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Abstract

We present FFCV, a library for easy and fast machine
learning model training. FFCV speeds up model training by
eliminating (often subtle) data bottlenecks from the training
process. In particular, we combine techniques such as an ef-
ficient file storage format, caching, data pre-loading, asyn-
chronous data transfer, and just-in-time compilation to (a)
make data loading and transfer significantly more efficient,
ensuring that GPUs can reach full utilization; and (b) of-
fload as much data processing as possible to the CPU asyn-
chronously, freeing GPU cycles for training. Using FFCV,
we train ResNet-18 and ResNet-50 on the ImageNet dataset
with a state-of-the-art tradeoff between accuracy and train-
ing time. For example, across the range of ResNet-50 mod-
els we test, we obtain the same accuracy as the best base-
lines in half the time. We demonstrate FFCV’s performance,
ease-of-use, extensibility, and ability to adapt to resource
constraints through several case studies. Detailed installa-
tion instructions, documentation, and Slack support chan-
nel are available at https://ffcv.io/.

1. Introduction

What’s the limiting factor in faster model training? Hint:
it isn’t always the GPUs. When training a machine learning
model, the life cycle of an individual example spans three
stages: reading the example into memory, processing the
example in memory, and finally updating model parameters
with the example on GPU (e.g. by calculating and then fol-
lowing the gradient). The stage with the lowest throughput
determines the overall learning system’s throughput.

Our investigations (and others’ [Mohan et al.(2021)])
show that in practice the limiting factor is often not com-
puting model updates but rather the data reading and data
processing stages. Indeed, in standard training setups, the
GPUs can spend a majority of cycles just waiting for inputs
to process!

*Equal contribution.

Figure 1. Accuracy vs. training time when training a ResNet-50 on
8 A100s. The FFCV accuracy/training time tradeoff outperforms
all baselines. As an example, we can train ImageNet to 75% accu-
racy in less than 20 minutes on a single machine.

To better saturate GPUs and thereby increase training
throughput, we present FFCV, a system designed to reduce
data loading and processing bottlenecks while remaining
simple to use. FFCV operates in two successive stages: pre-
processing and train-time loading.

In the first stage, FFCV preprocesses the dataset into a
format more amenable to high throughput loading. Then,
in the train-time loading stage, FFCV’s data loader replaces
the original learning system’s data loader without requiring
any other implementation changes.

Together, FFCV data preprocessing and the FFCV data
loader can drastically increase training speeds without any
learning algorithm modifications. To demonstrate, we train
machine learning models for a number of tasks much faster
than previous general purpose data loaders can support, in-
cluding single-node ResNet-50 [He et al.(2015)] training
(2x faster than the previous state-of-the-art to reach the
same accuracies) and parallel ResNet-18 training (we can
train 14 models per minute on an 8 GPU machine). While
FFCV improves performance on most GPUs, its effect is
most pronounced on faster GPUs, which require higher
throughput data loading to saturate available compute ca-
pacity. We expect FFCV will only increase in utility as new
GPUs become faster.

Contributions. We introduce FFCV, a drop-in, general
purpose training system for high throughput data loading.
Using FFCV requires no algorithmic changes, and involves

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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a nearly identical API to standard data loading systems
(e.g., the default PyTorch data loader). FFCV automatically
handles the necessary data transfer, memory management,
and data conversion work that users usually manually opti-
mize (or leave to suboptimal defaults). FFCV also replaces
the default data preprocessing and augmentation pipeline
with one that is more efficient due to (a) just-in-time com-
pilation to machine code and (b) highly optimized mem-
ory management. Comparing with strong baselines, we find
that FFCV drastically speeds up a number of standard appli-
cations:

• Faster ImageNet Training. We greatly improve Ima-
geNet single node training throughput, achieving state-
of-the-art speed-accuracy tradeoffs. We reach the same
accuracy as the best public baselines in less than half
the time.

• Faster bootstrapping and grid search. We enable
faster large-scale grid search by supporting same-
machine, different-GPU training without any through-
put penalty.

• Faster network filesystem-based training. Espe-
cially in cloud computing environments where net-
work file systems are commonplace, data reading can
greatly bottleneck learning systems. FFCV enables
faster data loading in a realistic read-constrained en-
vironment.

