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Abstract

Due to the lack of temporal annotation, current Weakly-
supervised Temporal Action Localization (WTAL) methods
are generally stuck into over-complete or incomplete local-
ization. In this paper, we aim to leverage the text infor-
mation to boost WTAL from two aspects, i.e., (a) the dis-
criminative objective to enlarge the inter-class difference,
thus reducing the over-complete; (b) the generative objec-
tive to enhance the intra-class integrity, thus finding more
complete temporal boundaries. For the discriminative ob-
jective, we propose a Text-Segment Mining (TSM) mecha-
nism, which constructs a text description based on the ac-
tion class label, and regards the text as the query to mine all
class-related segments. Without the temporal annotation of
actions, TSM compares the text query with the entire videos
across the dataset to mine the best matching segments while
ignoring irrelevant ones. Due to the shared sub-actions
in different categories of videos, merely applying TSM is
too strict to neglect the semantic-related segments, which
results in incomplete localization. We further introduce a
generative objective named Video-text Language Comple-
tion (VLC), which focuses on all semantic-related segments
from videos to complete the text sentence. We achieve the
state-of-the-art performance on THUMOS14 and Activi-
tyNet1.3. Surprisingly, we also find our proposed method
can be seamlessly applied to existing methods, and improve
their performances with a clear margin. The code is avail-
able at https://github.com/lgzlIlIlI/Boosting-WTAL.

1. Introduction
Temporal action localization attempts to temporally lo-

calize the action instances of interest in untrimmed videos.

Although current fully-supervised temporal action local-

ization methods [5, 26, 42, 51] have achieved remarkable
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Figure 1. Comparison of our proposed framework with current

WTAL methods. (a) Common failures in existing WTAL methods.

(b) Existing WTAL model’s pipeline. (c) The proposed frame-

work with text-segment mining and video-text language comple-

tion, where the depth of color represents the degree of correlation

between segments and texts.

progress, time-consuming and labor-intensive frame-level

annotations are required. To alleviate the annotation cost,

weakly-supervised temporal action localization (WTAL)

methods [15,22,32,35] have gained more attention recently,

which only requires efficient video-level annotations.

With only video-level supervision, existing WTAL meth-

ods [15, 22, 35, 45] generally utilize video information to

train a classifier, which is used to generate a sequence

of class logits or predictions named temporal class acti-

vation map (T-CAM). While significant improvement has

been achieved, current methods still suffer from two prob-
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lems, i.e., incomplete and over-complete localization. As

shown in Fig. 1 (a), some sub-action with low discriminabil-

ity may be ignored, while some background segments that

contribute to classification can be misclassified as action,

causing incomplete and over-complete localization.

Differently from current methods that only utilize the

video information, in this paper, we aim to explore the

text information to improve WTAL from two aspects: (a)
the discriminative objective to enlarge the inter-class differ-

ence, thus reducing the over-complete; (b) the generative

objective to enhance the intra-class integrity, thus finding

more complete temporal boundaries. For the discrimina-

tive objective, we propose a Text-Segment Mining (TSM)

mechanism, where the action label texts can be used as

queries to mine all related segments in videos. Specifically,

we first use the prompt templates to incorporate the class

label information into the text query. Without temporal an-

notations, TSM requires to compare the text query with all

segments of the different videos across the dataset, as shown

in Fig. 1 (c). During the comparison, the segments that is

best matching to the text query would be mined, while other

irrelevant segments would be ignored, which is similar to

‘matched filter’ [43, 50]. In this way, the segments and text

queries with the same class from all videos would be pulled

close while pushing away others, hence enhancing the inter-

class difference.

For different categories of videos, there are some shared

sub-actions, e.g., sub-action “Approach” exists in both

“High Jump” and “Long Jump” videos. Merely using

TSM is too strict to neglect the semantic-related segments,

which results in incomplete localization, e.g., neglecting

“Approach” segments. To overcome this problem, we fur-

ther introduce a generative objective named Video-text Lan-

guage Completion (VLC) which focuses on all semantic-

related segments to complete the text sentence. First, we

construct a description sentence for the action label of the

video and mask the key action words in the sentence, as

shown in Fig. 2. Then an attention mechanism is design to

collect semantic related segments as completely as possi-

ble to predict masked action text via the language recon-

structor, which enhances the intra-class integrity. Com-

bining TSM and VLC by a self-supervised constraint, our

method achieves the new state-of-the-art on two popular

benchmarks, i.e., THUMOS14 [17] and ActivityNet1.3 [1].

