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Abstract

Multi-modal image registration spatially aligns two im-
ages with different distributions. One of its major challenges
is that images acquired from different imaging machines
have different imaging distributions, making it difficult to
focus only on the spatial aspect of the images and ignore
differences in distributions. In this study, we developed a
self-supervised approach, Indescribable Multi-model Spatial
Evaluator (IMSE), to address multi-modal image registration.
IMSE creates an accurate multi-modal spatial evaluator to
measure spatial differences between two images, and then op-
timizes registration by minimizing the error predicted of the
evaluator. To optimize IMSE performance, we also proposed
a new style enhancement method called Shuffle Remap which
randomizes the image distribution into multiple segments,
and then randomly disorders and remaps these segments, so
that the distribution of the original image is changed. Shuffle
Remap can help IMSE to predict the difference in spatial
location from unseen target distributions. Our results show
that IMSE outperformed the existing methods for registration
using T1-T2 and CT-MRI datasets. IMSE also can be easily
integrated into the traditional registration process, and can
provide a convenient way to evaluate and visualize registra-
tion results. IMSE also has the potential to be used as a new
paradigm for image-to-image translation. Our code is avail-
able at https://github.com/Kid-Liet/IMSE.

*Corresponding author.
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Figure 1. The GAN based methods can only ensure that the distri-
bution of the X domain is mapped that of the Y domain. Ideally,
we want to achieve instance registration in which moving and target
images are one-to-one corresponded.

1. Introduction

The purpose of multi-modal image registration is to align
two images with different distributions (Moving (M ) and
Target (T ) images) by warping the space through the defor-
mation field ϕ. A major challenge in multi-modal image
registration is that images from different modalities may dif-
fer in multiple aspects given the fact that images are acquired
using different imaging machines, or different acquisition
parameters. Due to dramatically different reconstruction
and acquisition methods, there is no simple one-to-one map-
ping between different imaging modalities. From the per-
spective of measuring similarity, mainstream unsupervised
multi-modal registration methods can be divided into two
categories: similarity operator based registration and image-
to-image translation based registration.

Similarity operator based registration uses multi-modal
similarity operators as loss functions for registration, for ex-
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ample, normalized cross-correlation (NCC) [15, 22, 31, 32],
mutual information (MI) [5, 23, 27, 35], and modality-
independent neighborhood descriptor (MIND) [3, 8, 13, 39].
Similarity operators are based on a prior mathematical knowl-
edge. These are carefully designed and improved over time.
They can be applied to both traditional registration process
(Eq. 1) and neural network registration (Eq. 2):

ϕ̂ = argmin
ϕ

Lsim (M (ϕ) , T ) . (1)

Or

θ̂ = argmin
θ

[
E(M,T ) [Lsim (M,T, gθ (M,T ))]

]
. (2)

Similarity operators have several limitations. 1) It is un-
likely to design similarity operators that can maintain high
accuracy for all data from various imaging modalities. 2)
It is not possible to estimate the upper limit these operators
can achieve and hence it is difficult to find the improvement
directions.

Image-to-image translation [1, 16, 17, 21, 29, 38, 42]
based multi-modal registration first translations multi-modal
images into single-modal images (Eq 3) using a generative
adversarial network (GAN [10]), and then use Mean Abso-
lute Error (MAE) or Mean Squared Error (MSE) to evaluate
the error at each pixel in space (Eq 4).

min
G

max
D

LAdv (G,D) = ET [log (D (T ))] +

EM [log (1−D (G (M)))] .
(3)

And

θ̂ = argmin
θ

[
E(M,T ) [∥G (M) , T, gθ (G (M) , T ) ∥1]

]
.

(4)
Image-to-image translation based registration cleverly avoids
the complex multi-modal problem and reduces the difficulty
of registration to a certain extent. However, it has obvious
drawbacks. 1) The methods based on GAN require training
a generator using existing multi-modal data. The trained
model will not work if it encounters unseen data, which
greatly limits its applicable scenarios. 2) More importantly,
registration is an instance problem. However, the method
based on GAN is to remap the data distribution between
different modal. As shown in Figure 1, the distribution has
bias and variance. We cannot guarantee that the translated
image corresponds exactly to the instance target image at the
pixel level. For example, Figure 2 shows that there is still
residual distribution difference between the target image and
translated image. Therefore, even if they are well aligned in
space, there is still a large error in the same organ.

