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Abstract

Deep Neural Networks (DNNs) are rather restrictive in
long-tailed data, since they commonly exhibit an under-
representation for minority classes. Various remedies have
been proposed to tackle this problem from different perspec-
tives, but they ignore the impact of the density of Back-
bone Features (BFs) on this issue. Through representation
learning, DNNs can map BFs into dense clusters in fea-
ture space, while the features of minority classes often show
sparse clusters. In practical applications, these features are
discretely mapped or even cross the decision boundary re-
sulting in misclassification. Inspired by this observation, we
propose a simple and generic method, namely Feature Clus-
ters Compression (FCC), to increase the density of BFs by
compressing backbone feature clusters. The proposed FCC
can be easily achieved by only multiplying original BFs by
a scaling factor in training phase, which establishes a lin-
ear compression relationship between the original and mul-
tiplied features, and forces DNNs to map the former into
denser clusters. In test phase, we directly feed original fea-
tures without multiplying the factor to the classifier, such
that BFs of test samples are mapped closer together and do
not easily cross the decision boundary. Meanwhile, FCC
can be friendly combined with existing long-tailed methods
and further boost them. We apply FCC to numerous state-
of-the-art methods and evaluate them on widely used long-
tailed benchmark datasets. Extensive experiments fully ver-
ify the effectiveness and generality of our method. Code is
available at https://github.com/lijian16/FCC.

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved
considerable success in a variety of visual tasks, such as ob-
ject detection [5,12] and visual recognition [18,38]. Despite
with ingenious networks and powerful learning capabilities,
the great success is inseparable from large-scale balanced
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Figure 1. (a) DNNs can map backbone features into different clus-
ters, while minority classes are mapped into sparse clusters com-
pared to majority classes. The sparsity causes boundary points
mapped far from their clusters or even cross the boundary. (b) FCC
can compress original features compared with multiplied features,
which makes these features are mapped closer together. Because
the decision boundary remains unchanged in test phase, boundary
points will be brought back within the boundary.

datasets, such as ImageNet [8]. However, datasets collected
from real-world scenarios normally follow imbalanced and
long-tailed distributions, in which few categories (majority
classes) occupy most of the data while many categories (mi-
nority classes) are under-represented [15]. DNNs trained
on such datasets commonly exhibit a bias towards over-
represented majority classes and produce low recognition
accuracy for minority classes [19, 24, 33].

A number of remedies have been proposed to deal with
this problem from different perspectives. For instance,
re-sampling methods aim to balance the data distribution
by designing different sampling strategies [13, 23]. Re-
weighting methods attempt to alleviate the dominance of
majority classes by assigning different weights to each class
[1, 3, 21]. Two-stage training methods divide the vanilla
training procedure into imbalanced learning and balanced
fine-tuning [11, 19]. More recently, multi-expert networks
have been proposed to employ multiple models to learn rep-
resentation from different aspects [32, 37]. These methods
show the outstanding performance on long-tailed recogni-
tion, but they ignore the impact of the density of Backbone
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Features (BFs) on this issue.
DNNs primarily consist of the backbone networks and

classifiers [10, 18]. The former, similar to unsupervised
clustering algorithms [9, 20], can map BFs into different
clusters by linear and non-linear operations (e.g., convolu-
tion kernel and activation functions). The latter is similar
to SVM [2], which can draw the decision boundary based
on these clusters for recognition [7, 14]. DNNs trained on
long-tailed datasets tend to map BFs of majority classes into
dense clusters, but those of minority classes are mapped into
sparse clusters, in which feature points are far from each
other [41, 42]. In practical application, due to the sparsity,
BFs of real samples cannot be mapped close enough to each
other and are scattered in feature space, such that these fea-
ture points, especially boundary points that located at the
margin of clusters, easily cross the decision boundary re-
sulting in poor performance, as shown in Fig. 1a.

In view of this observation, we propose a Feature Clus-
ters Compression (FCC) to increase the density of BFs by
compressing backbone feature clusters. Our method can be
easily achieved by only multiplying original BFs by a spe-
cific scaling factor τ (τ > 1) and feeding the multiplied
features to the classifier for training, which will establish
a linear compression relationship among the original and
multiplied features. As the multiplied features are mapped
into clusters in training process, this relationship will force
the backbone to map the original features into denser clus-
ters, thereby improving the density. In test phase, we di-
rectly feed the original BFs without multiplying the factor
τ to the trained classifier, these features are mapped closer
together, and because the decision boundary remains con-
sistent with training phase, boundary points will be brought
back within the decision boundary resulting in performance
improvement, as shown in Fig. 1b. We notice that the input
of the classifier is different in training and test phases, and
this problem will be discussed in Sec. 3.2.

As reported by [38], different long-tailed methods might
hurt each other when they are employed inappropriately.
For instance, applying re-sampling and re-weighting meth-
ods simultaneously might obtain similar or even worse ac-
curacy than using them alone since they both try to enlarge
the influence of minority classes. But our FCC is a generic
method which only focuses on optimizing BFs without con-
flicting with other modules (e.g., sampling strategies and
loss functions), and it can be friendly combined with exist-
ing long-tailed methods and further boost them. Our contri-
butions can be summarized as follows:

• We tackle long-tailed visual recognition from a novel
perspective of increasing the density of BFs, which
makes features mapped into denser clusters and bound-
ary points brought back within the decision boundary.