• Accelerating tasks beyond computer vision. We
demonstrate FFCV’s ability to speed up almost any
data loading task by using it as a drop-in replacement
to the default PyTorch data loader in a GPU-enabled
sparse regression solver.

2. Identifying Bottlenecks in Training

What makes a machine learning training system “slow”
or “fast”? The answer varies by task, algorithm, implemen-
tation, and computing equipment available at train time.
Model training is best thought of as a pipeline of discrete
steps: data reading, data processing, and GPU computing
that executes the learning algorithm.

To understand which of these steps bottlenecks training
in practice, we study a standard task commonly used to
benchmark training speeds [Coleman et al.(2017), Mattson
et al.(2020)], namely ImageNet [Deng et al.(2009)] train-
ing. As a specific setup, we investigate the PyTorch Im-
ageNet training example with the standard PyTorch Ima-
geNet data loader, running on a standard AWS instance for
GPU-based learning: p4d.24xlarge machines, which have
8 A100 GPUs, 96 vCPUs, and enough RAM to fit the Ima-
geNet training set into memory. We benchmark each part of
the system’s throughput; Figure 2 shows our results. Over-
all, we find that data loading bottlenecks this standard train-

Figure 2. Time taken per set of stages in ImageNet training (me-
dian over three runs). ImageFolder refers to the default PyTorch
data loader used to load ImageNet. We find that data loading,
in particular data processing, is the major bottleneck of standard
training. The idealized training time, or the training time we would
obtain with perfect data loading, is almost 30 times smaller than
the time required to just process all the training images. In the
top column, FFCV reduces the overall training time to almost the
idealized time by removing the data reading and processing bot-
tlenecks.

ing setup, and, furthermore, by fixing data loading we could
achieve 30 times faster model training. Below we explore
this data loading bottleneck in further detail.

Data reading throughput. We begin by only benchmark-
ing data read throughput, measuring how long the data
loader takes to read the entire dataset without performing
any processing. As the machine we test on can cache the
entire ImageNet dataset into memory, the data reading step
is not a bottleneck (cf. Figure 2): it takes only 75 seconds.

Data processing throughput. To check whether data
processing is a bottleneck, we measure how long the data
loader takes to read the entire dataset while also perform-
ing processing: JPEG decoding, random cropping/resizing,
random flipping, and normalization. We find that process-
ing is a major bottleneck: adding processing to reading
greatly increases loading time to 1200 seconds from the 70
seconds that loading alone took (see Figure 2).

Full training throughput. Finally, we measure the entire
system’s throughput, including the learning stage. We find
that adding the learning stage does not greatly change the
time taken to iterate through the whole dataset (cf. Fig-
ure 2). The fact that our throughput does not decrease
despite adding learning on the GPUs indicates that the
data loading/processing subsystem cannot supply data fast
enough to saturate the GPUs. Indeed, as further corrobo-
ration, we simulate how fast model throughput could be by
benchmarking our training process on a fixed data vector
(here, we require no data loading). Our throughput in this
idealized setting, shown in the same figure above, is much
higher, and shows that we could obtain around 30x faster
training with optimal data loading.

12012



3. Eliminating Data Bottlenecks

Now, our focus turns to: how can we design a better data
loading system? To maximize performance, FFCVmanages
the entire data management pipeline, from the file format
used to store the training data all the way to data augmenta-
tions used at training time. Focusing on one step of the data
loading pipeline at a time, we show how FFCV’s implemen-
tation circumvents issues in existing solutions to efficiently
load data.

3.1. Challenge #1: Storing a Machine Learning

Dataset

To eliminate data bottlenecks in the machine learning
pipeline we start with the data format. There are already
multiple existing file formats designed to store machine
learning datasets: the most common of these formats (and
indeed, the default one in PyTorch) is the file-based format,
where one stores each example as an individual file. In the
context of image recognition, for example, one saves each
example as its own (typically JPEG-compressed) image file,
and uses the enclosing folder to encode the label. The file-
based approach has some advantages—most notably, users
can intuitively interact with the examples on an individual
level (e.g., they can open any training image in a standard
image viewer). However, this format is not at all optimized
for performance, and comes with several fundamental draw-
backs.

FFCV introduces its own new file format: the .beton
file. In the following, we discuss the different consid-
erations involved in designing this file format, and show
that FFCV’s new file format circumvents issues both with
file-based formats as well as existing specialized solutions
(namely, WebDataset, TFRecord, and MXNet RecordIO).