To address these challenges, we propose a novel idea
based on self-supervision, namely, Indescribable Multi-
modal Spatial Evaluator, or IMSE for short. The IMSE
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Figure 2. The distributions of the Moving images translated by Cy-
cleGAN still have large residual differences from the Target images.
IMSE gives smaller error assessment values in the overlapping
regions (converging to blue).

approach creates an accurate multi-modal spatial evaluator
to metric spatial differences between two images, and then
optimizes registration by minimizing the error predicted by
the evaluator. In Figure 2, we provide a visual demonstration
of IMSE in terms of spatial location for T1-T2 and MRI-CT,
respectively. Even though distribution differences between
the Moving and Target images are still significant, IMSE is
low in overlapping regions of the same organs. The main
contributions of this study can be summarized as follows:

• We introduce the concepts of relative single-modal and
absolute single-modal as an extension of the current
definition of single-modality.

• Based on relative single-modal and absolute single-
modal, we propose a self-supervised IMSE method
to evaluate spatial differences in multi-modal image
registration. The main advantage of IMSE is that it
focuses only on differences in spatial location while
ignoring differences in multi-modal distribution caused
by different image acquisition mechanisms. Our results
show that IMSE outperformed the existing metrics for
registration using T1-T2 and CT-MRI datasets.

• We propose a new style enhancement method named
Shuffle Remap. Shuffle Remap can help IMSE to ac-
curate predict the difference in spatial location from an
unseen target distribution. As a enhancement method,
Shuffle Remap can be impactful in the field of domain
generalization.

• We develop some additional functions for IMSE. 1)
As a measure, IMSE can be integrated into both the
registration based on neural network and the traditional
registration. 2) IMSE can also be used to establish a
new image-to-image translation paradigm. 3) IMSE
can provide provide a convenient way to evaluate and
visualize registration results.
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2. Related Work
Multi-modal Similarity Metric: In order to measure

the spatial difference between multi-modal images, several
classical operators have been proposed. For example, nor-
malized cross-correlation [15, 22, 31, 32] is used to describe
the correlation between two vectors or samples of the same
dimension, mutual information [5, 23, 27, 35] is used to de-
scribe the degree of interdependence between variables, and
modal independent neighborhood descriptor [3, 8, 13, 39] is
used to describe the local modal characteristics around each
voxel. These operators can also be used as loss functions in
combination with neural networks [2, 11]. The classical op-
erators are based on mathematical knowledge of researchers.
It is difficult to apply to all modal scenes and estimate their
upper limits. As GAN [10] becomes popular in image trans-
lation task, researchers have proposed various methods based
on GAN to translate multi-modal to single-modal images to
facilitate registration. Wei et al. [37] used CycleGAN [42] to
achieve 2D MR-CT image translation, and converted the 2D
slice into 3D volumes through stacking, and finally acted on
registration. Qin Chen et al. [30] proposed an unsupervised
multi-modal image-to-image synthesis method by separating
the latent shape appearance space and content information
space. Kong et al. [18] proposed a method to add correc-
tion to the image translation to improve the quality of the
translated image. These GAN based methods remap the
data distribution of different modal. There are always biases
and variances within the distribution, so registration is an
instance problem.

Domain Generalization: The goal of domain gener-
alization (DG) is to generalize to unseen data by training
the model on source domain data [4, 6, 14, 28]. There are
methods which aim to learn domain invariant representa-
tions by minimizing domain differences between multiple
source domains [9, 19, 20, 40]. In addition, several meth-
ods handle DG tasks by modifying the normalization layer,
such as instance normalization (IN) and batch normalization
(BN) [7,26,33,34]. In the medical field, Ziqi Zhou et al. [41]
proposed the method of Dual Normalization for segmenta-
tion. Wang et al. [36] used a domain knowledge base to store
domain specific prior knowledge, and domain attributes to
aggregate the characteristics of different domains. Shuffle
Remap proposed by us is a pure style enhancement method,
which can be easily combined with other domain general-
ization methods. It is well suited to situations with large
deviation scales, such as CT-MR.

3. Methodology
3.1. Motivation

In multi-modal registration, the task is greatly simplified
if we can isolate and exclude distribution differences, and
focus only on spatial differences. In fact, the GAN-based

approach intends to eliminate distribution differences by
translating the source-domain image to the target-domain
image. However, although the translated image and the target
image can be viewed as single-modal relationship, the resid-
ual distribution differences may still be significant, making
MAE or MSE unsuitable for optimizing registration perfor-
mance. Further, we can define the relationship between such
single-modal images as the relative single-modal.