• We propose a Feature Clusters Compression (FCC)

to improve the density of BFs, and it can be easily
achieved and friendly combined with existing long-
tailed methods to boost them.

• Extensive experiments demonstrate that FCC applied
to existing methods achieves significant performance
improvement and state-of-the-art results on four popu-
lar datasets, including CIFAR-10-LT, CIFAR-100-LT,
ImageNet-LT and iNaturalist 2018.

2. Related Work
Various approaches are proposed to tackle long-tailed

recognition, which can be roughly grouped into four cat-
egories, including re-weighting, re-sampling, two-stage
training and multi-expert methods. In this section, we in-
troduce these methods that are recently published and rep-
resentative of different types.

Re-weighting methods. Re-weighting methods com-
monly attempt to assign different weights to different
classes to alleviate the dominance of majority classes. For
instance, focal loss [21] down-weights the loss of well-
classified samples by adding a weighting factor to the stan-
dard Cross Entropy (CE) loss function. Class Balanced
(CB) focal loss and Class Balanced Cross Entropy (CBCE)
loss [7] introduce the effective numbers of different classes
in their method. Balanced Softmax Cross Entropy (BSCE)
loss [27] is proposed to adapt the label distribution shift
between training and testing. Besides, several recent ap-
proaches are also introduced since they consider the long-
tailed distribution when calculating the loss. Cross En-
tropy Label Smooth (CELS) [28] proposes a strategy to
regularize the classifier layer by estimating the marginal-
ized effect of label-dropout. Cross Entropy Label Aware
Smooth (CELAS) [39] aims to tackle different degrees of
over-confidence for classes. The Label Distribution Aware
Margin (LDAM) is proposed to minimize the margin-based
generalization bound [3]. Class Dependent Temperatures
(CDT) [35] simulates feature deviation in training phase
to enlarge the decision values for minority classes. These
methods show good results on long-tailed data but they
might impair the accuracy of head classes.

Re-sampling methods. Re-sampling is a classic and
widely used method for imbalanced learning by balanc-
ing the data distribution using different sampling strategies.
Over-sampling [4] and under-sampling [23] methods are
well known for balancing data but they have notable weak-
nesses. The former commonly causes models to over-fit to
the duplicated samples, while the latter easily deteriorates
the overall performance when the data is especially insuf-
ficient. Recently, more ingenious methods have been pro-
posed. Class Balance (CB) sampling [13] tries to make each
class has an equal probability of being selected. Square
Root (SR) sampling [13] uses the square root of the num-
ber of samples to calculate the sampling probability. Pro-
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gressively Balanced (PB) [13] changes the sampling prob-
ability of each class in training phase. And classifier Re-
Training (cRT) [13] proposes to re-train the classifier with
class-balanced sampling. However, it is difficult for them to
overcome the fundamental deficiency in data.

Two-stage training. Two-stage training methods com-
monly divide training process into deferred re-balancing by
re-sampling (DRS) and by re-weighting (DRW) [3]. For
example, Kang et al. [13] decouple the training procedure
into representation learning and classifier balancing. Li et
al. [19] propose a two-stage training strategy depended on
basis of knowledge distillation. DiVE [11] is also intro-
duced since it trains a teacher model firstly and then use it
to distill a student model. However, these methods often
suffer from high sensitivity to hyper-parameters.

Multi-expert Networks. Recently, multi-expert net-
works have received more and more concern due to their
outstanding performance on long-tailed data. For exam-
ple, the unified Bilateral-Branch Network (BBN) [40] is
designed to take care of both representation learning and
classifier learning simultaneously. Wang et al. [32] propose
a novel classifier called Routing Diverse Experts (RIDE)
which can reduce the model variance with multiple ex-
perts and reduce the model bias with a distribution-aware
diversity loss. Self-Supervised Aggregating Diverse Ex-
perts (SADE) [37] trains diverse experts to handle different
class distributions. Li et al. [18] use a Nested Collabora-
tive Learning (NCL) for collaboratively learning multiple
experts. Multi-expert methods exhibit significant advan-
tages over methods from other families, while they com-
monly have high complexity in training and inference pro-
cedures. Aforementioned Methods perform well on long-
tailed recognition, but they still have space for improve-
ment. In this work, we propose a Feature Clusters Com-
pression (FCC) which can be friendly combined with exist-
ing methods and effectively boost them.

3. Methodology
We firstly introduce the principle and implement process

of the proposed FCC in Sec. 3.1, and then the feasibility of
FCC (i.e., directly feeding original BFs to the classifier in
test phase) is mathematically illustrated in Sec. 3.2.