Reducing filesystem strain. To reduce filesystem strain,
existing specialized file formats either group data examples
in shards (WebDataset) or concatenate all the data into a
single file (TFRecord, RecordIO). FFCV adopts the latter
option, but goes even further—by organizing the dataset
into pages (at the cost of some wasted space), it eliminates
random read penalties by making it easy to read data in
large chunks. FFCV (along with TFRecord and RecordIO)
datasets are also easier to share than sharded data formats
(e.g., WebDataset), since one only needs to transport a sin-
gle file.

Flexibility. A data format should to be flexible enough to
accommodate a wide variety of data formats and modal-
ities. Many existing specialized solutions are hyper-
specialized and support only specific modalities (e.g.,
RecordIO datasets can only store images with associated
floating-point labels), while others are slightly more flexi-
ble (e.g., TFRecord and WebDataset). In FFCV, we opt for

maximal flexibility, and use an abstract “Field” class that
enables users to store arbitrary data modalities (with built
in support for vision, text, tabular, and more), and even eas-
ily extend FFCV’s capabilities by writing data-specific cus-
tomized encoders and decoders.

Searchability/Indexability. A good data format should
also natively support fast access to only a particular subset
of the dataset, whether for the purpose of inspecting a given
example, or training on a particular subset of the training
set. Specialized data formats that only support sequential
reads, however (e.g., TFRecord, WebDataset) are inherently
unable to support such a feature. FFCV datasets contain a
data table that hold metadata (including indices) as well as
pointers to any given sample, allowing one to easily filter
and retrieve samples based on any predicate.

File structure. FFCV datasets are optimized for machine
learning training and offer great performance regardless of
the underlying storage method (RAM, HDDs, SSDs or net-
work). Each file consists of four sections. The Header con-
tains general information about the dataset like the num-
ber of samples and the fields. The Data Table is a small
DataFrame-like data structure containing metadata (small
fixed-width information) about a given sample, such as e.g.
the image resolution in the image domain, or audio sample
duration in the audio domain. The Heap Storage section
contains pages (of default size 8MB) that store either vari-
able size information or data that is too large for the Data
Table, such as binary representations of images/audio ex-
amples. Finally, the Allocation Table at the end of the file
contains book-keeping data about allocated regions in Heap
Storage.

We show what a .beton file would look like for a basic
image classification task in Figure 3.

3.2. Challenge #2: Efficient Data Reading

We now describe how FFCV achieves high read perfor-
mance across a variety of compute environments with the
FFCV file format, ranging from those featuring local SSDs
(with high IOPS and low latency) to large spinning disks
(which suffer under random, nonsequential accesses, such
as when reading many discrete image files) to networked
filesystems. FFCV offers built-in read strategies optimized
for high throughput across all these different scenarios.

Operating system caching. For systems that can fit the
dataset in random-access memory (RAM), FFCV can take
advantage of OS-level caching. This ensures that every
data read after the first one will be from RAM rather than
disk, resulting in high throughput. Beyond just simplicity,
OS-level caching also allows for multiple models training
in parallel on the same dataset (i.e., when hyperparameter
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Figure 3. Structure of a .beton file used to store a simple image classification dataset.

searching) to share the same cache without any additional
memory overhead.

Process cache. On the other hand, if the dataset is larger
than the main memory, an effective caching scheme will
have to optimally cache, discard, and reload data at each
epoch. In OS-level caching—which other data loading
schemes use by default—the random access patterns in-
duced by SGD in machine learning cause suboptimal
caching behavior. FFCV circumvents this issue through op-
timized, process-level caching. By leveraging our knowl-
edge of the sample order in data loading (since we can gen-
erate this order at the beginning of the epoch), FFCV can
preload data much earlier than the OS can.

Quasi-random sampling. For cases where disk reads are
particularly expensive (e.g., when reading from a network
drive and having insufficient RAM to cache the dataset),
FFCV offers a quasi-random loading strategy that can com-
bine with the process cache strategy above to minimize the
stress on the underlying storage. Rather than reading exam-
ples in a uniformly random order, the quasi-random strat-
egy (a) allocates a buffer large enough to fit batch_size
pages of the dataset; (b) samples a permutation of all the
pages of the dataset; then (c) generates a batch only from
samples in the buffer.