Relative single-modal: For any images {xn}n=N
n=1 , if

all satisfy a specific and identical data distribution rule, i.e.
{xn}n=N

n=1 ∼ D(µ, σ2), then {x1, ..., xN} are called rela-
tive single-modal data with respect to each other. Relative
single-modal is a abstract and extensive concept. For exam-
ple, if both CT and MR belong to the category of medical
images compared with natural images, they can be regarded
as relative single-modal images; If T1 and T2 belong to the
category of MR compared with CT, they can be regarded as
relative single-modal images.

Moreover, we can define the relationship between images
without residual distribution difference as absolute single-
modal.

Absolute single-modal: For any (xj , xk) ∈ {xn}n=N
n=1 ,

where j ̸= k, if xj and xk can be obtained from each other
by some particular spatial transformation ϕ only, i.e. xj −
xk◦ϕ = 0 or xk−xj ◦ϕ−1 = 0. Then {x1, ..., xN} is called
absolute single-modal data. Absolute single-modal belongs
to a narrower concept. To some extent, relative single-modal
contains absolute single-modal.

The images that belong to absolute single-modal are com-
pletely consistent in modalities. We can regard the absolute-
modal difference between two images as a spatial error.
Therefore, the question becomes how to make the model
measure the spatial error from an absolute single-modal per-
spective.

3.2. IMSE

The IMSE method involves training of evaluator and reg-
istration separately. In this section, we provide a detailed
description of the method.

1.Training evaluator: In IMSE, we can completely sim-
ulate multi-modal registration data and obtain the absolute
single-modal label. We first apply two random spatial trans-
formations T1 and T2 to the original image x to obtain the
transformed images x1 and x2, respectively. The spatial
transformation operations include overall rotation, displace-
ment, rescaling and random pixel-wise deformation. Since
x1 and x2 are from the same image x, they satisfy the def-
inition of absolute single-modal and differ only in spatial
location. Once x1 and x2 are generated, we subtract the two
images to obtain the image of spatial position error, which
is used as the label for evaluator training. Next, we add a
random noise ε(see Section 3.3 for the specific noise form)
to x1 to create distribution differences between x1 and x2.
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Stage 1: Train Evaluator Stage 2: Train Registration
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Figure 3. A general overview of the IMSE process. It is divided into two main parts, the training evaluator and the training registration.

x1 + ε and x2 are then stacked according to the number of
channels and used as inputs to the evaluator E. Then, the pre-
dictions of Evaluator and previously created label are used
for training (Eq. 5). It is worth noting that the distribution
of x1 + ε is arbitrary, but x2 is unchanged. Therefore, the
trained evaluator take the input x2 as the reference image to
predict the absolute single-modal error (x2 − x1).

min
E

LL1 (E) = Ex1,x2 [∥E (x2, x1 + ε) , (x2 − x1) ∥1] .
(5)

2.Training registration: Given the moving image x and
the target image y, deformation fields ϕx2y are obtained
using a registration network R with x and y as inputs. The
deformation fields are used to obtain the warped image x ◦
ϕx2y by warping the moving image x. Then, the warped
image x ◦ ϕx2y and the target images y are fed into the
evaluator E to get the spatial error e. By minimizing the
error e, we can optimize the parameters of the registration
network R (Eq. 6). We should also use a regularization
constraint based on the deformation fields (Eq. 7). During
the training of the registration network, the parameters of
the evaluator remain the same and are not updated.

min
R

Lsim (R) = Ex,y [∥E (x ◦R (x, y) , y) ∥1] . (6)

min
R

Lsmooth (R) = Ex,y

[
∥∇R (x, y) ∥2

]
. (7)

IMSE uses a neural network to evaluate the similarity
between multi-modal images. It is not possible to describe
its computational process using mathematical formulas like
what traditional similarity operators do. This is analogous to
the discriminator in generative adversarial networks. In the
training process of the generator, it is impossible to design
an analytical operator and use it as a loss function to evaluate
the authenticity of the generated images and optimize the
generator. To overcome this challenge, the researchers use
the classification loss of the discriminator to optimize the
generator indirectly. Similarly, IMSE uses the output of the

evaluator to update the registration network. Unlike GAN,
IMSE has no adversarial process and does not necessarily
train both the generator and the discriminator simultaneously
as GAN does. IMSE trains the evaluator and registration
network separately. Thus, it can save more computational
resources.