Furthermore, we also find our proposed method can be ap-

plied into existing methods, and improve their performances

with a clear margin.

Our contributions are summarized as three-folds: (a) To

best of our knowledge, we are the first to leverage text infor-

mation to boost WTAL. We also prove that our method can

be easy to extend to existing state-of-the-art approaches and

improve their performance. (b) To leverage the text infor-

mation, we devise two objective: the discriminative objec-

tive to enlarge the inter-class difference, thus reducing the

over-complete; and the generative objective to enhance the

intra-class integrity, thus finding more complete temporal

boundaries. (c) Extensive experiments illustrate our method

outperforms current methods on two public datasets, and

comprehensive ablation studies reveal the effectiveness of

the proposed objectives.

2. Related Work
Weakly Supervised Temporal Action Localization.
Weakly-supervised temporal action localization requires

video-level labels only. Due to the lack of precise boundary

labels, most advanced WTAL methods [15, 16, 29, 35] fall

into a localization-by-classification pipeline to tackle the

WTAL task. Erasing-based methods [29, 40, 48, 54] care-

fully design adversarial erase strategies, which find many

less discriminative regions by erasing the most discrimi-

nant regions. Metric learning-based methods [12,30,33,35]

employ center loss or triple loss to decrease intra-class

variations while increasing inter-class difference. In addi-

tion, background segments suppression-based methods [16,

22, 23] aim to separate action segments from background

segments by setting additional background class to learn

background suppression weights. Some pseudo-label-based

methods [15, 28, 49] utilize video information to generate

pseudo-labels to improve the quality of T-CAMs. Besides,

lee et al. [21] used audio within the video as an auxiliary in-

formation. Existing methods can employ one or more of the

above strategies to improve T-CAM quality and improve lo-

calization performance. Despite the success of these meth-

ods, however, the above strategies only make use of video

information, and the semantic information encapsulated in

category labels of the text form is not fully explored. In

this paper, we design a novel framework consisting of two

objectives, i.e., text-segment mining and video-text lan-

guage completion, to leverage action label text information

to boost WTAL.

Self-Supervised Learning. Self-supervised learning lever-

ages unlabeled data to make the model learn intrinsic in-

formation from data. Currently, several methods have

been proposed to exploit the self-supervised learning strat-

egy to learn better representation when lacking full anno-

tation data. For example, Gong et.al [8] proposed self-

supervised equivariant transform consistency constraint to

realize self-supervised action localization. TSCN [49] and

UGCT [47] utilize RGB and optical flow video features for

cross-supervision to improve the performance of WTAL. Su

et.al [41] utilizes temporal multi-resolution information to

generate pseudo labels for better representation learning.

VLC model tends to focus on all video segments related

to action text to achieve text integrity, which can be used

to alleviate excessive attention to important segments in the

TSM model. In this paper, we utilize the label text informa-
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Figure 2. Illustration of the proposed framework. In this work, the text-segment mining objective uses the action label texts as a query to

mine semantically related segments in the video to achieve action localization. In addition, the language completion objective aims to focus

on the areas related to the action label texts in the video as comprehensively as possible to complete the masked keywords, and alleviate

the localization errors caused by the excessive attention of the matching strategy to the most relevant segments in a self-supervised manner.

tion to construct a VLC model and design a self-supervised

constraint between the TSM and the VLC model to achieve

more complete localization results.

Vision-Language Models. Recently, a series of works on

the interaction of vision and language has attracted increas-

ing attention in the past few years, such as vision language

pre-training [18, 38], video caption [44], video grounding

[6, 31, 52], video question answering [24] and so on. How-

ever, how to make full use of the information encapsulated

in action label texts in the WTAL task has not yet been

explored. In this paper, we design a novel framework to

explore leverage text information of action label to boost

WTAL task. By combining discriminative objective TSM

and the generative objective VLC, the proposed framework

realizes the indirect use of text information to boost WTAL.