WebDataset’s shuffling procedure is similar to FFCV’s
quasi-random loading strategy with two crucial differences:
(1) pages in FFCV are much smaller than WebDataset
shards, leading to significantly better randomness 1; (2)
quasi-random loading in FFCV has a constant memory
footprint, while WebDataset’s footprint scales linearly in

1While one can manually make WebDataset shards smaller, this incurs
a significant filesystem load.

the number of workers. For further comparison, see Ap-
pendix A.

3.3. Challenge #3: Fast Data Processing

So far, we’ve outlined how FFCV improves both data
storage and reading—we now turn to the data processing
stage of the ML pipeline. In ML research, the data augmen-
tation/processing pipeline requires both efficiency (in order
to avoid bottlenecking the entire training process) and the
flexibility to accommodate, e.g., researchers devising their
own augmentations of pre-processing techniques.
FFCV tries to strike a balance between these two ob-

jectives via just-in-time (JIT) compiled data processing
pipeline. Specifically, for a small cost paid at the start of
training, FFCV analyzes the user-provided (Python) data
processing pipeline, and automatically compiles it to op-
timized machine code via the following steps:

Categorization. Our main tool for compiling Python to
machine code is the Numba library [Lam et al.(2015)],
which is by default able to compile a large (but not com-
plete) subset of the Python language into machine code2.
We thus first categorize each element of the data pipeline
based on whether it can be automatically compiled by
Numba. (Note that all the pipeline elements that ship
with FFCV are Numba-compilable, so this step is primarily
to enable users to write their own FFCV compatible non-
compilable transformations, as in cases where it is too diffi-
cult to write a compilable verfsion of a transformation).

Grouping. After categorizing each transformation in the
data pipeline, we group together all consecutive transforms
of each category into groups called “stages” (see Figure 4).

2We motivate this choice and compare with other compilation systems
in Appendix C.
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Figure 4. Illustration of the procedure followed by FFCV to generate the code of a complex image processing pipeline. Transforms are
categorized together based on whether they can be JIT-ed (dashed, FFCV native or numpy based user-defined augmentations) or not (solid,
Pytorch ones and others). Groups (stages) are formed based on these categories (1-4) by gluing each operation using meta-programming.
Finally, the stages are compiled to machine code using Numba/LLVM.

This will allow us to compile several separate pipeline ele-
ments into a single executable block of machine code.

Code generation. Finally, using meta-programming, we
generate the code necessary to fuse each stage into a single
function. Some of the stages will be then passed to Numba
to be converted to machine code, the others remain unmod-
ified and run natively in Python (albeit at much lower speed
than their compiled counterparts).

Memory pre-allocation. A core tenet of FFCV is to avoid
unnecessary memory allocation. Thus, every operation in
the pipeline declares memory requirements in advance, and
memory allocation is performed once at the start of an
epoch. To let workers prepare the data while training hap-
pens, and to absorb potential slow downs in data prepara-
tion, FFCV relies on a circular buffer (illustrated in Figure
8 in Appendix F).

3.4. Challenge #4: Circumventing Data Transfer

Costs

Since compiled machine code isn’t under the supervision
of the Python interpreter, FFCV can escape the constraints
of Python’s global interpreter lock (GIL) and can rely on
threads instead of sub-processes like most libraries (the GIL
typically only allows a single thread to use the Python in-
terpreter at once, generally making multi-threading infeasi-
ble).

Threads yields two important advantages for FFCV.
First, threads can collaborate directly by reading/writing
memory instead of using (expensive) communication prim-
itives. FFCV workers can therefore work together on same

batch instead of having to work on their own, improving on
latency and saving large quantities of memory (i.e., FFCV’s
memory usage is typically constant instead of scaling with
the number of workers). Second, since they share the same
CUDA context, all data preparation operations running on
GPUs (e.g., data copying, augmentations) can be run asyn-
chronously and—critically—in parallel with respect to the
training loop, reducing the length of the critical path. See
Appendix B for more details.