3.3. Shuffle Remap

The next question we need to consider is what factors
determine the performance limitations of IMSE. Based on
the training process, IMSE belongs to the category of self-
supervision. The label used in the training is absolutely
accurate. The upper limit of performance that the evaluator
can achieve depends mainly on two factors. First, the degree
of deformation added to the image needs to sufficiently cover
spatial differences presented in the task. Second, the noise
added to the image needs to have sufficient diversity and
cover the range of distribution differences.

We propose a simple yet effective style enhancement
method named Shuffle Remap to ensure sufficient coverage
of distribution differences. Specifically, we first normalize
the distribution of the original image X to [-1,1], then gener-
ate some random control points in between [-1,1] with the
endpoints P0 and PN fixed at -1 and 1, respectively. These
control points randomly divide the image distribution into
N segments. Each segment is assigned an index number n
in the order from the smallest to the largest. After that, the
segments are randomly disordered and remapped according
to the disordered order. For example, Eq. 8 demonstrates
the remapping from the range (Pi, P i + 1) to the range
(Pj, Pj +1) for a given pixel. The complete algorithm flow
is given in Algorithm1.

x
′
=

x− pi
pi+1 − pi

∗ (pj+1 − pj) + pj . (8)

Figure 4 shows the effect of Shuffle Remap. We show
the results for different segments. Since the index number
and location of control points are random, the remapped
images either blur the contrast (Remap.1) or enhance the
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Algorithm 1 Pseudocode of Shuffle Remap in PyTorch style.
# X: the input image and the range is [-1,1]
# r_min: Minimum number of random control points
# r_max: Maximum number of random control points

# number of randomly generated control points
control_point=random.randint(r_min, r_max)
# normalize to the range of the image distribution
dist=torch.rand(control_point)∗(1−(−1))+(−1)
# sort from small to large
dist=torch.sort(dist)
# Add endpoint -1 and 1
dist=torch.cat([torch.tensor([−1]),dist])
dist=torch.cat([dist, torch.tensor([1])])
# shuffle the distribution and generate empty new image
shuffle_remap=torch.randperm(control_point+1)
new_X=torch.zeros_like(x)
for i in range(control_point +1):

target_part=shuffle_remap[i]
min1,max1=dist[i],dist[i+1]
min2,max2=dist[target_part],dist[target_part+1]
# get the coordinates corresponding to the distribution
coord=torch.where((min1<=X)&(X<max1))
# Eq.(8)
new_X[coord]=((X[coord]−min1)/(max1−min1))∗

(max2−min2)+min2
return new_X

Origin Remap.1 Remap.2 Remap.3 Remap.4

T1 

CT

Origin

-1 1 -1

N=2

n:1 n:2

-1 1

N=5

n:1
n:2

n:3
n:4

n:5
1

N=10

n:1
-1 1

......

......
n:10

N=50

n:1
-1 1

......

......
n:50

Figure 4. Examples of T1 and CT after Shuffle Remap.

contrast (Remap.3) between the anatomical structures on the
original image. The distribution of remapped images also
can be very far away (Remap.2) from the original image
distribution. In addition, with the increase of segments, the
original image can also be confused (Remap.4). Regardless
of Shuffle Remap results, the label used in evaluator training
is always unique and accurate, which has the obvious benefit
of enhancing the model’s knowledge of the same anatomical

structures while reducing sensitivity to differences in image
distribution. Shuffle Remap is very different from the com-
monly used histogram shift method. Histogram shift only
scales the image distribution without changing the relative
relationship of the overall image distribution. Shuffle Remap,
however, is a completely random remap of the original image
distribution.

It is worth noting that we only provide a style enhance-
ment method, and Shuffle Remap is not irreplaceable in the
IMSE architecture. Shuffle Remap is a pure style enhance-
ment method, which can be easily combined with other
domain generalization methods.

4. Experiments
In this work, we did 4 experiments to evaluate the poten-

tial of IMSE. (1) We evaluated the performance of IMSE in
multi-modal image registration and compared it with various
existing registration methods based on neural networks. (2)
We integrated IMSE into the traditional registration proce-
dure. (3) We investigated the feasibility of IMSE as a new
image-to-image translation paradigm. (4)We explored the
accuracy of using IMSE to assess spatial error.