3.1. Feature Clusters Compression

To begin with, we present a simple example to illustrate
the core principle and process of FCC. Assume that there
is a square ABCD in two-dimensional space and it will be
transformed to the square A′B′C ′D′ when its vertex coor-
dinates are multiplied by a scaling factor τ (e.g., τ = 2), as
shown in Fig. 2a. We can easily observe the square ABCD
is compressed relative to the square A′B′C ′D′, and the dis-
tance between points

{
A,B,C,D

}
is shorten by τ times

and the density is enlarged to τ2 times. Similarly, expand-

Figure 2. (a) The square ABCD will be transformed to the square
A′B′C′D′ when its vertex coordinates are multiplied by 2. (b) Vi-
sualization of the original and multiplied features of class 0. Ex-
periment is conducted on CIFAR-10-LT-100, where FCC with γ
of 0.5 is used to ResNet-32.

ing to N -dimensional space, the distance is also shorten by
τ times and the density is enlarged to τN times.

In our method, BFs are viewed as the points in N -
dimensional space, where N denotes the number of param-
eters in BFs and each parameter represents a dimension.
We multiply original BFs (similar to the square ABCD)
of each class by a specific scaling factor τ (τ > 1) and
further feed the multiplied features (similar to the square
A′B′C ′D′) to the classifier in each batch. This operation
establishes a linear compression relationship (depending on
τ ) among the original and multiplied features, which forces
the backbone to consistently map the original features into
denser clusters than the multiplied features. This operation
is defined as follows:

f i
M = f i

O ∗ τi (1)

where f i
M and f i

O denote the multiplied and original fea-
tures of class i, respectively. For the scaling factor τi, we
define three strategies for setting it to control compression
degrees of each class, as followings:
Uniform compression. Set the same τi for all classes as:

τi = 1 + γ (2)

Equal difference compression. τi is reduced in sequence
from majority to minority classes, as following:

τi = 1 + γ ∗ (1− i/C) (3)

Half compression. Equal difference compression is only
used for top 50% or bottom 50% classes, otherwise τi is set
to 1 for other classes, it can be formulated as following:

τi = 1 + γ ∗ (1− i/C) ∗ φ((−1)β ∗ (i− C/2)) (4)

where γ > 0 is a scaling hyper-parameter, C is the number
of classes, and i ∈ [0, C) is the index of class. φ(·) is 1
when its parameter is negative, otherwise it is 0. And β
is 0 when only compress top 50% classes, otherwise it is
1. We will evaluate the performance of these compression
strategies in Sec. 4.3.
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After training with FCC, the multiplied features will be
mapped to different clusters in feature space, while the orig-
inal features are mapped into denser clusters. In order to
clearly show the results of compression, we use Principal
Component Analysis (PCA) [29] to visualize these clusters,
as shown in Fig. 2b. We can observe that the original feature
clusters (marked in red) are actually compressed and their
feature points are closer to each other. In test phase, we
directly feed the original features to the classifier, such that
these features can be mapped closer by the trained backbone
and do not easily cross the decision boundary.

3.2. Feasibility Demonstration of FCC

It is noteworthy that we feed the multiplied features to
the classifier in training, while the original features are fed
in test phase. The input of the classifier is different in these
two stages. It is indispensable to demonstrate that the clas-
sifier can also normally work on the original features. We
present a Fully Connected (FC) network of binary classifi-
cation to prove its feasibility and this can be easily extended
to our method.
Setting: The FC network contains an input layer with 3
neurons, a hidden layer with 3 neurons

{
a1, a2, a3

}
and

a output layer with 2 neurons
{
o1, o2

}
.
{
τx1, τx2, τx3

}
and

{
x1, x2, x3

}
are the multiplied and original features,

respectively, and they both belong to class 1. The scaling
factor of class 1 is τ (τ > 1).

{
y1, y2

}
and

{
y1

′, y2
′} are

outputs of the multiplied and original features produced by
the FC network, respectively.

{
wi1, wi2, wi3

}
and bi are

weights and bias of the neuron ai (i ∈
{
1, 2, 3

}
), respec-

tively.
{
nj1, nj2, nj3

}
and zj are weights and bias of the

neuron oj (j ∈
{
1, 2

}
), respectively.

Target: If the FC network can normally work, the classifi-
cation result of the original feature will be equal to that of
the multiplied feature, i.e., y1′ > y2

′ when y1 > y2.
The outputs of the multiplied feature can be expressed as

follows:

yi = ni1(τw11x1 + τw12x2 + τw13x3) + ni1b1+

ni2(τw21x1 + τw22x2 + τw23x3) + ni2b2+

ni3(τw31x1 + τw32x2 + τw33x3) + ni3b3+

zi

(5)

where i ∈
{
1, 2

}
, then we denote (y1 − y2) as η, (w11x1 +

w12x2 + w13x3) as X1, (w21x1 + w22x2 + w23x3) as X2,
(w31x1 + w32x2 + w33x3) as X3 and (n11b1 + n12b2 +
n13b3 + z1)− (n21b1 + n22b2 + n23b3 + z2) as B, further
η is converted as follows:

η = τk1X1 + τk2X2 + τk3X3 +B (6)

where ki is (n1i − n2i), i ∈
{
1, 2, 3

}
. We can notice that η

is a (decision) plane in geometric space when η = 0. Due

Figure 3. Relationship between planes η and η′ and feature points
in geometric space. When feature points are above plane η, (a)
plane η′ is below plane η, or (b) plane η′ is above plane η. When
feature points are below plane η, (c) plane η′ is above plane η, or
(d) plane η′ is below plane η.