3. The Proposed Method
3.1. Overall Architecture

Problem formulation. In WTAL, we are provided with a

set of N untrimmed videos defined as {Vj}Nj=1, and all of

them are annotated with their corresponding video-level ac-

tion category labels {yj}Nj=1. Generally, the label yj is dis-

cretized into a binary vector indicating the presence/absence

of each category of action in the video vj . Each video V
contains a set of segments: V = {vt}Tt=1, where T is the

number of segments in the video. Generally, T segments

are fed into a pre-trained 3D CNN model [2] to extract both

RGB features Xr ∈ R
T ×1024 and FLow video features

Xf ∈ R
T ×1024. During inference, we predict a sequence of

actions {ci, si, ei, confi} for an input video, where ci is the

action category, si and ei represent the start and end time,

and confi is confidence score.

Overview. The proposed overall framework is shown in

Figure 2, which leverages text information of action labels

to boost WTAL from two aspects, i.e., Text-Segment Min-

ing (TSM) and Video-text Language Completion (VLC).

For the TSM in Section 3.2, the RGB and Flow video fea-

tures Xr and Xf is fed into a video embedding module con-

sisting of convolution layers to generate video features em-

bedding at first. Second, we construct text descriptions for

action labels via prompt template and generate text queries

according to the description by the text encoder. Then in

the video-text matching module, TSM compares the text

queries with all segments of videos to generate query re-

sponses to mine semantically related video segments. In

addition, we generate attention weights for each video seg-

ment to further suppress the response of the background

segments to text queries. For the VLC in Section 3.3, the

extracted video features Xr and Xf are fed into a fully con-

nected layer to get video feature embedding at first. Later,

we construct a description sentence for the action label of

the video and mask the key action words of the sentence.

Then, an attention mechanism is designed to collect seman-

tically related segments to predict masked action words via

the language reconstructor. Finally, in Section 3.4, we com-

bine the TSM and VLC via imposing self-supervised con-

straints between attentions of them to obtain more accurate
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and complete localization results.

3.2. Text-Segment Mining

In this section, we introduce the text-segment mining ob-

jective (TSM) to make full use of information encapsulated

in action label texts. Specifically, the TSM consists of a

video embedding module, a text embedding module and a

video-text feature matching module.

Video embedding module. Similar to other WTAL mod-

els, the video embedding module is composed of two 1D

convolutions followed by RelU and Dropout layers. We

use a strategy similar to [11] to fuse RGB and Flow fea-

tures to obtain video features X ∈ R
T ×2048 as the input

of the video embedding module. Then, the corresponding

video feature embedding Xe ∈ R
T ×2048 can be obtained by

Xe = emb(X), where emb(·) represents the video embed-

ding module. Besides, following previous works [11,16], an

attention mechanism is utilized to generate attention weight

attm ∈ R
T ×1 for each video segment Vj ,

attm = σ(A(X)), (1)

where A(·) is the attention mechanism consisting of several

convolution layers, and σ(·) means the sigmoid function.

Text embedding module. The text embedding module

aims to use action label text to generate a series of queries

for mining segments related to category text in the videos.

We adopt category-specific learnable prompts for C cate-

gory of action label texts, to form the input of the text em-

bedding module Lq:

Lq = [Ls;Lp;Le], (2)

where Ls denotes the [START] token initialized randomly,

Lp denotes the learnable textual contexts with the length

Np, and Le denotes action label text features embed by

GloVe [36]. Besides, the C + 1-th additional background

class embedding is initialized by zero.

Then a Transformer encoder trans(·) is used as the

text embedding module to generate text queries. Specifi-

cally, the class text queries Xq can be obtained by Xq =
trans(Lq), where Xq ∈ R

(C+1)×2048.

Video-text feature matching. The video-text feature

matching module is used to match semantic-related text

query and video segment features.

To be specific, we conduct the inner product opera-

tion between the video embedding feature Xe and the text

queries Xq to generate the segment-level video-text simi-

larity matrix S ∈ R
T ×(C+1).

Besides, following the background suppression-based

methods [11,16,22], we also apply attention weight attm to

suppress the response of the background segment to the ac-

tion text. The background suppressed segment-level match-

ing result S̄ ∈ R
T ×C+1 can be obtained by S̄ = attm ∗ S,

where ‘*’ means element-wise multiplication in this paper.