4.1. Dataset

The first dataset is from T1-T2 modal in BraTS2019 [24],
and the second dataset is from clinical CT-MR modal. CT-
MR dataset registration accuracy was evaluated based on the
parotid gland which was contoured by physicians. Table 1
provides a brief description of the datasets used in this study.

2D 3D
Source Modality Position Size Train Test Resize Size Train Test Resize

BraTs 2019 T1-T2 Brain 240 × 240 18911 640 % 48 × 128 × 128 187 20 "

Clinical CT-MR Head neck 192 × 192 3839 863 " 48 × 128 × 128 80 18 "

Table 1. A brief description of the datasets used in the study.

4.2. IMSE for Registration Based on Neural Net-
work

In this subsection, we compared various registration meth-
ods based on neural networks. Baseline uses traditional sim-
ilarity operators as loss functions to update the registration
network, including NCC [22], MI [27], and MIND [13].
There are also GAN based methods which do translation
first and then use MAE as the loss function of the registered
network, including CycleGAN [42], RegGAN [17]. We
also compared histogram shift using the Bézier curve [25]
(IMSE (BC)) and Shuffle Remap (IMSE (SR)) for style
enhancement. The random range of N in Shuffle Remap is
[2, 50].

For a fair comparison, all methods used a unified registra-
tion network model–VoxelMorph [2]. Please note that in the
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Moving→ Target
2D 3D

Methods Dice ↑ HD95 ↓ ∥∇ϕ∥2 ↓ Dice ↑ HD95 ↓ ∥∇ϕ∥2 ↓

T1 → T2

Initial 0.68 ± 0.08 4.17± 1.76 % 0.81± 0.05 4.13± 1.53 %
NCC 0.75 ± 0.05 2.71± 1.33 0.0026 0.84 ± 0.03 3.38 ± 1.03 0.0036
MI 0.82 ± 0.04 1.70± 1.29 0.0102 0.86± 0.04 2.79 ± 1.44 0.0162

MIND 0.83 ± 0.04 1.66± 1.27 0.0023 0.88± 0.02 2.70 ± 1.01 0.0034
CycleGAN 0.85 ± 0.03 1.37± 0.95 0.0061 0.88± 0.02 2.94 ± 0.93 0.010
RegGAN 0.86 ± 0.03 1.25 ± 0.90 0.0091 0.89± 0.01 2.85 ± 0.83 0.0090

IMSE(BC) 0.83 ± 0.04 1.72 ± 1.30 0.0125 0.84± 0.04 3.21 ± 1.33 0.0105
IMSE(SR) 0.89 ± 0.02 1.06± 0.87 0.0023 0.91± 0.01 2.36 ± 0.77 0.0032

T2 → T1

NCC 0.74 ± 0.04 2.76± 1.35 0.0026 0.84± 0.03 3.07 ± 1.04 0.0038
MI 0.79 ± 0.05 1.58± 1.31 0.0103 0.88± 0.04 2.33 ± 1.41 0.0166

MIND 0.81 ± 0.03 2.15± 1.28 0.0023 0.88± 0.02 2.42 ± 1.05 0.0035
CycleGAN 0.86 ± 0.04 1.19± 0.94 0.0056 0.88± 0.02 2.95 ± 0.95 0.009
RegGAN 0.86 ± 0.03 1.20± 0.90 0.0071 0.89± 0.01 2.71 ± 0.80 0.0085

IMSE(BC) 0.80 ± 0.04 1.87 ± 1.34 0.0122 0.85± 0.03 3.01 ± 1.26 0.0097
IMSE(SR) 0.89 ± 0.02 0.85± 0.86 0.0022 0.91± 0.01 2.21 ± 0.75 0.0025

Moving→ Target
2D 3D

Methods Dice ↑ HD95 ↓ ∥∇ϕ∥2 ↓ Dice ↑ HD95 ↓ ∥∇ϕ∥2 ↓

CT → MR

Initial 0.40 ± 0.07 10.05± 1.93 % 0.48± 0.05 5.64± 1.41 %
NCC 0.49 ± 0.04 9.05± 1.75 0.0074 0.54 ± 0.03 5.11 ± 1.18 0.017
MI 0.50 ± 0.05 8.90± 1.77 0.0075 0.55± 0.03 5.14 ± 1.16 0.019