to y1 > y2, η > 0 and Eq. (6) can be formulated as follows:{
τd1X1 + τd2X2 + τd3X3 > 1, B < 0

τd1X1 + τd2X2 + τd3X3 < 1, B > 0
(7)

where di denotes −ki/B, i ∈
{
1, 2, 3

}
. In geometric space,

the point (X1, X2, X3) is above the plane when B < 0,
while it is below the plane when B > 0. The case of B = 0
will be discussed later. On the same principle, we make
y′1 − y′2 equal to η′, which can be formulated as follows:

η′ = k1X1 + k2X2 + k3X3 +B (8)

When η′ = 0, Eq. (8) can be formulated as follows:

d1X1 + d2X2 + d3X3 = 1 (9)

where η′ is also a plane when η′ = 0. We can observe that{
1/d1, 1/d2, 1/d3

}
and

{
1/τd1, 1/τd2, 1/τd3

}
are inter-

cepts of planes η′ and η, respectively. And the intercepts of
plane η′ are τ times of that of plane η, so planes η and η′ are
parallel in geometric space. Meanwhile, plane η′ is either
above plane η or below it depending on the intercepts.

Next, we will discuss the relationship between planes
η and η′ and feature points in geometric space to explore
whether y′1 is also greater than y′2 under y1 > y2. (1) When
B < 0, the point (X1, X2, X3) is above plane η based on
Eq. (7). If plane η′ is below plane η, the point is also above
plane η′, as shown in Fig. 3a, so d1X1+ d2X2+ d3X3 > 1
in Eq. (9), and then we can get η′ > 0 (i.e., y′1 > y′2) based
on Eqs. (8) and (9). That implies the FC can normally work
on this point. If plane η′ is above plane η, the point might be
above or below plane η′, as shown in Fig. 3b. The point can
also be correctly classified when it is above plane η′ since
d1X1 + d2X2 + d3X3 > 1, but when it is below plane η′,
d1X1+d2X2+d3X3 < 1 and y′1 < y′2, which means the FC
will misclassify the point. (2) On the same principle, when
B > 0, the point is below plane η. y′1 > y′2 holds when
plane η′ is above plane η as shown in Fig. 3c, while y′1 < y′2
when plane η′ is below plane η and the point is above plane
η′, as shown in Fig. 3d. (3) When B = 0, planes η and
η′ coincide with each other, which makes y′1 > y′2 when
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y1 > y2. To sum up, the classifier can normally work on
original features, except those falling between planes η and
η′, i.e., “misclassified area” in Fig. 3.

According to Eqs. (7) and (9), we observe that it is a pos-
itive relationship between the size of “misclassified area”
and τ , so τ cannot be set too large avoiding inoperation of
the classifier. In fact, the “misclassified area” does not af-
fect the overall performance in practical application when
τ is set to an appropriate value, since few features will fall
into this area. Detailed analysis is presented in Sec. 4.3.

Furthermore, we can also explain this issue from another
intuitive perspective. Similar to the process in Fig. 2a, orig-
inal feature clusters (square ABCD) will shift towards the
origin point (point P in Fig. 2a) relative to multiplied fea-
ture clusters (square A′B′C ′D′) when they are compressed,
and the distance of shifting d can be denoted as:

d = Di ∗ (1− 1/τi) (10)

where Di is the distance from the center of the multiplied
feature cluster of class i to the origin point (the feature point
with all parameters of 0 in feature space). It is also a pos-
itive relationship between d and τ . The bigger τ is, the
farther original feature clusters move, such that they might
cross the decision boundary and be misclassified. In view
of this, we define different compression strategies to set τ
for each class to control the shifting distance. Especially,
we assign smaller τ to minority classes, since these clusters
are closer to the boundary and easier to cross it [14,16]. We
will specifically discuss it in Sec. 4.3.

4. Experiments and Results
This section presents extensive experiments on and anal-

ysis of FCC. The details of our experimental implementa-
tion are described in Sec. 4.1. Next, we demonstrate the
effectiveness and generality of FCC using four long-tailed
benchmarks in Sec. 4.2. An in-depth analysis of FCC is
provided in Sec. 4.3 to study its inherent characteristics.

4.1. Experimental Setup

Datasets. In this work, we use four long-tailed bench-
marks datasets, including CIFAR-10-LT, CIFAR-100-LT,
ImageNet-LT and iNaturalist 2018. CIFAR-10/100-LT [7]
are created by downsampling per-class training examples
of the original CIFAR-10/100 datasets [17]. Specifically,
by varying the Imbalanced Factor (IF) ∈

{
50, 100

}
, which

is defined as the number of training samples in the largest
class divided by that of the smallest, we create four dis-
tinct long-tailed training sets. ImageNet-LT [22] consists
of 115.8K images from 1,000 categories, created by artifi-
cially truncating the popular ImageNet dataset [8]. iNat-
uralist 2018 [30] contains 435.7K images from 8,142 cat-
egories, which is the largest real-world long-tailed dataset
that suffers from extremely imbalanced distribution.

