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Figure 1. Given a source model Gs, our method can smoothly control the degree of source domain features in a fine-tuned model Gs→t.
Samples in each row are generated from the same latent code z ∈ Z by Gs and Gs→t. Here, Hs, Hs→t, and Ht denote feature spaces of
the source, our model, and simply fine-tuned target model, respectively. Our approach explicitly guides the model to preserve the source
features by using the anchor point nanch, which allows a flexible and smooth cross-domain control via Gs→t.

Abstract
Recent studies show strong generative performance in

domain translation especially by using transfer learning
techniques on the unconditional generator. However, the
control between different domain features using a single
model is still challenging. Existing methods often require
additional models, which is computationally demanding
and leads to unsatisfactory visual quality. In addition, they
have restricted control steps, which prevents a smooth tran-
sition. In this paper, we propose a new approach for high-
quality domain translation with better controllability. The
key idea is to preserve source features within a disentangled
subspace of a target feature space. This allows our method
to smoothly control the degree to which it preserves source
features while generating images from an entirely new do-
main using only a single model. Our extensive experiments
show that the proposed method can produce more consistent
and realistic images than previous works and maintain pre-
cise controllability over different levels of transformation.
The code is available at LeeDongYeun/FixNoise.

1. Introduction

Image translation between different domains is a long-
standing problem in computer vision [8, 9, 13, 20, 22, 24,
35, 52, 62]. Controllability in domain translation is impor-
tant since it allows the users to set the desired properties.
Recently, several studies have shown promising results in
domain translation using a pre-trained unconditional gen-
erator, such as StyleGAN2 [27], and its fine-tuned version
[29, 30, 42, 48]. These studies implemented domain trans-
lation by embedding an image from the source domain to
the latent space of the source model and by providing the
obtained latent code into the target model to generate a tar-
get domain image. To preserve semantic correspondence
between different domains, previous works commonly fo-
cused on the hierarchical design of the unconditional gener-
ator. They used several techniques like freezing [30] and
swapping [42] layers or both [29]. In these approaches,
users can control the degree of preserved source features
by setting the number of freezing or swapping layers of the
target model differently.

However, one of the notable limitations of the previous
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methods is that they cannot control features across domains
in a single model. Imagine morphing between two images
x0 and x1. Previous methods approximated midpoints be-
tween x0 and x1 by either building a new hybrid model by
converting weights or training a new model. In these ap-
proaches, each intermediate point is drawn from the output
distribution of different models, which would produce in-
consistent results. Moreover, getting an additional model
for each intermediate point (image) also increases the com-
putational cost. Another common limitation of these layer-
based methods is that their control levels are discrete and
restricted to the number of layers, which prevents fine-grain
control.

In this paper, we introduce a new training strategy,
FixNoise, for cross-domain controllable domain translation.
To control features across domains in a single model, we
argue that the source features should be preserved but dis-
entangled with the target in the model’s inherited space. To
this end, we focus on the fact that the noise input of Style-
GAN2, which is added after each convolution, expands the
functional space composed of the latent code expression. In
other words, the feature space could be seen as a set of sub-
spaces corresponding to each random noise. To preserve
the source features only to a particular subset of the fea-
ture space of the target model, we fix the noise input when
applying a simple feature matching loss. The disentangled
feature space allows our method to fine-grain control the
preserved source features only in a single model without
limited control steps through linear interpolation between
the fixed and random noise. The extensive experiments
demonstrate that our approach can generate more consistent
and realistic results than existing methods on cross-domain
feature control and also show better performance on domain
translation qualitatively and quantitatively.

2. Related work
Domain translation aims to synthesize a target domain

image conditioned on a source domain image. Early works
[22, 35, 52, 62] successfully solved domain translation by
jointly training the encoder for the source and the decoder
for the target. Afterward, several works have extended
this framework to multi-domain and multi-modal settings
[8,9,20,31,36,63]. On top of this framework, many studies
have been conducted in diverse applications such as style
transfer [6, 19, 44–46], cartoonization [7, 28, 32, 39, 49, 53],
caricature generation [14, 33, 47], and makeup transfer
[5, 11, 16, 23]. However, the joint training framework has
a weakness in terms of scalability. Since they train the net-
work according to the source/target setting initially given,
the entire framework has to be newly trained if it becomes
a different setting, such as adding a new target domain.
Domain translation using unconditional GANs. Re-
cently, several methods [29, 30, 42, 48] have introduced a