MIND 0.50 ± 0.04 8.55± 1.79 0.0019 0.54± 0.02 5.10 ± 1.07 0.008
CycleGAN 0.56 ± 0.04 8.01± 1.69 0.0022 0.58± 0.02 4.62 ± 0.95 0.010
RegGAN 0.57 ± 0.03 7.83 ± 1.63 0.0020 0.60± 0.01 4.45 ± 0.90 0.009

IMSE(BC) 0.50 ± 0.04 8.63 ± 1.69 0.0072 0.55± 0.03 5.08 ± 1.06 0.019
IMSE(SR) 0.61 ± 0.02 6.92± 1.51 0.0017 0.62± 0.01 4.23 ± 0.82 0.007

MR → CT

NCC 0.49 ± 0.05 9.04± 1.75 0.0070 0.57± 0.03 5.01 ± 1.09 0.013
MI 0.50 ± 0.04 9.18± 1.75 0.0076 0.58± 0.02 5.13 ± 1.15 0.019

MIND 0.51 ± 0.04 8.86± 1.78 0.0019 0.56± 0.03 5.05 ± 1.19 0.007
CycleGAN 0.58 ± 0.04 7.56± 1.66 0.0018 0.58± 0.01 4.81 ± 0.89 0.011
RegGAN 0.59 ± 0.02 7.30±1.61 0.0021 0.61± 0.01 4.62 ± 0.89 0.009

IMSE(BC) 0.50 ± 0.04 8.85 ± 1.71 0.0069 0.56± 0.04 4.97 ± 1.16 0.016
IMSE(SR) 0.60 ± 0.01 7.26± 1.58 0.0020 0.62± 0.01 4.45 ± 0.86 0.008

Table 2. Registration results of various methods based on the T1-T2 and CT-MR dataset. Initial indicates the results before registration. The
source data used to train the IMSE were T1 and CT.

Moving

T1

NCC MI MIND CycleGAN RegGAN IMSE

T2
 

CT

MR

Figure 5. Registration results for various registration methods. Four
rows correspond to T1→T2, T2→T1, CT→MR and MR→CT
registrations, respectively. Orange contours are based on T1 and
CT images. Red contours are based on T2 and MR images. The first
column (Moving) shows the contour difference without registration.

two datasets, the source data used to train the estimator were
T1 and CT, respectively. The network structure adopted by
the evaluator is ResNet [12], which is consistent with the
generator used in CycleGAN and RegGAN. We added ran-
dom affine and non-affine transformations to the moving and
target images during training and testing, including angular
rotations of [-3,3], displacement of [-8%,+ 8%], scaling of
[8%,+8%]. The non-affine transformation was generated
by spatially transforming the moving and target images us-
ing elastic transformations followed by Gaussian smoothing.
The degree of deformation was 80 and the radius of Gaussian
smoothing was 12.

Registration results of various methods based on T1-T2
and MR-CT datasets were summarized in Table 2. We per-
formed both forward and reverse registration for each dataset.
Registration performance was measured using Dice, Haus-
dorff distances, and the smoothness which was defined by
the average gradient of the deformation field (in the case of
2D, we only counted the slices that contained contours). For
T1-T2 and MR-CT datasets, IMSE achieved the best results
based on all metrics, both in 2D and 3D. Because the registra-

T2 → T1 N=2 N=[2,10] N=[2,30] N=[2,50]
Dice 0.85 0.88 0.89 0.89

HD95 1.21 0.93 0.88 0.85
∥∇ϕ∥2 0.0028 0.0024 0.0018 0.0022

MR → CT N=2 N=[2,10] N=[2,30] N=[2,50]
Dice 0.51 0.55 0.57 0.60

HD95 8.83 8.21 7.49 7.26
∥∇ϕ∥2 0.020 0.0029 0.0025 0.0020

Table 3. In 2D case, shuffle remap adopts different parameter N

tion network used by all methods was the same, the influence
of the model was excluded. IMSE had both high registration
accuracy and a smoother deformation field, which in general
is difficult to achieve simultaneously. It was likely due to the
accurate estimate of spatial errors with the adoption of the
estimator, which allowed the registration model to achieve a
better alignment at a small deformation cost. In addition, our
results show that when the Bézier curve was used for data en-
hancement, it has no performance advantage compared with
other methods. But the combination of IMSE and Shuffle
Remap provided the best performance among all registration
methods. We want to further explore how different segments
N of shuffle remap affect the registration results. As shown
in Table 3, we can first see that with the increase of N, the
performance will improve. In addition, for T1-T2, there is no
significant difference between N of 30 and 50. For MR-CT, a
larger N obviously brings better scores since MR-CT shows
larger distribution differences than T1-T2, which requires
more complex style enhancement.