Implementation. For CIFAR10/100-LT, following [3,
38], we utilize ResNet-32 [10] as the backbone network.
All models are trained for 200 epochs with a batch size of
128. Learning rate is initialized to 0.1 and divided by 100
at 160th and 180th epoch, and warm-up is used for the first
five epochs. For ImageNet-LT, we adopt ResNet-10 [10] as
our backbone network and follow [18] to set training pa-
rameters. The number of training epochs is 200 and batch
size is 64. Learning rate is initialized to 0.2 and divided
by 10 at the 160th and 180th epoch without warm-up. For
iNaturalist 2018, ResNet-32 [10] is also used as the back-
bone network and trained for 100 epochs with a batch size
of 128. The initial learning rate is set to 0.2 and divided by
10 at the 60th and 80th epoch. The random seed is set to
42. All experiments are performed on 2 NVIDIA RTX3090
GPUs by using PyTorch toolbox [25]. Top-1 error rate is
used to compare the experimental results.

For FCC, equal difference compression is used in all ex-
periments, and γ is set to 0.5, 1, 0.1 and 0.1 for CIFAR-
10-LT, CIFAR-100-LT, ImageNet-LT and iNaturalist 2018,
respectively. FCC starts from the 50th epoch except iNatu-
ralist 2018, where it starts from the 0th epoch. The impact
of these hyper-parameters will be discussed in Sec. 4.3. If
it is not specifically mentioned, the settings of experiments
that appear in this paper refer to this part.

4.2. Benchmark Results

Compared Methods. To evaluate the effectiveness and
generality of our proposed FCC, we extensively apply FCC
to 31 state-of-the-art methods, which come from four fam-
ilies, i.e., re-weighting, re-sampling, two-stage training and
multi-expert methods (described in Sec. 2). The chosen
methods are recently published and representative of dif-
ferent families, such as focal loss [21] for re-weighting
and NCL [18] for multi-expert. Especially, for two-stage
training, we follow [38] to use chosen re-sampling and re-
weighting methods for DRS and DRW, respectively. Mean-
while, we also introduce mixup training methods (i.e., Input
Mixup [36], Manifold Mixup [31] and Remix [6]) into our
experiments in terms of their good performance on long-
tailed visual recognition, as reported by [38]. For compar-
ison, we report the top-1 error rates of raw methods and
those with FCC, respectively.

Results. For CIFAR-10/100-LT datasets, the results
of baseline (vanilla ResNet-32), re-weighting, re-sampling,
mixup, two-stage training and multi-expert methods are re-
spectively presented in Tab. 1. In 98 experimental groups
of Tab. 1, our proposed FCC significantly improves 94
of them (marked in red) by an average of 1.55% (4.89%
max and 0.04% min). FCC achieves new state-of-the-
art performance on all datasets, in which top-1 error rates
on CIFAR-10-LT-50, CIFAR-10-LT-100, CIFAR-100-LT-
50 and CIFAR-100-LT-100 are reduced to 12.72%, 14.20%,
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Method CIFAR-10-LT-50 CIFAR-10-LT-100 CIFAR-100-LT-50 CIFAR-100-LT-100

Raw FCC Incr Raw FCC Incr Raw FCC Incr Raw FCC Incr

Baseline (Vanilla ResNet32) [10] 22.99% 19.78% +3.21% 27.59% 24.08% +3.51% 57.38% 54.83% +2.55% 60.92% 58.93% +1.99%

Focal loss (ICCV 2017) [21] 23.29% 20.49% +2.80% 27.94% 26.23% +1.71% 57.25% 55.24% +2.01% 62.29% 58.63% +3.66%
CB Focal loss (CVPR 2019) [7] 22.63% 21.37% +1.26% 25.63% 25.37% +0.26% 56.79% 54.84% +1.95% 61.28% 59.42% +1.86%
CBCE (CVPR 2019) [7] 21.48% 19.51% +1.97% 27.50% 24.15% +3.35% 56.58% 54.60% +1.98% 61.56% 59.59% +1.97%
BSCE (NeurIPS 2020) [27] 17.84% 16.85% +0.99% 21.78% 20.87% +0.91% 52.47% 52.61%∗ -0.14% 58.55% 57.30% +1.25%
CELS (CVPR 2016) [28] 22.70% 18.97% +3.73% 27.49% 26.40% +1.09% 56.96% 54.80% +2.16% 61.93% 60.13% +1.80%
CELAS (CVPR 2021) [39] 21.42% 19.17% +2.25% 27.45% 24.53% +2.92% 57.23% 55.34% +1.89% 61.95% 60.78% +1.17%
LDAM (NeurIPS 2019) [3] 21.47% 21.06% +0.41% 26.58% 26.35% +0.23% 56.94% 56.54% +0.40% 61.26% 60.83% +0.43%
CDT [35] 18.04% 17.12% +0.92% 21.36% 20.32% +1.04% 56.41% 56.37% +0.04% 60.76% 60.84%∗ -0.08%

CB sampling (ICLR 2020) [13] 22.31% 21.06% +1.25% 27.02% 26.51% +0.51% 60.67% 59.24% +1.43% 66.47% 64.75% +1.72%
SR sampling (ICLR 2020) [13] 20.89% 20.41% +0.48% 28.03% 25.82% +2.21% 57.94% 55.83% +2.11% 63.26% 61.60% +1.66%
PB sampling (ICLR 2020) [13] 21.11% 19.76% +1.35% 25.16% 23.70%∗ +1.46% 55.15% 53.33% +1.82% 60.61% 58.98% +1.63%

