere

L1 =
∑
x∈χ

|Φ(x, θ)|, L2 =

∫
D
|∥∇xΦ(x, θ)∥2 − 1| dx. (5)

We now introduce two loss functions that take guidance
from the labelled octree. We first produce an approximate
signed distance function d̃s(x) for finely sampled points
x ∈ D by computing the distance to the closest input point
cloud point and choose its sign based on the label of the
octree leaf that contains that point (for surface leaves we
choose inside). We use this as direct supervision

L3 =

∫
D
|Φ(x, θ)− d̃s(x)| dx. (6)

We also enforce the sign of each octree leaf explicitly
(again taking surface leaves to be considered as inside) at a
fixed number of randomly sampled points in that leaf Sℓ

L4 =
∑
ℓ∈L

(∑
x∈Sℓ

[
(−1)(1−y′

ℓ)Φ(x, θ)
]
>0

)
(7)

where y′ℓ = yℓ for ℓ ∈ Lns and y′ℓ = 1 for ℓ ∈ Ls. Note
that sampling a fixed number per leaf automatically adjusts
our sampling to be denser in more important regions (i.e.,
closer to the surface) due to the octree structure.

that are unlikely to eventually be accepted (see supplemental for details).
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Depth 7 Depth 6 SAP [31] DiGS [5] SAL [1] SIREN wo n [34]

Figure 4. A comparison of surface reconstructions of shapes from the watercraft and bench classes of ShapeNet. The left two
reconstructions are using OG-SIREN with the octree built to different depths.

Our overall loss is then the weighted combination

L(Φ) = λ1L1 + λ2L2 + λ3L3 + λ4L4. (8)

We keep λ1 and λ2 fixed throughout training as their loss
terms have no bias. As the guidance in L3 and L4 is ap-
proximate but highly informative, we initially use large val-
ues for λ3, λ4, allowing the INR to quickly fit to the rough
shape, and then reduce them during training. More training
details are in the supplemental material.

4. Results
Datasets. We evaluate the performance of our method

on the ShapeNet [12] and Surface Reconstruction Bench-
mark (SRB) [7] datasets. ShapeNet has a wide variety of
shapes, with thin surfaces, hollow regions and disjoint ob-
jects. However the shapes are rather uniformly sampled.
We use the preprocessing and split of Neural Splines [45],
which consists of 13 shape classes with 20 shapes in each
shape class. For each shape it provides the ground truth
mesh (preprocessed to be watertight), an input point cloud
and occupancy annotation at dense points. SRB contains
five shapes from simulated noisy range scans, but it is a
popularly used dataset due to the shapes exhibiting many
challenging features. These include large missing regions,
thin and sharp regions, and small surface details. The for-
mer means that good priors in the reconstruction methods,
such as smoothness priors, are very important.

We follow the metrics used in the literature for each
dataset: the squared Chamfer distance and IoU for
ShapeNet and Chamfer and Hausdorff distance for SRB.

INRs. We demonstrate our method on two INRs, SIREN
[34], and NGLOD [35] (note that NGLOD only works in
a supervised setting as it has no global consistency, but
our octree guidance is sufficient). Thus we name our two
methods OG-SIREN and OG-NGLOD where OG stands for

“Octree Guided”. To extract a mesh we first evaluate our
INRs on a 2563 grid and then use marching cubes [25]. We
use the same settings for the octree and the INRs on both
datasets, and give more details in our supplemental.

4.1. Reconstruction Performance

ShapeNet dataset. The results are shown in Table 1
(left) and visualizations on two shapes are shown in Fig-
ure 4. Our methods get the smallest mean squared Chamfer
distance out of the unoriented methods by almost an order
of magnitude, and are even better than the best perform-
ing oriented method. Likewise for mean IoU our methods
are better than both unoriented and oriented methods. For
median performance, our methods are comparable to the
best oriented and unoriented methods. SAP [31] gets the
best median IoU, but their mean is much lower than ours,
indicating that in a few instances they misrepresent large
regions. On the other hand, due to our move-making algo-
rithm we reduce the likelihood of vastly incorrect labellings,
and as a result achieve low standard deviations on both met-
rics despite the high performance.

SRB dataset. Table 1 (right) shows that DiGS, SAP,
PHASE+FF and our two methods do comparably, with
DiGS performing slightly better. Note the performance of
these methods are comparable to most oriented methods.
Also note that the difference between our two methods is
more prominent on SRB as the large missing regions means
that smoothness priors are more important. Octree guidance
is NGLOD’s only global supervision, as it fits locally, while
SIREN is biased towards smooth shapes.

