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Abstract

Model selection is essential for reducing the search cost of

the best pre-trained model over a large-scale model zoo for

a downstream task. After analyzing recent hand-designed

model selection criteria with 400+ ImageNet pre-trained

models and 40 downstream tasks, we find that they can fail

due to invalid assumptions and intrinsic limitations. The

prior knowledge on model capacity and dataset also can not

be easily integrated into the existing criteria. To address

these issues, we propose to convert model selection as a

recommendation problem and to learn from the past training

history. Specifically, we characterize the meta information

of datasets and models as features, and use their transfer

learning performance as the guided score. With thousands

of historical training jobs, a recommendation system can

be learned to predict the model selection score given the

features of the dataset and the model as input. Our approach

enables integrating existing model selection scores as ad-

ditional features and scales with more historical data. We

evaluate the prediction accuracy with 22 pre-trained mod-

els over 40 downstream tasks. With extensive evaluations,

we show that the learned approach can outperform prior

hand-designed model selection methods significantly when

relevant training history is available.

1. Introduction

Much of the success of deep learning can be ascribed to its
flexibility: One can train a neural network on a task, and then
use it on a different one, typically after fine-tuning. There
are currently two trends for scaling this practice: One is to
pre-train a large number of specialized models (a “Model
Zoo” [10]) and then select one to fine-tune once the down-
stream task of interest becomes manifest, typically with a
smaller fine-tuning dataset. Another is to pre-train a single
“Foundation Model” which is then used to support any and
all downstream tasks [47, 57].

Without additional specifications, the second case is a
subset of the first, for one can take the Model Zoo and
Model Selection (MS) mechanism and call it a single model.

For this reason, Foundation Models are characterized as
homogeneous and task-agnostic, where homogeneity refers
to a single neural network architecture, in contrast with the
heterogeneous collection of models in a zoo. Even with
this restriction, the model zoo is more general, for nothing
prevents a Foundation Model to be part of a zoo. In addition,
selecting a smaller dedicated model pretrained for a task can
be much more efficient than using a giant monolithic model
For these reasons, we focus on model selection over a large
heterogeneous model zoo for fine-tuning as the key solution
for scaling inference to a wide variety of downstream tasks.

Brute-force model selection [1, 12] requires fine-tuning
each pre-trained model on the task of interest, and then rank-
ing them using the test error on a held-out dataset as a model

selection score. This is not feasible for large model zoos.
Current model-selection methods therefore aim to predict

the model selection score without actually fine-tuning.
However, current model selection methods do not take

into explicit account even basic characteristics of the fine-
tuning dataset, such as the number of classes or the number
of images, nor of the pre-trained model, such as the model
family, the size of the input, the number of parameters and
the dataset on which it is pre-trained. While coarse, these fea-
tures can affect the best model to fine-tune, since a mismatch
between fine-tuning dataset size and pre-trained model, or
input dimensions, or number of classes, can influence the
success of downstream performance.

Instead of proposing yet another model selection score,
we propose re-framing model selection as a recommender

system, and directly predict the selection score and corre-
sponding ranking, from whatever existing model selection
scores are readily available, in addition to whatever coarse
features a user deems informative – which may be context
dependent, as some users may wish to penalize large models,
or models that require high-resolution input. Such features
help guide the model selection using criteria beyond raw
downstream validation error. For this reason, we refer to our
recommendation approach as guided, in addition to trained.

We find that incorporating model size, dataset size, cardi-
nality of the hypothesis set and other simple features already
improves the prediction of the expected model selection
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score compared to current model selection methods. Coarse
features, such as the index of the model class family (con-
volutional, fully-connected, residual, attention-based, etc.)
can help associate certain architectural inductive biases such
as translation vs. permutation invariance, to the best-fitting
downstream tasks, for instance object detection vs. image
inpainting or segmentation.

Our contribution can be summarized as:

• We conduct comprehensive analysis of existing model
selection approaches with a large heterogeneous model
zoo and confirmed their limitations. We find feature-
based model selection becomes inaccurate when the
target dataset is different from the source task and the
effect of model initialization diminishes as the number
of images grows. The useful meta information and prior
knowledge in the training history are often neglected
and cannot be easily integrated into existing model
selection criteria.

• We convert the model selection problem as model rec-
ommendation by learning from past training history.
The meta information of both dataset and model are em-
bedded as features and a recommender system can be
learned to predict the performance. The existing model
selection can be used as additional features and makes
the framework comply with existing approaches. We
show significant performance improvement over tradi-
tional model selection methods when historical training
data is available and relevant.

In the next section we formalize the MS problem, and
discuss the issues with existing approaches. In section 3
we describe our approach to casting it as a recommendation
system and evaluate it in the following section.