Finally, similar to current approaches [30, 35], We also

use top-k multi-instance learning to calculate matching loss.

Specifically, we calculate the average value of top-k simi-

larity in the temporal dimension corresponding to a specific

category of text query as the video-level video-text similar-

ity.

For the j-th action category, video-level similarity vj

and v̄j are generated from S and S̄, respectively:

vj = max
l⊂{1,...,T }

|l|=k

1

k

∑

i∈l

Si(j), v̄j = max
l⊂{1,...,T }

|l|=k

1

k

∑

i∈l

S̄i(j),

(3)

where l is a set containing the index of the top-k segments

with the highest similarity to the j-th text query, and k is

the number of selected segments. Then, We apply softmax

to vj and v̄j to generate video-level similarity score pj and

p̄j .

We encourage the positive score of video-text category

matching to approach 1, while the negative score to ap-

proach zero to train the TSM objective,

Lmil = −(
C+1∑

j=1

yj log (pj) +
C+1∑

j=1

ŷj log (p̂j)), (4)

where yj and ŷj are labels for video-text matching. In ad-

dition, the additional C + 1-th background class is 0 in ŷj

and 1 in yj .

Besides, in this work, follow [11, 16], we also adopt co-

activity loss [30, 35], normalization loss [22, 23] and guide

loss [11, 16] to train the TSM model. Since they are not

the main contributions of this work, we do not elaborate on

them in this paper.

3.3. Video-Text Language Completion

The Video-text Language Completion (VLC) objective

aims to complete the masked keywords in the video descrip-

tion, by focusing on the text-related video segments related

as comprehensively as possible. The proposed VLC also

contains a video embedding module and a text embedding

module. Besides, a transformer reconstructor is used for

multi-modal interaction and completion of the original text

description.

Video embedding module. Given the original video fea-

ture X ∈ R
T ×2048 as described in sec.3.2, we can obtain

the corresponding video feature embedding Xv ∈ R
T ×512

through for a full connection layer the VLC module.

To mine positive areas of text-semantic-related video, the

proposed completion model specially designs an attention

mechanism with the same structure as Sec. 3.2. The atten-

tion weight for VLC attr ∈ R
T ×1 can be obtained by:

attr = σ(A(X)), (5)
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where A(·) is the attention mechanism composed of several

convolution layers, and σ(·) represents the sigmoid func-

tion.

Text embedding module. The datasets of the WTAL

task only provide action videos and their action labels but

does not contain any sentences describing the correspond-

ing videos. Hence, we first use the prompt template “a video

of [CLS]” and the action label texts to construct a descrip-

tion sentence for the video. Then, we mask the key action

words of the description sentence, and embed the masked

sentence with GloVe [36] and a fully connected layer to get

sentence feature embedding X̂s ∈ R
M×512, where M is the

length of the sentence.

Transformer reconstructor. In the video-text language

completion model, a transformer reconstructor is used to

complete the masked description sentence. Firstly, follow-

ing [27], we randomly mask 1/3 of the words in the sentence

as the alternative description sentence, which could result

in a high probability to mask the action label texts. Then,

the encoder of the transformer is used to get the foreground

video feature F ∈ R
T ×512 by:

F = E(Xv,attr) = δ(
XvWq(XvWk)

T

√
Dh

∗ attr)XvWv,

(6)

where E(·, ·) denotes the transformer encoder, δ(·) denotes

the softmax function, Wq,Wk,Wv ∈ R
512×512 are learn-

able parameters, and Dh = 512 is the feature dimension of

Xv .

The decoder of the transformer is used to obtain multi-

modal representation H ∈ R
M×512 to reconstruct the

masked sentence:

H = D(X̂s,F,attr)

= δ(
X̂sWqd(FWkd)

T

√
Dh

∗ attr)FWvd,
(7)

where D(·, ·, ·) denotes the transformer decoder, and

Wqd,Wkd,Wvd ∈ R
512×512 are learnable parameters.

Finally, the probability distribution P ∈ R
M×Nv of the

i-th word wi on the vocabulary can be obtained by:

P(wi|Xv, X̂s[0:i−1]) = δ(FC(H)), (8)

where FC(·) denotes the fully connected layer, δ(·) denotes

the softmax function, and Nv is the vocabulary size.