new approach to domain translation by leveraging a pre-
trained unconditional generator, such as StyleGAN2, of the
source domain and that of the target domain which is fine-
tuned from the source generator. The new framework con-
sists of a two-step approach for domain translation. First, a
latent code is obtained by embedding a source domain im-
age to the latent space of the source generator by optimiza-
tion [1,2,10,27,38] or encoder [3,12,18,43,50,51,55,61].
Then, a target domain image is generated by forwarding
the given latent code to the target generator. The success
of this two-step approach is further explained by the obser-
vation of StyleAlign [54] that W space of the two models
is similar, which is in line with the assumption of several
methods in the joint training framework mentioned above
[20, 35, 36]. The two-step framework only requires differ-
ent domain generators and the latent inversion method for
domain translation. It indicates that there is no need to train
the entire framework for different settings. Thus, the frame-
work that utilizes the pre-trained unconditional generator is
stable and superior to the joint training framework in terms
of scalability.

In the two-step approach, previous methods introduced
several techniques to encourage correspondence between
images from different domains. Layer-swap [42] generated
a target domain image with coarse spatial characteristics of
the source domain by combining low-resolution layers of
the source model and high-resolution layers of the target
model. By adjusting the number of layers to be swapped,
their method can control the degree of remaining source
features. Freeze G [30] obtained a similar effect by freez-
ing weights of initial layers of the generator during trans-
fer learning. UI2I StyleGAN2 [29] froze mapping layers
to ensure exactly the same W space between the source
and target models and combined it with Layer-swap. Agi-
leGAN [48] tried to preserve the source domain features by
early stopping. Some recent studies [56, 57] introduce an
exemplar-based task in a limited data setup. However, the
exemplar-based task requires latent optimization that is sub-
stantially time-consuming [43] for the entire dataset, which
is not practically applicable to large datasets.

3. Method
In StyleGAN2, the model synthesizes an output image x

from a latent code z ∈ Z and a noise input n ∼ N (0, I),
which is expressed as

x = G(z,n). (1)

Given a source domain model Gs, our goal is to train a tar-
get domain model Gs→t initialized with the source model
weights while preserving the source domain features. In
Sec. 3.1, we briefly discuss the space in which to preserve
features and introduce a simple but effective feature match-
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ing loss. In Sec. 3.2, we propose FixNoise that ensures dis-
entanglement between the two domain features in the fea-
ture space of the target model. In Sec. 3.3, we introduce
cross-domain feature control using noise interpolation.

3.1. Which feature to preserve?

Remark that StyleGAN2 [27] contains two types of fea-
ture spaces: an intermediate feature space that consists of
feature convolution layer outputs and an RGB space that
consists of RGB outputs transformed from an intermediate
feature by tRGB layers. We choose to preserve the interme-
diate feature space, which is denoted as H, for the follow-
ing reasons. First, it has recently been found that the fea-
ture convolution layers change the most among layers dur-
ing transfer learning [54]. This observation indicates that
the source features mostly vanish in H which is the out-
put space of the feature convolution layers. Second, match-
ing features of the source and target models in H enables
the subsequent tRGB layers to learn the target distribution.
Consequently, preserving H space when training enables
Gs→t to maintain coarse features of the source while learn-
ing fine features of the target. Furthermore, images gener-
ated from the model trained with such preservation go be-
yond simple color filtering effects applied on source images.

From the same latent code z ∈ Z , we encourage the
target model Gs→t to have similar features as those of the
source model Gs in H using a simple feature matching loss

Lfm = Ez

[
1

L

L∑
l=0

(
Gl

s(z,ns)−Gl
s→t(z,ns→t)

)2
]
, (2)

where L denotes the number of feature convolution layers.
Note that ns and ns→t are independently sampled noise in-
puts for each model, respectively. Recall that losses that uti-
lize the intermediate features of a network are widely used
in GANs literature, such as perceptual loss [24, 59]. How-
ever, the main difference between Lfm and the perceptual
loss is in which space the features are matched. The percep-
tual loss encourages the source and target models to have
similar features in the feature space of the external network
which is unrelated to image generation, whereas our loss
encourages them to have similar intermediate features in-
ternally. With the loss Lfm, we can encourage the target
model to have a shared feature space with the source model
internally.