Input Mixup (ICLR 2018) [36] 21.39% 17.48% +3.91% 25.84% 22.44% +3.40% 54.48% 51.35% +3.13% 59.14% 55.81% +3.33%
Manifold Mixup (ICML 2019) [31] 21.24% 19.97% +1.27% 23.58% 22.89%∗ +0.69% 56.24% 51.35% +4.89% 61.48% 60.35% +1.13%
Remix (ECCV 2020) [6] 20.53% 17.00% +3.53% 25.95% 22.03% +3.92% 54.25% 51.36% +2.89% 59.16% 56.23% +2.93%

CB sampling+DRS 19.86% 18.4% +1.46% 23.36% 21.91% +1.45% 54.28% 52.93% +1.35% 58.32% 57.00% +1.32%
SR sampling+DRS 20.49% 19.16% +1.33% 25.59% 24.09% +1.50% 55.92% 54.11% +1.81% 59.73% 57.29% +2.44%
PB sampling+DRS 19.73% 18.44% +1.29% 24.58% 22.70% +1.88% 54.56% 53.19% +1.37% 58.82% 57.29% +1.53%
BSCE+DRW 18.79% 17.74% +1.05% 21.88% 20.73% +1.15% 53.68% 53.46% +0.22% 57.63% 57.37% +0.26%
CELAS+DRW 22.48% 19.19% +3.29% 27.20% 23.97% +3.23% 56.70% 55.01% +1.69% 61.31% 59.93% +1.38%
CDT+DRW 18.45% 17.81% +0.64% 21.82% 20.83% +0.99% 53.70% 53.32%∗ +0.38% 57.76% 57.54%∗ +0.22%
cRT (ICLR 2020) [13] 20.01% 19.62% +0.39% 22.81% 22.36% +0.45% 54.92% 55.02% -0.10% 58.37% 58.17% +0.20%
DiVE (ICCV 2021) [11] 17.34% 15.93% +1.41% 21.32% 19.99% +1.33% 50.19% 50.63% -0.44% 55.84% 54.73% +1.11%
LTR-WB +WD&Max (CVPR 2022) [1] – – – – – – – – – 47.40% 46.50%∗ +0.90%

SADE (NeurIPS 2022) [37] – – – – – – – – – 51.02% 50.58%∗ +0.44%
NCL (CVPR 2022) [18] 12.92% 12.72%∗ +0.20% 14.50% 14.20%∗ +0.30% 41.67% 41.56%∗ +0.11% 46.14% 45.49%∗ +0.65%

Table 1. Top-1 error rates comparisons between raw methods and those with FCC on long-tailed CIFAR. The results are presented in the
order of baseline, re-weighting, re-sampling, mixup, two-stage training and multi-expert methods. ∗ denotes γ of 0.1 is used in FCC.

Method ImageNet-LT iNaturalist 2018

Raw FCC Incr Raw FCC Incr

ResNet10/32 [10] 61.07% 60.60% +0.47% 72.49% 71.99% +0.50%
Focal loss [21] 63.10% 62.71% +0.39% – – –
CBCE [7] 60.92% 60.86% +0.06% 69.85% 69.12% +0.73%
LDAM-DRW [3] 63.53% 63.25% +0.28% 59.62% 59.54% +0.08%
BBN [40]† 51.80% 50.72% +1.08% – – –
cRT [13] 58.20% 56.59% +1.61% 64.38% 63.86% +0.52%
τ -norm [13] 66.10% 64.48% +1.62% 76.39% 75.49% +0.90%
DiVE [11] 56.93% 56.32% +0.61% – – –
RIDE [32] 55.72% 55.49% +0.23% – – –
SADE [37]⋆ 41.08% 39.47% +1.61% – – –
NCL [18]† 47.32% 45.34% +1.98% 63.46% 61.17% +2.29%

Table 2. Top-1 error rates comparisons. † and ⋆ indicate the back-
bone is ResNet-50 and ResNeXt-50, respectively.

41.56% and 45.49%, respectively. Extensive experimen-
tal results fully verify the effectiveness of our method on
long-tailed recognition. Meanwhile, these results demon-
strate FCC is a generic method, which can be friendly com-
bined with existing methods and then significantly boost
them. Especially, mixup training methods are greatly im-
proved (average 2.92%) by FCC compared with other fam-
ilies. For multi-expert methods, γ of 0.1 achieves better
performance than γ of 0.5 and 1, we assume smaller γ is
suitable for these complex networks because they are more
sensitive to the shifting of feature clusters. We observe that
FCC only fails to boost the performance in four experimen-
tal group (marked in green in Tab. 1). We speculate that this
is because the decision boundary drawn by these methods is

closer to feature clusters, such that these clusters will cross
the boundary once they shift.