The final VLC loss function can be formulated as:

Lrec = −
M∑

i=1

logP(wi|Xv, X̂txt[0:i−1])). (9)

To further improve the mined positive areas of text-

semantic-related video, we also adopt a contrastive loss [53]

in the completion model. Specifically, positive areas mined

by attention weight attr should be more compatible with

the sentence than the entire video, and those negative areas

mined by 1 − attr. Therefore, following Eq. 6-9, we can

obtain the completion loss Le
rec and Ln

rec, where the atten-

tion weight attr used in the transformer is replaced with 1
and 1− attr, respectively.

Finally, the contrastive loss Lc can be formulated as:

Lc = max(Lrec−Le
rec+γ1, 0)+max(Lrec−Ln

rec+γ2, 0),
(10)

where γ1 and γ2 are hyper-parameters.

3.4. Self-Supervised Consistency Constraint

The matching strategy used in TSM tends to focus on the

video segments that better match the text, while excluding

other text-unrelated segments as they could lead to localiza-

tion error. On the other hand, the VLC tends to focus on all

video clips that are related to action text to achieve descrip-

tion completion. Hence, we impose self-supervised con-

straints between attentions of these two objectives, i.e., the

discriminative objective TSM and the generative objective

VLC, to alleviate the excessive attention paid to the most

semantic-related segments by TSM. The consistency con-

straint loss Lcon can be obtained by:

Lcon = MSE(attm, ψ(attr)) +MSE(attr, ψ(attm)),
(11)

where ψ(·) represents a function that truncates the gradient

of the input, and MSE(·, ·) denotes the Mean Squared Error

loss.

The consistency constraint loss can encourage attm
trained by TSM and attr trained by VLC to focus on the

same action area within the video. In this way, the localiza-

tion errors which are caused by the excessive attention of

the matching strategy on the most relevant segments can be

alleviated. Besides, the information of the action label text

can be transmitted from the video-text language completion

model to the WTAL model through the attention mechanism

indirectly.

3.5. Model Training and Inference

Optimizing Process. Considering all the aforementioned

objectives, our final objective function of the whole frame-

work arrives at:

L = Lmil + αLrec + βLc + λLcon, (12)

where α, β, λ are the hyper-parameters to balance these four

loss terms.

Model Inference. In the test stage, we follow the process

of [11, 16]. Firstly, we select those classes with video-level

category scores above a threshold for generating propos-

als. Then for the selected action classes, we obtain the

class-agnostic action proposals by thresholding the atten-

tion weights and selecting the continuous components of
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Table 1. Experimental results of different methods in THUMOS14

dataset.

Method
mAP@IoU(%) Avg

0.3 0.4 0.5 0.6 0.7 0.3:0.7

BasNet(2020) [22] 44.6 36.0 27.0 18.6 10.4 25.2

RPN(2020) [12] 48.2 37.2 27.9 16.7 8.1 27.6

TSCN(2020) [49] 47.8 37.7 28.7 19.4 10.2 28.8

HamNet(2021) [16] 50.3 41.1 31.0 20.7 11.1 30.8

UGCT(2021) [47] 55.5 46.5 35.9 23.8 11.4 34.6

CO2Net(2021) [11] 54.5 45.7 38.3 26.4 13.4 35.6

FACNet(2021) [13] 52.6 44.3 33.4 22.5 12.7 33.1

FTCL(2022) [7] 55.2 45.2 35.6 23.7 12.2 33.4

ASMLoc(2022) [9] 57.1 46.8 36.6 25.2 13.1 34.4

DCC(2022) [25] 55.9 45.9 35.7 24.3 13.7 35.1

RSKP(2022) [15] 55.8 47.5 38.2 25.4 12.5 35.9

Ours 56.2 47.8 39.3 27.5 15.2 37.2

the remaining segments. The obtained i-th candidate ac-

tion proposal can be denoted as {ci, si, ei, confi}. For the

confidence score confi, we follow the AutoLoc [39] to cal-

culate the outer-inner score of each action proposal through

S̄. Finally, we remove the overlapping proposals using soft

non-maximum suppression.