3.2. Disentangled feature space using FixNoise

The loss Lfm enforces the entire feature space of the
target model Hs→t to be the same as that of the source
model when we naively apply the loss. This may disturb
Gs→t to learn diverse target features that do not exist in the
source domain. Even if the target features are learned, the

(a) (b)

Figure 2. An illustration of FixNoise. (a) The black dot indicates 0
noise corresponding to H′. Randomly sampled noise expands H′

to H. (b) Anchored subspace is denoted by a dotted line. Source
features are only mapped to the anchored subspace of Hs→t.

degree of preserved source features cannot be controlled if
the source and target features are entangled in the feature
space of the target model. Instead of applying the loss Lfm

to the entire feature space Hs→t, we introduce an effec-
tive strategy, FixNoise, that does not disturb target feature
learning and allows the different domain features to be dis-
entangled from each other in the feature space of the target
model. Our method begins with an assumption that both can
be achieved if the source features are mapped in a particular
subspace in Hs→t.

As Eq. 1, a final output image is generated from two in-
put components: the latent code z ∈ Z , and the per-pixel
Gaussian noise n ∼ N (0, I) which creates stochastic vari-
ation such as curls of hair, eye reflection, and background
detail. If the noise n = 0, a feature h′ ∈ H′ is deterministi-
cally generated from a latent code z, where H′ is a subspace
of H corresponding to n = 0. As depicted in Figure 2,
when each randomly sampled noise nrand is added to h′,
it shifts H′ to a space that corresponds to each nrand. This
shift of subspace by each noise input consequently expands
H′ to H. It signifies that the feature space H consists of
subspaces corresponding to each random noise nrand. To
ensure that the source features are only mapped to a partic-
ular subspace of Hs→t, we fix the noise to a single prede-
fined value when Lfm is applied. By substituting ns and
ns→t to nanch in Eq. 2, the feature matching loss Lfm with
FixNoise is described as

L′
fm = Ez

[
1

L

L∑
l=0

(
Gl

s(z,nanch)−Gl
s→t(z,nanch)

)2
]
,

(3)
where nanch denotes the fixed noise. We refer to the fixed
noise as anchor point nanch and the corresponding sub-
space as anchored subspace. nanch is sampled from the
Gaussian distribution same as nrand and fixed for the whole
training process. The anchor point nanch gives the model
explicit guidance to preserve the source feature in Hs→t.

To learn the target features over the entire feature space
Hs→t, we use randomly sampled noise nrand when apply-
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Figure 3. Noise interpolation results on different settings. The interpolation weight α is presented above each column.

ing the adversarial loss [15]

Ladv = Ez

[
− logD(Gs→t(z,nrand))

]
, (4)

where D denotes a discriminator.
By combining Eq. 3 and Eq. 4, our objective function for

Gs→t is described as

Ltotal = Ladv + λL′
fm, (5)

where λ denotes loss weight. Through this, the source fea-
tures are only mapped in the anchored subspace by L′

fm,
while the target features are freely adapted to the entire
Hs→t by Ladv. We believe that common features of the
two domains are embedded in the anchored subspace, and
features that exist only in the target are embedded in the re-
mainder space of Hs→t. To sum up, the disentanglement
between the different domain features can be achieved in
Hs→t by the anchor point.

3.3. Cross-domain feature control

As described in Sec. 3.2, we achieved disentanglement
between the two domains within the feature space of the tar-
get model. To be specific, we preserve the source features
only in the anchored subspace of Hs→t that corresponds to
the fixed noise nanch. On the other hand, the target features
are learned to the entire Hs→t that corresponds to all ran-
dom noise nrand. What should be noted here is that only
noise input disentangles the two domain features in Hs→t.

This enables a smooth transition between images by linear
interpolation of the anchor point and random noise:

ninterp = α · nanch + (1− α) · nrand, (6)

xinterp = Gs→t(z,ninterp), (7)

where ninterp is interpolated noise and α represents the
interpolation weight. This property is in line with recent
work [37] that enables smooth transition across domains by
interpolation of latent code. The main assumptions of their
work are that the smooth transition by the latent interpola-
tion can be achieved if (i) the margin between the different
domains in latent space is small, and (ii) the entire latent
distribution is Gaussian. The fact that the fixed and ran-
dom noise are sampled from Gaussian distribution already
satisfies their two assumptions. Thus, our approach, which
utilizes Gaussian noise to disentangle different domain fea-
tures, enables a gradual transition between the two domains
as shown in Figure 3.