4.3. IMSE for Traditional Registration

Compared to the existing deep learning registration meth-
ods which directly provide deformation fields, IMSE essen-
tially evaluates the similarity between multi-modal images
through neural networks. Then, the neural network can ac-
curately achieve backward propagation. Therefore, IMSE
can be readily integrated into the traditional registration pro-
cess, such as replacing the Lsim function in Eq 1 with a
trained evaluator. By first initializing a deformation field of
0 and then optimizing it through similarity loss (Similarity
operator or IMSE) and regularization loss(Eq 7). We set
the deformation field size to [64,128,128], the learning rate
to 1, the number of iterations to 200, and the optimizer to
adam. In this section, we not only evaluate the traditional
multi-modal registration, but also compare IMSE with single-
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Moving→Target Methods Dice ↑ HD95 ↓ ∥∇ϕ∥2 ↓

T2 → T1

NCC 0.84 ± 0.03 3.40± 1.14 0.016

MI 0.85 ± 0.03 3.26± 1.22 0.06

MIND 0.89 ± 0.02 3.01± 1.16 0.002
IMSE 0.91± 0.01 2.62± 0.81 0.002

MR → CT

NCC 0.54 ± 0.03 5.18± 1.20 0.011

MI 0.55 ± 0.02 5.29± 1.18 0.05

MIND 0.55 ± 0.02 4.93± 1.24 0.008

IMSE 0.61± 0.01 4.37± 0.81 0.007

T1 → T1
MAE 0.64 ± 0.03 8.38± 1.43 0.018

IMSE 0.67 ± 0.02 7.4± 1.22 0.005

CT → CT
MAE 0.56 ± 0.02 4.92± 1.07 0.012

IMSE 0.59 ± 0.02 4.80±0.87 0.005

Table 4. Comparison of registration results for traditional algo-
rithms.

modal registration using MAE as an optimization measure.
Single-modal registration is evaluated using T1→T1 and
CT→CT data. Since the single-modal images were from
different patients with spatial differences significantly larger
than those from the same patient, we screened 5 patients
whose spatial location differences were relatively small to
mimic the scenario of registering images from the same
patient. The results are shown in Table 4. As the metric
for registration optimization, IMSE still achieved the best
performance in multi-modal conditions. We focus on the
results of single-modal registration. IMSE performed much
better than MAE in all aspects. This is because even in
single-modal datasets, there are still residual distribution dif-
ferences. T1-T1 or CT-CT should be categorized as relatively
single-modal data, especially when images from different
patients are registered to each other. MAE cannot ignore
residual distribution differences whereas IMSE can.

4.4. IMSE for Image-to-image Translation

To explain how IMSE may enable a new paradigm of
image-to-image translation, we use multi-modal images x
and y as an example where x is the reference image and y is
the image awaiting to be translated. Input x and y into IMSE,
and IMSE will use x as the reference image to predict the
absolute single-modal error:E(x, y) ≈ x− x

′
. Where, the

distribution of x and x
′

is consistent. By subtracting E(x, y)
from the reference image x, we can get the translated image
x

′
, i.e., x

′ ≈ x − E(x, y). In the new paradigm, image-
to-image translation is achieved by reverse inference based
on the prediction of the evaluator. In Figure 6, we show a
few examples of using IMSE to perform image-to-image

 y

x

      E
(x

 , y)

x'

 y

Figure 6. IMSE is used for image to image translation. Where, y
is the source image, x is different reference images, E(x, y) is the
prediction result of IMSE and x

′
= x− E(x, y).

Source→Target Methods NMAE ↓ PSNR ↑ SSIM ↑

T2 → T1
CycleGAN 0.088 24.1 0.89

RegGAN 0.071 25.5 0.90

IMSE 0.029 91.6 0.96

MR → CT
CycleGAN 0.049 22.9 0.88

RegGAN 0.041 24.1 0.89

IMSE 0.022 41.3 0.93

Table 5. The results of image-to-image translation.

translation. x
′

is the modal translated image of y as it has
the spatial characteristics of y but the modal characteristics
of x. For example, the dental artifact in the reference CT
image in Figure 6 remains in the translated image. This also
verifies that IMSE is an instance mapping method based on
absolute single-modal.