4. Experiments

4.1. Datasets

THUMOS14. THUMOS14 [17] dataset contains 200 val-

idation videos and 213 test videos. There are a totally of

20 categories in the dataset, with an average of 15.5 actions

per video. Following the same setting as [14, 33–35], we

adopt 200 validation videos for training and 213 test videos

for testing.

ActivityNet. ActivityNet [1] dataset offers a larger bench-

mark for temporal action localization. There are 10,024

training videos, 4,926 validation videos, and 5,044 test-

ing videos with 200 action categories. Following the ex-

perimental setting in [13–15, 47], we adopt all the training

videos to train our model and evaluate our proposed method

in all the testing videos.

4.2. Implementation Details

Evaluation Metrics. We evaluate the proposed method for

action localization using mean Average Precision (mAP).

The prediction proposal is considered as correct if its action

category is predicted correctly and overlaps significantly

with the ground truth segment (based on the IoU thresh-

old). We adopt the official evaluation code of ActivityNet

to evaluate our method [1].

Feature Extractor. Following previous work [4,30,33,35],

the optical flow maps are generated by using the TV-L1 al-

gorithm [46], and we use I3D network [2] pre-trained on the

Table 2. Experimental results of different methods in Activi-

tyNet1.3 dataset.

Method
mAP@IoU(%) Avg

0.5 0.75 0.95 0.5:0.95

BasNet(2020) [22] 34.5 22.5 4.9 22.2

TSCN(2020) [49] 25.3 21.4 5.3 21.7

UGCT(2021) [47] 39.1 22.4 5.8 23.8

FACNet(2021) [13] 37.6 24.2 6.0 24.0

ACMNet(2021) 40.1 24.2 6.2 24.6

FTCL(2022) [7] 40.0 24.3 6.4 24.8

ASMLoc(2022) [9] 41.0 24.9 6.2 25.1

DCC(2022) [25] 38.8 24.2 5.7 24.3

RSKP(2022) [15] 40.6 24.5 5.9 25.0

Ours 41.8 26.0 6.0 26.0

Kinetics dataset [19] to extract both RGB and optical flow

features without fine-turning.

Training Settings. we use Adam [20] with a learning

rate of 0.0005 and weight decay of 0.001 to optimize our

model for about 5,000 iterations on THUMOS14. For Ac-

tivityNet1.3, the learning rate is 0.00003 to optimize our

model for about 50,000 iterations. For the hyper-parameters

in Lc, we set γ1 as 0.1 and γ2 as 0.2. Besides, for the

hyper-parameter α, β, λ, we set it as 1.0,1.0,1.5 on THU-

MOS14 and 1.0,1.0, 0.25 on ActivityNet1.3, respectively.

Our model is implemented by PyTorch 1.8 and trained un-

der Ubuntu 18.04 platform. Hyper-parameter sensitivity

analysis can be found in the supplementary materials.

4.3. Comparison with the State-of-the-Arts

We compare the proposed method with state-of-the-art

weakly-supervised methods in this section. The results are

shown in Table 1 and Table 2. For THUMOS14 datasets, the

proposed framework evidently outperforms current state-

of-the-art WTAL approaches, especially in high IoU ex-

perimental settings. On the important criterion: average

mAP (0.3:0.7), we surpass the state-of-the-art method [15]

by 1.3%, even surpassing some fully-supervised methods.

For the larger ActivityNet1.3 dataset, our method still ob-

tains 1.0%mAP improvement over existing the state-of-the-

art weakly-supervised methods [15] on average.

4.4. Ablation Study

Effectiveness of each component. The proposed frame-

work mainly contains three ingredients: (1) the text-

segment mining (TSM) module to replace the existing

WTAL model that only uses video information; (2) Addi-

tional video-text language complements (VLC) are used to

constrain WTAL models in a self-supervised manner, de-

noted as Lrec + Lcon; (3) contrastive loss in the video-text

language complements model, denoted as Lc.