4. Experiments
Datasets. We conduct experiments for several source and
target settings considering the spatial similarity between the
source and target domains. For the similar domain setting,
we transfer FFHQ [26] to MetFaces [25] and AAHQ [34].
For the distant domain setting, we transfer LSUN Church
[58] to WikiArt Cityscape [21]. All experiments are con-
ducted on 256× 256 resolution images.
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(b) Generated image
from

(a) Generated image
from

(c) Standard deviation

Figure 4. Visualizing the effect of the noise input when FixNoise is
applied. Images in the same training setting are generated from the
same latent code z. The first and second row correspond to results
from Gt trained by applying Lfm (Eq. 2) and L′

fm (Eq. 3), re-
spectively. (a) Generated images from the anchor point nanch. (b)
Generated images from the random noise nrand. Varying the noise
has global effects such as identity or structure when FixNoise is
applied (zoom-in is recommended). (c) Standard deviation of each
pixel over 100 different random noise inputs. The FixNoise strat-
egy makes the noise affect images more coarsely.

Implemention detail. We build upon the base con-
figuration in the official Pytorch [41] implementation of
StyleGAN2-ADA1 [25]. Official pre-trained weights for
the source model and discriminator trained on FFHQ2 and
LSUN Church3 are used. We use a non-saturating adversar-
ial loss [15] for Ladv and set λ = 0.05 for all experiments.
Following StyleGAN2 [27], we additionally use style mix-
ing regularization [26] and path length regularization [27]
with Ltotal. The discriminator objective function follows
StyleGAN2-ADA. Like Gs→t, the discriminator D is also
initialized with the weights of the source model’s discrimi-
nator. Adaptive discriminator augmentation [25] is used to
prevent discriminator overfitting. The batch size is set to 64.
FFHQ → MetFaces, FFHQ → AAHQ, and LSUN Church
→ WikiArt Cityscape are trained for 2000K, 12000K, and
5000K images, respectively.

4.1. Analysis of FixNoise

Effect of the noise input. In the original StyleGAN model
[26, 27], the latent code affects global aspects such as iden-
tity and pose, whereas the noise input affects inconsequen-
tial stochastic variation (e.g. curls of hair, eye reflection,

1https : / / github . com / NVlabs / stylegan2 - ada -
pytorch

2http://nvlabs- fi- cdn.nvidia.com/stylegan2-
ada-pytorch/pretrained/transfer-learning-source-
nets/ffhq-res256-mirror-paper256-noaug.pkl

3http://nvlabs- fi- cdn.nvidia.com/stylegan2/
networks/stylegan2-church-config-f.pkl

Source FFHQ Church

Target MetFaces AAHQ Cityscape

α LPIPS FID LPIPS FID LPIPS FID

1 0.412 40.37 0.316 31.65 0.521 27.64
0.75 0.432 37.59 0.366 22.70 0.557 20.59
0.5 0.451 30.17 0.381 14.60 0.626 17.37

0.25 0.481 23.27 0.410 13.65 0.653 12.53
0 0.536 19.68 0.510 5.10 0.679 11.49

Table 1. Quantitative comparison with different interpolation
weights. We report the best FID, and measure LPIPS using the
same network snapshot.

and background detail) which is a localized effect. How-
ever, when we apply FixNoise during transfer learning of
the model, we find that the noise gives more diverse effects
to the images. Figure 4 shows how FixNoise changes the
effect of the noise input on the generated images. We can
observe that the noise input also affects global aspects when
FixNoise is applied, whereas, without FixNoise, the noise
only affects stochastic aspects. The observation is due to
the discrepancy between the source and target domains. The
discrepancy between different domain features includes not
only the local but also global aspects. As mentioned above,
the source and target features are disentangled in the fea-
ture space Hs→t, and the only factor that disentangles the
two domain features is the noise input. Thus, the noise in-
put, which is responsible for the disentanglement between
two different domain features, is given the role to control
some global aspects.
Noise interpolation. We evaluate our effectiveness on
cross-domain feature control in different training settings.
As shown in Figure 3, the source domain features are well
preserved in the images generated from the anchored sub-
space (α = 1), whereas they are lost in the rest of space
in Hs→t (α = 0). This indicates that FixNoise success-
fully disentangles the source and target features in Hs→t.
The fact that the features of both domains are embedded
in a single space Hs→t enables a smooth transition between
the source and target features through interpolation between
the anchor point nanch and other randomly sampled noise
nrand. This allows us to control the degree of preserved
source features. Further, we quantitatively examine the ef-
fects of the noise interpolation. LPIPS [59] and FID [17] are
used to capture distance with the source and target distribu-
tion, respectively. For LPIPS, we randomly sample 2000 la-
tent codes z ∈ Z and measure the distance between images
generated by Gs and Gs→t from the same z. We use target
domain images for FID measurement. Low LPIPS indicates
that the generated images are similar to the source images,
while low FID indicates that the distribution of the gener-
ated images is close to the target data distribution. As shown
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Figure 5. Qualitative comparison on controlling preserved source features. Our results show a consistent transition between the source and
target features.