For ImageNet-LT, experimental results are listed in the
left of Tab. 2. FCC consistently improves the performance
of introduced methods by an average of 0.9% (1.98% max
and 0.06% min). Especially, applying FCC to SADE [37]
achieves a new state-of-the-art performance (top-1 error rate
39.47%). When applied to methods with simple tricks (e.g.,
Focal loss and CBCE in Tab. 2), FCC obtains small im-
provement (less than 0.5%), while it achieves remarkable
progress (over 1.5%) when employed to complex networks
(e.g., SADE [37] and NCL [18]). We assume this is be-
cause complex networks can create a better foundation for
compression under the same compression factor. Moreover,
the backbones of BBN [40], NCL [18] and SADE [37] are
ResNet-50 [10] or ResNeXt-50 [34], which does not af-
fect the conclusion of the effectiveness of our method, since
their training settings are the same as those with FCC. For
iNaturalist 2018, the results are shown in the right of Tab. 2.
FCC reinforces the performance by an average of 0.84%
(2.29% max and 0.08% min), which illustrates FCC can
also effectively work on large-scale real-world datasets.

4.3. Analysis of FCC

Impact of the misclassified area. Original features
might fall into the “misclassified area” when they are di-
rectly fed to the trained classifier (described in Sec. 3.2),
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Parameter CIFAR-10-LT-50 CIFAR-10-LT-100 CIFAR-100-LT-50 CIFAR-100-LT-100 ImageNet-LT

ResNet32 FCC Incr ResNet32 FCC Incr ResNet32 FCC Incr ResNet32 FCC Incr ResNet10 FCC Incr

γ = 0.1 22.99% 23.21% -0.22% 27.59% 28.74% -1.15% 57.38% 57.15% +0.23% 60.92% 61.51% -0.59% 61.07% 60.60% +0.47%
γ = 0.5 22.99% 19.78% +3.21% 27.59% 24.08% +3.51% 57.38% 56.97% +0.41% 60.92% 59.64% +1.28% 61.07% 60.79% +0.28%
γ = 1 22.99% 20.46% +2.53% 27.59% 25.45% +2.14% 57.38% 54.84% +2.54% 60.92% 58.93% +1.99% 61.07% 61.25% -0.18%
γ = 2 22.99% 23.93% -0.94% 27.59% 27.31% +0.28% 57.38% 55.27% +2.11% 60.92% 59.22% +1.70% 61.07% 61.73% -0.66%
γ = 3 22.99% 20.78% +2.21% 27.59% 30.11% -2.52% 57.38% 56.96% +0.42% 60.92% 59.31% +1.61% 61.07% 63.88% -2.81%

Table 3. Top-1 error rates comparisons between raw methods (ResNet-32 and ResNet-10) and those using FCC with different γ on
long-tailed CIFAR and ImageNet-LT datasets.

Value CIFAR-10-LT-100 CIFAR-100-LT-100

NMF NOF Ratio NMF NOF Ratio

γ=0.1 11411 3 0.02% 10775 0 0.00%
γ=0.5 12356 77 0.62% 10734 112 1.04%
γ=1 12361 367 2.97% 10754 201 1.87%
γ=2 11575 2946 25.5% 10757 1653 15.4%
γ=3 11558 4566 39.5% 10720 3391 31.6%

Table 4. Analysis that original features fall into the “misclassified
area”. Experiments are conducted using ResNet-32 with FCC.

studying how many the features will fall into this area is
a matter of great concern. We apply FCC with a series of
γ ∈

{
0.1, 0.5, 1, 2, 3

}
to ResNet-32 on CIFAR10/100-LT-

100 datasets. The Number of Multiplied Features (NMF)
which are correctly classified by the classifier, the Number
of Original Features (NOF) which fall into “misclassified
area” and their ratio (NOF/NMF) are presented in Tab. 4.
When setting γ to 0.1, original features barely fall into the
area. γ of 0.5 and 1 also produce acceptable ratios (<3%).
Referring to experimental results in Sec. 4.2, even if some
features fall in the “misclassification area”, the overall per-
formance will not be affected. But γ cannot be set too large
(e.g. 2 and 3), since the large value brings numerous original
features to fall into the area.

Compression strategies. To explore the performance of
different strategies (mentioned in Sec. 3.1) of FCC, we eval-
uate them on CIFAR-100-LT-100 dataset. The results, in
Fig. 4a, display equal difference compression outperforms
other strategies, especially, it obtains the best performance
(accuracy 41.1%) with γ of 1. We visualize its recall re-
sults of each class, as shown in Fig. 4b, where it (marked
in orange) achieves a remarkable improvement in minority
classes compared with baseline (vanilla ResNet32 marked
in blue). Half (top 50%) compression achieves the second-
best result (accuracy 40.6%) with γ of 2, but it lacks im-
provement of minority classes. Uniform and half (bottom
50%) compression both deteriorate the overall performance
compared with baseline. We assume this is because com-
pression for all classes is necessary and compression degree
for each class needs to be different. Based on this result, we
utilize equal difference compression in our all experiments.