To verify the effectiveness of each component in the

proposed framework, we conduct a comprehensive ablation
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study to analyze different components in Table 3. Specifi-

cally, we implement four variants of the proposed method as

follows: (1) “Baseline”: Using a convolution layer as a clas-

sifier instead of video-text matching in TSM, and only using

video information to train the WTAL model; (2) “Baseline +

Lrec+Lcon”: Additional video text language complements

(VLC) is used to constrain baseline WTAL models in a self-

supervised manner; (3) “Baseline + Lrec + Lcon + Lc”:

Using contrastive loss in the video-text language comple-

ments model; (4) “TSM+ Lrec + Lcon + Lc” : The final

framework, replacing the baseline WTAL model with the

proposed TSM on the basis of (3);

Table 3. Effectiveness of each component on THUMOS14

datasets.

Method
mAP@IoU(%)

Avg
0.3 0.5 0.7

Baseline 54.5 36.5 13.0 34.9

Baseline + Lrec + Lcon 55.0 37.8 14.0 35.9

Baseline + Lrec + Lcon + Lc 55.7 38.3 13.8 36.3

TSM + Lrec + Lcon + Lc 56.2 39.3 15.2 37.2

By comparing the performance of methods “TSM +

Lrec + Lcon + Lc” and “Baseline + Lrec + Lcon + Lc”,

we can conclude that the text-segment mining is better than

generally WTAL model using only convolution classifier

without action label text information, which brings about

0.9% performance improvement on THUMOS14 dataset.

When we ablate the measurement of learning loss Lc and

the additional video-text language completion model Lrec+
Lcon step-by-step, the performance under all the experi-

ment settings could be gradually decreased. To be spe-

cific, by comparing the methods “Baseline + Lrec + Lcon”

with “Baseline”, we can conclude that the proposed video-

text language model can constrain the WTAL model by

self-supervision and indirectly transfer text information to

it, which brings about 1.0% mAP performance improve-

ment on THUMOS14 dataset. Besides, comparing the

methods “Baseline + Lrec + Lcon + Lc” with “Baseline

+ Lrec + Lcon”, we can also verify the effectiveness of the

contrastive loss in the VLC.

Futhermore, we evaluated the frame-level classification

results on THUMOS14. Compared with the baseline, af-

ter using the TSM model, the false positive rate (FPR)

dropped from 26.0% to 23.8%, and after using the VLC

model, the false negative rate (FNR) decreased from 28.0%

to 26.9%. This shows that TSM can effectively alleviate

the problem that the background segment is misclassified as

a groundtruth action, thus effectively alleviating the over-

complete problem while VLC can effectively alleviate the

problem that the groundtruth action segment is misclassi-

fied as background, thus effectively alleviating the incom-

plete problem.

Comparisons with different prompts in text-segment
mining model. We compare the effects of handcraft

prompts “a video of [CLS]” and the learnable prompt on

the text-segment mining models in Table 4. Compared with

the handcraft prompt in the text-segment mining model, the

learnable prompt achieves better performance. It is because,

by making it learnable, textual contexts can achieve better

transferability in downstream video-text matching tasks by

directly optimizing the contexts using back-propagation.

Table 4. Comparisons with different prompts in classification

model on THUMOS14 dataset.

Method
mAP@IoU(%)

Avg
0.3 0.5 0.7

handcraft prompt 55.1 38.1 14.1 36.1

learnable prompt 56.2 39.3 15.2 37.2

Comparisons with different types of consistency con-
straint loss. We also evaluate the effect of different types

of consistency constraints. Specifically, we implement five

variants of the constraints on the VLC and TSM model in

different ways: (1) “w/o Lcon”: The VLC model is not

used, and only TSM is used as the baseline; (2) “Share”:

Lcon is not used, but the VLC and TSM share the param-

eters of the attention module; (3) “KL”: Using Kullback

Leibler divergence [37] as loss function Lcon; (4)“MAE”:

Using Mean Absolute Error as loss Lcon; (5)“MSE”: Using

Mean Square Error as loss Lcon.

The result in Table 5 shows that using an additional

video-text completion model to constrain the WTAL model

can effectively improve localization performance, and using

MSE as the consistency constraint loss is more suitable.

Table 5. Comparisons with types of consistency constraint loss on

THUMOS14 dataset.

Method w/o Share KL MAE MSE

Avg mAP 35.4 35.8 36.9 36.4 37.2

Comparisons with different types of language recon-
structor in the video-text language completion model.

We compare the performance impact of using differ-

ent prompt templates to generate action descriptions in the

completion model.