Table 5 shows the comparison results between IMSE and
baseline methods. Spatial transformations were added to x
and y in IMSE to prevent alignment between input images.
Despite this, IMSE still produces superior results compared
to other methods due to the use of an additional target ref-
erence image. Thus, the comparison between IMSE and
GAN-based methods seems unjust. We aim to investigate
the contrasting use scenarios of these two methods, further.

IMSE based image-to-image translation differs from
GAN based translation in two aspects. 1) The result of
image-to-image translation based on GAN is unique whereas
IMSE based depends on the characteristics of the reference
image. 2) GAN based image-to-image translation requires
two modal data whereas IMSE based translation only uses
one modal data for training. IMSE is very promising for
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Moving Target IMSE
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Misalign

Figure 7. Demonstration of errors estimated by the CycleGAN,
RegGAN and IMSE methods in both misaligned and aligned cases.

medical image-to-image translation. It requires less data for
training and therefore can reduce expensive data costs. It
is better suited to the complexity and diversity of medical
scenes. Also, medical image translation requires high accu-
racy. It is always beneficial to ensure that the characteristics
of the translated image come from the desired reference
image.

4.5. IMSE for Spatial Error

Without labels, accurate evaluation of registration results
is always challenging. IMSE has great potential in offering
an objective metric to accurately evaluate registration per-
formance. Since the output of IMSE has the same size as
the input image, it can provide pixel-wise registration error
estimation. In Figure 7, we demonstrate spatial errors esti-
mated by the CycleGAN, RegGAN and IMSE methods in
both misaligned and aligned cases. CycleGAN and RegGAN
translated the moving image first and then calculate MAE
between the translated image and the target image.

The estimated spatial errors in the CycleGAN and Reg-
GAN methods could not exclude the effect of residual distri-
bution between the translated and target images. The errors
remained significant even if images were well aligned. As a
comparison, IMSE reported large spatial errors in misaligned
regions but small spatial errors in aligned regions.

To quantitatively demonstrate the potential of IMSE for
registration performance evaluation, we explored the cor-
relation between IMSE output and Dice. Based on the
joint region of Moving and Target masks, we calculated
the mean value of IMSE outputs. Then we subtracted the
mean absolute value from 1 and performed a normalization
to get the value which indicated registration performance for
IMSE. Similarly, we calculated values indicating registration

IMSE

D
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CycleGAN RegGAN

D
ice

D
ice

D
ice

D
ice

D
ice

T
1-T

2
C

T
-M

'R

Figure 8. Correlation of estimated spatial errors with Dice for the
IMSE, CycleGAN, RegGAN methods.

performance for CycleGAN and RegGAN. The tests were
performed in 3D due to limited test data. To increase the
number of test data, we simulated more test data through
many random transformations of the image. Figure 8 clearly
demonstrates the positive correlation between IMSE and
Dice, which confirms the potential of using IMSE to accu-
rately evaluate spatial errors. As a comparison, CycleGAN
and RegGAN do not have obvious correlation with Dice,
especially on the T1-T2 dataset.

5. Discussion
In this study, we propose a new approach IMSE for multi-

modal image registration. IMSE is simple yet powerful. As a
metric, IMSE can be used to evaluate the registration results
or be combined with traditional registration process. It can
also be used to perform image-to-image translation. IMSE
uses neural networks instead of similarity operators as loss
functions to achieve better results. It also stimulates thoughts
of using neural network as indirect constraints to solve chal-
lenging problems, instead of committing significant time and
efforts searching for operators or loss functions for better
performance. Shuffle Remap is an essential component of
IMSE. It greatly reduces the amount of data required for
model training. All trained models in the current study used
only one modal of data and the evaluator has the capability
to evaluate and translation unseen data as well. Even though
our study focused on medical images, the principle of IMSE
should apply to natural images as well. In the future, we
will continue investigating IMSE from three aspects. 1) We
have demonstrated the correlation between IMSE and Dice.
But the correlation is not as strong as we prefer. We will
explore various ways of calculating spatial errors to see if it
is possible to improve correlation. 2) The evaluator is based
on neural networks. If it is integrated into the traditional
algorithm, backward propagation requires more time. We
will explore whether the evaluator can achieve similar re-
sults using a simpler architecture. 3) We will explore other
variants of Shuffle Remap and prove that Shuffle Remap as
a method of style enhancement can be more impactful in
domain generalization.
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