4. Case Studies

In this section, we showcase FFCV’s versatility by il-
lustrating how it can dramatically accelerate model train-
ing in three common practical settings. While one can
use FFCV with any task or modality, we center our first
three use cases around the ImageNet ILSVRC-2012 im-
age classification task, which comprises 1.3 million la-
beled training images corresponding to 1,000 different
classes. ImageNet is a standard dataset in both image
classification [Russakovsky et al.(2015), He et al.(2015),
Krizhevsky et al.(2012)] and model training speed bench-
marks [Mattson et al.(2020), Coleman et al.(2017), Cole-
man et al.(2019)]; indeed, searching “ImageNet PyTorch”
on GitHub returns hundreds of thousands of repositories.

We show, through the following use cases, that FFCV
enables dramatic speedups over typical setups and more
modest speedups over specialized performant training se-
tups requiring specialized hardware (namely, NVIDIA
DALI [NVIDIA(2018)]):

• Single-model training: We first use FFCV to train a
ResNet-50 on ImageNet to 75% accuracy in 20 min-
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utes on a single node, (Pareto) dominating all previous
recorded benchmarks we are aware of (in fact, beating
the next-best baseline by a factor of two). To evaluate
FFCV directly with other data loaders in this scenario,
we also measure the effect of using different data load-
ing baselines in a fixed a model training setup;

• Multi-model training: We then consider the setting
where a researcher wants to train several small mod-
els in parallel (e.g., to obtain confidence intervals or
perform hyperparameter search). We show that FFCV
can train 8 ResNet-18s at the same time (one per GPU)
without incurring any additional overhead over single-
GPU training. This demonstrates that FFCV enables
both (a) efficient training of high throughput models
and (b) low-overhead concurrent training.

• Low-memory training: Finally, we consider the
(practically common) setting in which the dataset does
not fit into machine memory (RAM). Via process-level
caching and a quasi-random sampling scheme (ex-
posed to users via just two lines of code), FFCV accel-
erates training even when reading data from slow disks
(and even from networked file systems) with minimal
performance overhead.

We then demonstrate FFCV’s drop-in applicability beyond
computer vision tasks:

• GPU-enabled sparse regression: In just a few lines
of code, FFCV can considerably speed up an itera-
tive SAGA [Defazio et al.(2014)] solver (similar to that
of [Wong et al.(2021)]) by simply replacing a default
PyTorch data loader (loading from a memory-mapped
file) with an FFCV loader.

4.1. Training a single model

We first study the simplest use case of FFCV: training a
single model on ImageNet as fast as possible. By combin-
ing the data loading speed of FFCV with known ImageNet
training optimizations, we are able to establish a new state-
of-the-art speed/accuracy tradeoff for the benchmark task of
training a ResNet-50 on ImageNet (Figure 1).

Fast training. We begin with an overview of the train-
ing algorithm itself—a long line of work has explored vari-
ous modifications to standard training that have been shown
to improve speed and/or accuracy, of which we use Blur-
pool [Zhang(2019)]; NoWD-BN [Jia et al.(2018)]; linear
learning rate annealing [Li et al.(2020)]; test-time augmen-
tation and resizing [Touvron et al.(2019)]; and progressive
resizing (i.e., we start training at 160px resolution and then
increase to 192px 75% of the way through training).

Fast data loading. With FFCV we JPEG-compress 50%
of the dataset, compromising between compute (i.e. faster
image processing, as 50% of the images come pre-decoded)
and available memory. Doing so allows our system to:

(a) reap the full benefits of progressive resizing. Even at
smaller resolutions like 160px in which the GPU has much
higher throughput, we can still fully saturate the GPU as we
are neither data reading nor processing bottlenecked;

(b) outsource augmentations to the CPU. Since the
dataset is cached (largely decoded) in memory, we can use
CPU cycles for augmentations that would otherwise go to
decoding.

Evaluation. We compare our FFCV-enabled optimized
ImageNet example to these baselines:

• PyTorch ImageNet example: As a naive baseline,
we take the PyTorch ImageNet example code, which
is both unoptimized and slow to load data—we use
the reported accuracy from torchvision and multiply
the per-epoch time (from Figure 5a by 90 to ob-
tain an optimistic estimate of total training time. We
modify the code to use half precision. This loader
is far and away the most popular loader seen in
open source/research implementations, and is used by
the most popular open-source ImageNet training li-
braries [Wightman(2019), Falcon et al.(2019), Devel-
opers(2016)].