4.2. Octree Depth Ablations

Table 4 shows the results of OG-SIREN on ShapeNet
when evaluating at different depths of the octree. We in-
clude an octree IoU metric, where we compute the IoU of
the labelling of the octree directly (taking surface leaves to
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Squared Chamfer ↓ IoU ↑
Method mean median std mean median std
SPSR [19] 5.44e-5 1.97e-5 5.06e-4 0.9926 0.9956 0.0105
IGR [14] 5.12e-4 1.13e-4 2.15e-3 0.8102 0.8480 0.1519
SIREN [34] 1.03e-4 5.28e-5 1.93e-4 0.8268 0.9097 0.2329
FFN [36] 9.12e-5 8.65e-5 3.36e-5 0.8218 0.8396 0.0989
Biharmonic RBF [11] 1.11e-4 8.97e-5 7.06e-5 0.8247 0.8642 0.1350
SVR [33] 1.14e-4 1.04e-4 5.99e-5 0.7625 0.7819 0.1300
NSP [45] 5.36e-5 4.06e-5 3.64e-5 0.8973 0.9230 0.0871
DiGS + n [5] 2.74e-4 2.32e-5 9.90e-4 0.9200 0.9774 0.1992
N Est+SPSR [19] 3.76e-3 4.37e-5 1.14e-2 0.7187 0.9761 0.3767
SIREN wo n [34] 3.08e-4 2.58e-4 3.26e-4 0.3085 0.2952 0.2014
SAL [1] 1.14e-3 2.11e-4 3.63e-3 0.4030 0.3944 0.2722
DiGS [5] 1.32e-4 2.55e-5 4.73e-4 0.9390 0.9764 0.1262
SAP [31] 4.09e-4 2.46e-5 2.60e-3 0.9118 0.9923 0.2002
Our OG-SIREN 3.75e-5 2.17e-5 8.24e-5 0.9615 0.9871 0.1048
Our OG-NGLOD 5.07e-5 2.57e-5 9.39e-5 0.9593 0.9870 0.1057

Method dC ↓ dH ↓
SPSR [19] 0.21 4.69
DGP [44] 0.21 5.18
IGR [14] 0.19 2.99
SIREN [34] 0.19 3.86
NSP [45] 0.17 2.85
PHASE [22] 0.16 2.77
DiGS + n [5] 0.18 3.55
N Est.+SPSR [19] 1.25 22.59
IGR wo n [14] 1.38 16.33
SIREN wo n [34] 0.42 7.67
SAL [14] 0.36 7.47
IGR+FF [14] 0.96 11.06
PHASE+FF [22] 0.22 4.96
DiGS [5] 0.19 3.52
SAP [31] 0.21 4.51
Our OG-SIREN 0.20 4.06
Our OG-NGLOD 0.22 6.03

Table 1. Surface Reconstruction results on ShapeNet [12] (left) and SRB [7] (right). Methods above the line use ground truth normal
information, and methods below do not. Left: The mean, median and standard deviation of the squared Chamfer distance and IoU of all
260 shapes are reported. Right: The mean Chamfer dC and Hausdorff distance dH for all 5 shapes are reported.

Method dC ↓ dH ↓
SIREN wo n [34] 0.42 7.67
OG-SIREN 0.20 4.06
SIREN (+n) [34] 0.19 3.86
OG-SIREN + Ho 0.19 2.96
OG-SIREN + GTo 0.17 2.44
OG-NGLOD 0.22 6.03
OG-NGLOD + Ho 0.19 5.50
OG-NGLOD + GTo 0.17 5.12
NGLOD+GTd [35] 0.13 1.97

Table 2. Results on SRB [7] when supervising INRs with varying
levels of information (see Section 4.3). GTd means dense GT SDF
supervision, while GTo and Ho mean GT and human estimated
occupancy per octree node.

be inside). The IoU of the octree is much lower than the IoU
of the final mesh, indicating that the INR training is learn-
ing beyond the octree supervision. Furthermore as the depth
increases, the octree IoU improves and so do the metrics on
the final mesh, indicating that the INR training is heavily af-
fected by the initial training guidance from the octree. See
the supplemental material for a depth ablation on SRB.

4.3. Modifying the octree

To show the versatility of our method, in Table 2 we
demonstrate how modifying the octree labelling can affect
the performance of the resulting shape. For OG-INR+GTo

we set octree labels using GT occupancy. For OG-INR+Ho

we set octree labels using sparse human supervision: we
change up to 30 large octree leaves at the lower depths (up

to depth 5) where the changes are obvious from a human
perspective. With both octree supervision signals we get in-
creases in performance, showing that the discrete nature of
octree guidance does not introduce much bias.

We also compare to the INRs with other forms of su-
pervision. As NGLOD cannot be used in an unsupervised
setting, we provide result when trained on dense GT.

4.4. Further Comparisons

The need for unoriented methods. We compare to
a recent industry-standard implementation [48] of normal
estimation + SPSR [19] (SPSR+N Est.). Table 1 (left)
shows that for the well sampled surfaces in ShapeNet, when
ground truth normals are available SPSR achieves close to
perfect IoUs. However when normals need to be estimated,
it has good median performance but very poor average per-
formance, indicating the normal estimation procedure will
often be quite inaccurate. Table 1 (right) shows that for
point clouds with large missing regions, SPSR with ground
truth normals has room for improvement, while SPSR with
estimated normals performs extremely poorly.