Source FFHQ Church

Target MetFaces AAHQ Cityscape

PS FID KID
(×103)

PS FID KID
(×103)

PS FID KID
(×103)

Layer-swap 0.641 68.31 34.69 0.574 38.03 28.30 0.604 52.02 38.46
UI2I StyleGAN2 0.649 79.54 45.38 0.594 51.10 40.77 0.596 64.49 50.03

Freeze G 0.496 24.12 5.41 0.465 7.93 2.82 0.446 12.84 3.55
Ours (α = 1) 0.828 40.37 14.88 0.835 31.65 22.86 0.709 27.64 16.28
Ours (α = 0) 19.68 3.31 5.10 1.55 11.49 3.03

StyleGAN2-ADA ✗ 19.04 2.74 ✗ 4.32 1.22 ✗ 11.04 2.75

Table 2. Quantitative comparison with unconditional GANs based methods. We report the best FID, and measure PS and KID using the
same network snapshot.

in Table 1, our method obtained the lowest FID and highest
LPIPS when α = 0, and vice versa when α = 1. Thus,
we could infer that the generated images lose their source
features and approach the target distribution as α decreases.
The result demonstrates that our method can control fea-
tures across domains just by modifying the noise weight.

4.2. Comparison

We evaluate the proposed method with two different ap-
proaches: unconditional GANs based methods and conven-
tional domain translation methods. The detailed evaluation
metrics are described in the supplemental material.
Comparison with unconditional GANs based method.
We compare our approach with unconditional GANs based
approaches for domain translation including Freeze G [30],
Layer-swap [42] and UI2I StyleGAN2 [29] that combines
freeze FC with Layer-swap. These methods including ours

have constraints on source feature preservation. In order
to explore how the constraints of each method affect tar-
get distribution learning, we additionally train StyleGAN2-
ADA [25] under the same source and target settings. Note
that StyleGAN2 has 21 layers including constant input for
256 × 256 resolution images. When freezing or swapping
layer i = 0, Gs→t is fine-tuned without any constraints, and
when i = 21, Gs→t is mere Gs.

The qualitative comparison with previous leading meth-
ods is shown in Figure 5. For a qualitative comparison, we
use the interpolation weight α = 1, 0.5, 0 for ours, and i =
15, 9, 3 for baselines to match a similar preservation level,
respectively. In FFHQ → MetFaces and FFHQ → AAHQ
settings, inconsistent transitions occur in the baselines. In
particular, changes in human identity are observable in the
results of Layer-swap. Several unnatural color transitions
are observed in Layer-swap and UI2I StyleGAN2 due to
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Figure 6. Qualitative comparison with domain translation methods.

simply combining two different models. Although the in-
consistency and color transition problems are less impor-
tant in Church → Cityscape, the feature control steps in the
baselines are restricted to the number of layers, which inter-
feres with a fine-grain transition. In addition, to control the
source features, previous methods require new models by
swapping layers or training, which is not suitable for prac-
tical application. In contrast, our method that generates the
most realistic results enables smooth transition in a single
model, which is easily applicable to diverse tasks.

The quantitative comparison is shown in Table 2. We
use a modified version of Perceptual Smoothness (PS) [37]
to measure the smoothness of interpolation between differ-
ent domain features. FID [17] and KID [4] are adopted to
evaluate generation quality and diversity. For PS, we use
the interpolation weight α = 1, 0.75, 0.5, 0.25, 0 for ours,
and i = 15, 12, 9, 6, 3 for baselines to get interpolated im-
ages from the same z ∈ Z , respectively. For FID and KID,
we use i = 15 for baselines following [29]. The PS of
our method notably outperforms the competing methods,
which implies that our approach is more precise and con-
sistent in controlling features across domains. Moreover,

when α = 0, our method achieved the highest FID and
KID. Compared to StyleGAN2-ADA which does not have
any constraints on source preservation, our method shows
similar performance while the other methods show signifi-
cant performance drops. It indicates that, in contrast to pre-
vious methods, our proposed method hardly interferes with
the learning of the target distribution. Although Freeze G
obtained a better FID and KID than ours when α = 1, they
require additional models for each control level and show
inconsistent results as shown in Figure 5. In short, our ap-
proach can produce the most coherent and fine-grain inter-
polation results while generating the most realistic images.