Hyper-parameter γ. In order to further search appropri-
ate γ, we set a series of γ ∈

{
0.1, 0.5, 1, 2, 3

}
for FCC and

employ it to ResNet-32 on long-tailed CIFAR and ImageNet

Figure 4. (a) Accuracy comparisons of each compression strategy.
(b) Recall comparisons of each class between baseline (vanilla
ResNet-32) and FCC with equal difference compression (γ = 1).
Analysis is conducted on CIFAR-100-LT-100.

datasets, as shown in Tab. 3. For CIFAR-10-LT, the best per-
formance is achieved when setting γ to 0.5 and FCC boosts
the performance by over 3% compared with raw method.
For CIFAR-100-LT, γ of 1 obtains the best result (around
2% improvement), while γ of 0.1 produces the best result
(0.47% improvement) on ImageNet-LT. We observe that the
optimal γ for different datasets is inconsistent, but γ of 0.1,
0.5 and 1 are generally the best choices. As the value of
γ decreases, the performance improvement of FCC grad-
ually decreases. This is because the smaller compression
degree, the fewer boundary points brought back to the de-
cision boundary. But excessive γ (e.g. γ = 3) will damage
performance, since original feature clusters might cross the
decision boundary. Based on these results, we respectively
set γ to 0.5, 1, 0.1 and 0.1 for CIFAR-10-LT, CIFAR-100-
LT, ImageNet-LT and iNaturalist 2018.

When to start FCC in training phase. Inspired by two-
stage training [3], we study the impact of when to employ
FCC during the training process on performance. We train
ResNet-10/32 for 100/200 epochs on the long-tailed CIFAR
datasets, in which FCC is used from the 0th, 10th, 20th,
30th, 40th, 50th, 60th and 70th epoch, respectively. The
results are shown in Fig. 5, we use “relative accuracy” (the
accuracy on the same dataset is subtracted by a specific con-
stant) as the ordinate to clearly show the impact of the tim-
ing of using FCC on accuracy. For 200 training epochs,
using FCC from the 50th epoch generally yields the best
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Figure 5. Start to employ FCC from different epoch. On long-
tailed CIFAR datasets, we train (a) ResNet-32 and (b) ResNet-
10 for 200 epochs, and (c) ResNet-32 and (d) ResNet-10 for 100
epochs, and start to use FCC from different epochs.

Method CIFAR-10-LT CIFAR-100-LT ImageNet-LT
IF-50 IF-100 IF-50 IF-100

Baseline 6.6 4.9 5.4 4.8 216.0
Baseline+FCC 6.9 6.3 6.3 5.2 222.6

Table 5. Run-time comparison between baseline and that with
FCC on five long-tailed datasets (in seconds). The baseline is
ResNet-32 on CIFAR-10/100-LT and ResNet-10 on ImageNet-LT.

results. We speculate feature clusters are pulled away from
each other after the initial phase of vanilla training. On this
foundation, further employing FCC can make them farther
apart and easier to recognize. However, for 100 training
epochs, using FCC from the 0th epoch achieves the best re-
sults, which implies sufficient epochs need to be reserved
for FCC to compress features under fewer training epochs.
Meanwhile, we observe that ResNet-10 with FCC from the
0th epoch obtains better performance than that from the
50th epoch on some datasets, as shown in Fig. 5b. We sus-
pect that weaker networks require more epochs for FCC.

Impact of FCC on boundary points. To demonstrate
FCC can bring boundary points back within the decision
boundary, we present the results of FCC on three other im-
balanced datasets (IF=10), which are created based on com-
monly used datasets from scikit-learn [26], including two
circles, two blobs and two moons. In Fig. 6, the top row
shows the results without FCC while the bottom row shows
that with FCC, and the majority and minority classes are
plotted in orange and blue, respectively. The results show
that FCC can compress feature clusters and make boundary
points of the minority class back within the boundary. In
some cases, we observe that some feature points of the ma-
jority class move towards or cross the boundary (i.e., some
orange dots are misclassified), but more feature points of the
minority class are actually back inside the boundary, and ex-
tensive experimental results in Sec. 4.2 also demonstrate it
does not damage the overall performance.

Run-time. FCC is a very simple method that only mul-

Figure 6. Impact of FCC on boundary points. Majority and minor-
ity classes are plotted in orange and blue, respectively. FCC can
bring the points of minority classes back within the boundary.

tiplies features by a specific compression factor in each
batch, which is low computational cost. We use ResNet-
32 and ResNet-10 to measure average run-time per epoch
on CIFAR-10/100-LT and ImageNet-LT, respectively (see
Tab. 5). We observe that FCC only increases about 6 sec-
onds on ImageNet-LT, which is only an increase of 2.78%.
For CIFAR-LT datasets, FCC roughly increases the run-
time by 1 second, which seems like a big increase, this is
because the training time on these datasets is very short. In
fact, FCC only increases by about 3 minutes for 200 epochs.

5. Conclusion
In this work, we tackle long-tailed visual recognition

from a novel perspective of increasing the density of BFs.
In view of this, we propose a simple and generic method to
improve the density, namely Feature Clusters Compression
(FCC), which can be easily achieved and friendly combined
with existing long-tailed methods to further boost them. Ex-
tensive experiments have fully verified the effectiveness and
generality of our method.

Limitations. When using FCC, the shifting of feature
clusters limits compression degree for higher performance
improvement, or even degrades performance in some cases.
Further work should be designed to eliminate the shifting.
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