While neither dataset has provided line of sight informa-
tion (as would be given by sensors), a more informative use
of such information than estimating rough normals would
be to use it to label parts of our octree. See Section 4.3 for
how additional octree supervision improves performance.

Overall Timing Comparison. Table 3 shows the time
taken for each method. Our method’s gradient descent train-
ing is the fastest to converge as it needs much fewer itera-
tions. Even when adding on the average octree building
time from ShapeNet, we can see that the time taken for both
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Method Parameters Time per iter. (s) Num iters Time (s) Speed Up
N Est. +SPSR - - - 42 (13 + 29) 12× (· + 18×)
SIREN (wo n) 264K 0.052 10000 520 1×
SAL 2.1M 0.175 10000 1750 0.3×
DiGS 264K 0.120 10000 1200 0.4×
SAP 120K - 3200 330 1.6×
Our OG-SIREN 264K 0.158 600 135 (40 + 95) 3.9× (· + 5.5×)
Our OG-NGLOD 68.7M 0.173 300 92 (40 + 52) 5.7× (· + 10×)

Table 3. Time and number of parameters for each model on ShapeNet. For methods with a precomputation stage (normal estimation or
octree building), the time for both is included with the precomputation and training times in parenthesis. Speed up is measured with respect
to SIREN/SIREN wo n. We ran our experiments on a single Nvidia RTX 2080 GPU and a i7-8700K CPU.

Octree Final Mesh (OG-SIREN) Octree
IoU ↑ IoU ↑ Squared Chamfer ↓ Build + Label Time (s)

Depth Mean Median Std Mean Median Std Mean Median Std Mean Median Std
5 0.4748 0.4702 0.1854 0.7101 0.7712 0.2594 1.84e-4 1.35e-4 2.23e-4 2.2 1.6 2.2
6 0.6401 0.6410 0.1604 0.9503 0.9835 0.1172 3.93e-5 2.34e-5 8.20e-5 7.6 5.3 8.6
7 0.7757 0.8006 0.1305 0.9615 0.9871 0.1048 3.75e-5 2.17e-5 8.24e-5 38.1 19.3 67.7

Table 4. Octree depth ablation on ShapeNet. Octree IoU is computed using the labelling of the leaves (surface leaves chosen as inside).

stages of our method is still faster than other methods, often
by an order of magnitude. We implemented the octree in
Cython [3] but further optimisations are possible.

Comparison Against No Octree Guidance. Compar-
ing SIREN wo n with and without the octree guidance we
can see that the guidance drastically improves both time per-
formance and reconstruction metrics (see Table 1,Table 3).
When initially guided by our octree labelling, SIREN (wo
n) converges significantly faster (92s vs 520s) and gets a 3x
improvement in ShapeNet IoU. Without guidance from nor-
mals or our octree, SIREN wo n gets stuck in bad local min-
ima where it needs to flip its inside-outsideness prediction,
causing ghost geometry (see Figure 1). When comparing
the two types of INR training guidance applied to SIREN
wo n, ground truth normals vs our octree, we can see that
the octree guidance still performs much better than SIREN
on ShapeNet, while performing comparably on SRB.

4.5. Discussion

Limitations. Like all unoriented methods, the octree
guidance has difficulty with large missing regions, which
is demonstrated heavily in SRB, and thin surfaces, which
appear in SRB (Daratech) and ShapeNet (airplane and wa-
tercraft). Despite this, our methods perform competitively
on shapes with these difficulties on both datasets. See the
supplemental for per class breakdown and visualizations.

Other possible limitations would be the ability to deal
with noise and outliers. Note that all methods do poorly
with large amounts of either corruption. For small noise
the method’s performance does not degrade considerably as
demonstrated by the results on SRB. For larger noise, the

volume occupied by surface leaves would be much larger.
While this would not introduce error, the octree’s benefits
would be reduced. For outliers there would be significant
bias introduced by the octree method, which if sparse could
be preprocessed out beforehand.

Broader Impact. Faster and more accurate unori-
ented surface reconstruction methods will allow for accu-
rate meshes to be constructed easily from regular scanners.
Potential misuses of this technology include unauthorized
replication and harmful content creation.

5. Conclusion

We have introduced an octree guided method for training
implicit neural representations (INRs) for the task of unori-
ented surface reconstruction. We formulate the main diffi-
culty of the task, inside-outside determinism, as an octree
labelling problem with respect to an energy function that
captures watertight surface properties and the minimal sur-
face constraint. We also detail an efficient method to mini-
mize the energy. We then use this supervision to guide the
initial stage of INR training, using loss functions that can be
used by any INR architecture. Our results show that apply-
ing our octree guided supervision provides significant time
and reconstruction performance improvements, with com-
petitive or better results than the current state-of-the-art.
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