• NVIDIA ImageNet example: As a second baseline,
we use the NVIDIA DALI-based ImageNet example
This work uses a fixed 90 epoch schedule. Note that,
some benchmarks for DALI leverage hardware JPEG
decoder only available on some GPUs, which is why
they were not enabled here. While nothing in the
design of FFCV is incompatible with their usage we
made the decision to not include them in the public re-
lease as the benefit didn’t seem to outweight the draw-
backs (namely compatibility and ease of installation).

• MosaicML: Finally, we consider the MosaicML
explorer baseline. The MosaicML Explorer plots
the tradeoff between accuracy and training speed
for models trained with MosaicML’s training sys-
tem; MosaicML explores a far larger set of algo-
rithmic training changes than our work, including
MixUp [Zhang et al.(2017)], specialized optimizers
outside of SGD [Foret et al.(2021)], squeeze-excitation
blocks [Hu et al.(2018)], and more.

We run all implementations on an AWS EC2 p4d.24xlarge
machine. We report our results above in Figure 1, finding
that our system obtains the best accuracy vs. speed tradeoff
across all baselines. In particular, to obtain 75% accuracy
we require only 20 minutes, much faster than any of the
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(a) Single-model (1x RN-50 on 8xA100) (b) Multi-model (8x RN-18 on 1xA100 each)
(c) Low-memory (1x ResNet-18 via Network File
System)

Figure 5. A comparison between the time to train one epoch on ImageNet using FFCV, NVIDIA DALI, and PyTorch’s ImageFolder. We
further compare with WebDataset in Appendix D: FFCV performance dominates that of WebDataset.

tested baselines and, to our knowledge, the fastest single-
node system to obtain this accuracy.

(Pessimistic) comparison with DALI loading. Swap-
ping out FFCV for DALI and the PyTorch ImageNet train
loader, we measure the training times obtained for each data
loader when the implementation is held constant in Fig-
ure 5a, and find that FFCV still dominates.

MLPerf baselines. We do not compare with MLPerf
baselines for two reasons: the scenarios are unfair to the
MLPerf baselines (which do not allow data preprocessing),
and the best MLPerf baselines have very strict hardware re-
quirements (for example, the best NVIDIA submission re-
quires a DGX POD3 and is not reproducible on cloud-based
machines).

4.2. Training multiple models

Another common paradigm in machine learning is train-
ing multiple models simultaneously. For example, we may
want to perform a grid search for optimal parameters, or
rerun a model with the same training parameters to obtain
confidence intervals on results. In what follows, we show
that FFCV allows for much faster parallel training than ex-
isting methods: FFCV has automatic support for OS-level
caching and is high throughput enough to support even 8
ResNet-18s training at once (ResNet-18 models have nearly
three times the throughput of ResNet-50 models since they
are smaller).

Evaluation. Using the same AWS EC2 p4d.24xlarge ma-
chine as above, we run eight concurrent training routines
for the following baselines (each originally described in
Section 4.1): (a) PyTorch ImageNet example: ResNet-18
with code from the PyTorch ImageNet example; (b) Scaled

DALI: ResNet-18 with code from the FFCV ImageNet ex-
ample, code, swapping out FFCV for a DALI loader.

Each training routine has access to one eighth of the
available vCPUs (12) and one A100. For DALI and FFCV

3See: https://www.nvidia.com/en-sg/data-center/
dgx-basepod/

we use image datasets that have been originally scaled to
350px. FFCV performs no JPEG compression, storing only
image pixel values. Our throughput results can be found in
Figure 5b; we find that FFCV has greater throughput than
either DALI or ImageFolder-based methods, despite not re-
quiring any specialized hardware for decoding.

4.3. Low-memory training

In the previous two examples, we operated in a set-
ting where the machine being used for training has suffi-
cient memory (RAM) to cache the entire ImageNet dataset
(in particular, our 50% compressed version of ImageNet is
339GB). In many scenarios, however, we do not have suffi-
cient RAM to cache even a fully JPEG-compressed dataset,
and are thus forced to load images directly from the filesys-
tem. Normally, this process incurs additional significant
training cost, especially in settings where the filesystem is
mounted on a networked drive (or any other slow disk).

Here, we show that with minimal changes to existing
code, FFCV enables fast training even in such resource-
constrained setups. By changing only two lines of code,
we can enable process-level caching and quasi-random
loading. These optimizations together ensure that read-
constrained, memory-constrained systems operate at as
high a throughput as possible; see Section 3 for details.