To verify the effectiveness of additional video-text lan-

guage completion model, we compare the effects of differ-

ent types of language reconstructor on the localization re-

sult. Specifically, we compared three different reconstruc-

tors, Transformer, GRU [3] and LSTM [10] in Table 6. In

addition, “w/o” represents only the TSM model used. As

shown in Table 6, we can conclude that no matter which lan-

guage reconstructor is used, the video-text language com-

pletion model could improve the performance of the pro-

posed framework, by imposing self-supervised constraints

on TSM. Besides, we can conclude that the Transformer
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structure is more suitable to be used as a language recon-

structor in our framework.

Table 6. Comparisons with different types of language reconstruc-

tors in the video-text language completion model on THUMOS14

dataset.

Method w/o GRU LSTM Transformer

Avg mAP 35.4 36.7 36.1 37.2

Comparison of action descriptions generated by differ-
ent prompt templates in language completion model. We

compared the performance influence of action descriptions

generated by different prompt templates in the language

completion model in Table 7. The results of all types of

prompt templates can outperform existing state-of-the-art

results, as shown in Table 1. These results indicate that it

is necessary to use video-text language completion model

to constrain WTAL model.
Table 7. Comparisons with different prompts in completion model

on THUMOS14 dataset.

Prompt
mAP@IoU(%)

Avg
0.3 0.5 0.7

a [CLS] 55.9 38.7 14.6 36.8

a video of action [CLS] 55.1 38.5 15.0 36.6

a video of the [CLS] 56.2 39.3 15.2 37.2

Integrating our framework to existing methods. The

proposed method can be easily extended to existing WTAL

models and improve their performance. To verify the

scalability of the proposed framework, we design three

sets of experiments to extend the proposed framework

to existing methods: (1) “+TSM”: Using the proposed

TSM to replace convolution classifier of existing WTAL

model; (2) “+VLC”: Additional VLC model are used to

constrain WTAL models in a self-supervised manner; (3)

“+TSM+VLC”: extended all components of our framework

to existing WTAL model. As shown in Table 8, we can

clearly conclude that both of the proposed TSM and VLC

can greatly improve the performance of two existing meth-

ods, verifying the effectiveness of leveraging action label

text information to expand WTAL model.

Table 8. Integrating our framework to existing methods on THU-

MOS14 dataset.

Method
mAP@IoU(%)

Avg
0.3 0.5 0.7

BaSNet [22] 44.6 27.0 10.4 27.3

BaSNet + TSM 48.2 31.7 9.7 29.5

BaSNet + VLC 48.6 32.0 10.3 30.2

BaSNet + TSM + VLC 49.0 32.5 10.7 30.6
HAMNet [16] 50.3 31.0 11.1 30.8

HAMNet + TSM 51.8 34.7 11.8 32.7

HAMNet + VLC 51.5 36.0 12.8 33.6

HAMNet + TSM + VLC 52.3 37.4 13.4 34.5

4.5. Qualitative Analysis

We visualize some examples of the detected action in-

stances in Figure 3. For each example, the top line repre-

sents the segment of the video, the following four lines in

order are the ground truth of the action in the video, the

localization results generated by the baseline model, the lo-

calization results generated by the text-segment mining, and

the localization results generated by our final framework.

As can be seen from this figure, introducing the text infor-

mation in the category annotation into the WTAL model in

both direct and indirect ways, helps to generate more accu-

rate localization results and suppress the response of back-

ground fragments to a certain extent.

GT
Baseline

Final
TSM

GT
Baseline

Final
TSM

Figure 3. Two prediction examples on THUMOS14 dataset.

5. Conclusion
We introduce a new framework to leverage the text infor-

mation to boost WTAL from two aspects, i.e. text-segment

mining, and video-text language completion. With the help

of text information, the proposed method can focus on

the action-category-related areas in the video and improve

the performance of WTAL tasks. Extensive experiments

demonstrate that the proposed method achieves state-of-the-

art performances on two popular datasets, and both of the

proposed objectives can be directly extended to the existing

WTAL methods to improve their performances.

Limitation. One major limitation in this work is that we

must train the text-segment mining and video- text language

completion models at the same time, resulting in the model

size being twice as the original size. In the future, We will

explore more efficient manners to make full use of text in-

formation in tags to boost WTAL.
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