Comparison with domain translation method. We ad-
ditionally compare our method to recent domain transla-
tion methods including UNIT [35], MUNIT [20], StarGAN-
v2 [9], CUT [40], F-LSeSim [60] by combining ours with
the inversion method. It has recently been observed that
an optimization method to Z space shows the best perfor-
mance in domain translation among inversion methods to
several spaces (e.g. Z+,W , and W+) [54]. They observed
that inversion to W or W+ space yields good reconstruc-
tion, but causes color artifacts to target images due to the
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Source FFHQ

Target MetFaces AAHQ

FID KID
(×103)

FID KID
(×103)

UNIT 42.69 22.66 20.12 14.78
MUNIT 93.77 81.73 21.82 16.73

StarGAN-v2 37.61 17.88 19.20 10.44
CUT 55.52 34.04 20.29 12.26

F-LSeSim 71.07 47.74 47.10 38.90
Ours (α = 1) 53.80 31.45 34.90 23.46
Ours (α = 0) 27.14 10.29 18.53 11.75

Table 3. Quantitative comparison with domain translation meth-
ods. We report the best FID, and measure KID using the same
network snapshot.

changes in mapping function (Z to W) when training the
target model. Thus, following StyleAlign [54], we modify
the optimization method from StyleGAN2 [27] to embed
source images into Z space of the source model.

Figure 6 shows the qualitative comparison on the domain
translation task. Competing methods except for StarGAN-
v2 commonly fail to generate realistic images, and particu-
larly include remarkable artifacts in generated images. Re-
sults of StarGAN-v2 show better visual quality than the
other competing methods, however, some of them are un-
natural and fail to preserve the human identity. Although
CUT and F-LSeSim successfully preserve the identity of
the source images, they generate source images with sim-
ple filtering effects and did not adapt well to the target do-
main. Compared to the competing methods, our approach
generates the most realistic and well-adapted images while
preserving the source features. In addition to visual quality,
the most notable property of our approach compared to pre-
vious methods is that the preserved source features can be
controlled in only a single model.

The quantitative comparison is shown in Table 3. We
randomly sample 20K images from the source domain and
generate a single image from each image. When α = 1, our
method got higher FID and KID than UNIT and StarGAN-
v2. However, since FID and KID measure the distance from
the target distribution, it is natural that the FID and KID are
high when the source features are strongly preserved. We
emphasize that the advantage of our method is that we can
control the degree of the preserved source features. When
the source features are less preserved (α = 0), our method
greatly outperforms other competing methods except for
KID of FFHQ → AAHQ. Also, compared to StarGAN-
v2, which achieved the best performance among competing
methods, our method is not only qualitatively good, but also
preserves the features of the source images much better.

(a) (b) (c)

Figure 7. Visualizing the effects of the feature matching loss in
different spaces: (a) image space, (b) RGB space, (c) intermediate
feature space H (ours).

4.3. Ablation study on feature matching loss

In FFHQ → MetFaces setting, we study in which space
features are appropriate to preserve. We conduct an exper-
iment by applying a feature matching loss in intermediate
feature space H (ours), RGB space, and image space. Fig-
ure 7 shows a qualitative comparison on applying the loss
in the different spaces. Results of the loss applied in the im-
age and RGB space show well-preserved source features,
however, they are not adapted to the target domain. On the
other hand, when the loss is applied to the intermediate fea-
ture space (ours), a target model Gs→t successfully learns
features of the target domain while preserving the source
features. The feature matching loss in H allows tRGB lay-
ers to learn the target distribution.

5. Conclusion
In this paper, we proposed a new training strategy,

FixNoise, for cross-domain controllable domain translation.
By focusing on the fact that the noise input of StyleGAN2
expands the functional space composed of the latent expres-
sion, our approach successfully disentangles the source and
target features in the feature space of the target model. Con-
sequently, through the noise interpolation, our method can
coherently control the degree of the source features in a sin-
gle model without limited steps. Furthermore, experimen-
tal results show that the proposed method remarkably out-
performs the previous works in terms of image quality and
consistent transition. We believe that our methods can be
applied to various fields that utilize multi-domain features.
Additional future work and limitations are described in the
supplemental material.
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