Evaluation. Just as in the last section, we compare to
NVIDIA DALI and the default PyTorch Image Dataset. The
results, shown in Figure 5c, illustrate that FFCV indeed en-
ables faster training in memory-limited settings.

4.4. Beyond computer vision

Finally, we show the applicability of FFCV beyond
just computer vision workloads. Specifically, we con-
sider a large-scale sparse linear regression problem with
n = 100, 000 training points and dimensionality d =
50, 000. We use an optimized iterative SAGA-based opti-
mizer [Wong et al.(2021)] for solving sparse linear regres-
sion problems. In Figure 6, we compare the unmodified
code (which loads data using the standard PyTorch data
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Figure 6. FFCV provides significant speedups over the default Py-
Torch data loader for non-vision modalities: here, e.g., a drop-in
replacement of FFCV makes a sparse regression solver 1.6x faster.

loader, reading from a memory-mapped file) with a drop-
in FFCV replacement. The results indicate that even outside
typical computer vision setups, FFCV is an effective drop-in
replacement for default data loaders.

Video: Beyond image classification. We also evaluate on
UCF101, a standard video dataset, finding that FFCV can
greatly outperform standard loaders. Our setup and results
are in Appendix E.

5. Related Work

Data pipelines in ML. [Mohan et al.(2021)] find that
DNN training time is dominated by data loading in var-
ious settings. DALI [NVIDIA(2018)] uses custom input
data pre-processing pipelines, with the option of off-loading
some work to the GPU. [Aizman et al.(2019)] introduce
AIStore, a storage system, and WebDataset, a storage for-
mat based on POSIX tar, to enable high performance I/O
for large scale deep learning. [Murray et al.(2021)] analyze
millions of jobs on Google cloud and find that they spend
a significant fraction of time in the input pipeline; they
find that optimizing input pipeline performance is critical
to end-to-end training time. Their framework tf.data al-
lows users to build and execute efficient input pipelines, as-
sisting with parallelism, caching, and static optimizations.
[Kakaraparthy et al.(2019)] find that ML experiments with
concurrent jobs (such as grid search) benefit from unify-
ing data loading across jobs. Alternatively, kornia [Riba
et al.(2020)] implements standard image processing func-
tions for GPUs.

Speedups from other sources. While our work and those
cited above focus on removing the data bottlenecks in cur-
rent ML workloads, large speed improvements also come
from other sources, including hardware and algorithmic im-
provements, which allow models to achieve similar accu-
racies with less training. These include better architec-
tures (e.g., ResNet [He et al.(2015)]), optimizations (e.g.,
batch normalization [Ioffe and Szegedy(2015)], cyclic LR
[Smith(2017)]), data augmentation (e.g., MixUp [Zhang
et al.(2017)]), among others.

Fast training on ImageNet. Our evaluation focuses on
fast training on ImageNet, a standard in model train-
ing speed benchmarks [Mattson et al.(2020), Coleman
et al.(2017), Coleman et al.(2019)]. Many prior works
[Goyal et al.(2017), Jia et al.(2018), You et al.(2018), Sun
et al.(2019), You et al.(2017), Akiba et al.(2017)] use dis-
tributed training with extremely large batch sizes to reduce
training time. Beyond the increase in engineering complex-
ity arising from distributed training, training models with
large batch sizes comes with its own challenges, for in-
stance, proper tuning of the learning rate [Dettmers and
Zettlemoyer(2019), You et al.(2017)]. Moreover, extreme
resource usage, including large communication overheads
necessitated by distributed training [Coleman et al.(2019)],
reduce their usability.

6. Conclusion

In this work, we present FFCV, an optimized framework
for eliminating data bottlenecks in machine learning model
training routines. We use FFCV to establish a state-of-the-
art speed/accuracy tradeoff for the ImageNet dataset, and
demonstrate (through a series of case studies) the potential
for FFCV to speed up almost any ML workload. The main
limitation of our work is that it does not address non-data
related bottlenecks in training, and might thus yield less sig-
nificant (but still non-zero) improvements in settings where
data is fast to load and process (e.g., NLP) or where models
are very large and dominate training time (e.g., NLP).
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