2. Background

2.1. Problem Formalization

Let Ti be pre-training candidate tasks, with i =
1, . . . ,M , encoded in their corresponding datasets Di =
{(xk, yk)}Ni

k=1 (the dataset is all a model knows about the
task prior to training), used to train a chosen architecture
(function class) �i(·;wi) by minimizing a loss function Li

with respect to the weights w, yielding

wi = argmin
w

X

(xk,yk)2Di

`(yk,�i(xk;w))

| {z }
Li

.
= ŵ(�i, Di)

(1)
where the pre-trained weights wi are a function ŵ of the
dataset, the architecture, and the pointwise loss `, which
is typically cross-entropy, in addition to the optimization
procedure, regularizers, hyperparameters, and other factors

that we omit for simplicity since we wish to focus on the
relative role of the architecture and the dataset.

When fine-tuning a model �i for a different task Tj 6=i,
the architecture is conditioned on using �i, either as a frozen
embedding, or as an initialization, so the model to be fine-
tuned for the task Tj using the dataset Dj , has the form
�j(�i(·;wi);w) and the fine-tuning loss Ṽij is

min
w

X

(xk,yk)2Dj

`(yk,�j(�i(xk;wi);w))
.
= Ṽ (�i|�j , Di, Dj)

(2)
Ṽij is the empirical model selection score, corresponding
to the training error during fine-tuning. Brute-force model
selection consists of solving

�̂i = argmin
�i

Ṽ (�i | �j , Di, Dj). (3)

It is immediate to see that for the function �̂i to be constant
with respect to �j (that is, for the pre-trained representation
to be task-agnostic) it would either have to be conditioned on
all possible tasks (including those with different hypothesis
spaces, hence be non-homogeneous), or be a trivial lossless
compression of the data, for the task could turn out to be
reproducing an identical copy of the data. This would defer
the burden of learning to the fine-tuning phase, annihilating
the value of pre-training and undermining the main premise
of Foundation Models as homogeneous and task-agnostic
and optimal for fine-tuning. This further reinforces our focus
on heterogeneous model selection.

The validation error on a held-out dataset, or ideally the
marginal over all possible fine-tuning datasets, is the (ex-
pected) model selection score

V̂ij = EDj Ṽ (�i|�j , Di, Dj) (4)

which is clearly not computable.

Feature-based Model Selection Most recent MS methods
(e.g., LFC [10], PARC [5], and LogME [60]) extract features
with each candidate model on the target dataset, and then
calculate the MS score. Given a dataset D = {x,y}, let
fw(xi) denote the feature vector extracted from penultimate
layer of pre-trained model � for data xi. The LFC score is
calculated as

SLFC(x,y) = fw(x)fw(x)
T · yyT (5)

where (yyT )i,j = 1 if xi and xj have the same label and -1
otherwise. The normalized SLFC can be interpreted as the
Pearson Correlation between the features and labels. The
assumption is that a better candidate model’s initialization
usually has similar features for samples with the same labels.
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2.2. Model Selection Limitations

Feature-based MS usually fix the candidate model as fea-
ture extractors or assume the fine-tuning process does not
change the backbone weights much. However, the assump-
tion may not hold in practice and results in failure. Here
we evaluate three MS algorithms (LFC [10], PARC [5], and
LogME [60]) with two settings and demonstrate the cases
that they can fail. a) fine-tuning the 400+ ImageNet pre-
trained models on ImageNet. The fine-tuning performance
should be consistent with their pre-training performance.
b) we select 22 models near the Pareto frontier of the 400+
models and fine-tune them on 40 downstream datasets. More
setup details can refer to Sec 4.1.

Difficulty with heterogeneous model zoo Existing MS
methods usually validate their approach with a homogeneous
model zoo in which models differ only in pre-trained do-
mains. And it is often believed that better ImageNet model
also transfer better on downstream tasks [31], which seems
to makes the problem of MS with heterogeneous model zoo
trivial. However, we find that the optimal architecture or
Pareto front models can be task dependent, which relies on
both the inductive bias of the model and the characteristics
of the dataset. In addition, existing MS algorithms can fail
to accommodate new architectures such as ViTs which have
much smaller feature dimensions compared to ResNets. As
shown in Fig. 1, ViTs are outliers for MS methods without
explicit normalization. Normalizing the input features of
all architectures can solve this issue improve the Pearson
correlation scores. This was observed in [5] and they further
improve PARC by applying PCA and adding normalized
network depth to incorporate the network capacity. How-
ever, the heuristic cannot generalize across architectures, e.g.,
ViTs that comes without the same depth concept in terms
of convolutional layers. More details on the heterogeneous
model zoo can be found in Appendix.

Difficulty with dissimilar dataset MS algorithms such
as LFC and PARC assume that models with consistent fea-
ture similarities and label similarities can generalize better,
which is valid for few-shot or linear probing where the ma-
jority of weights do not change much. However, the effect
of initialization often diminishes as the dataset size grows.
When training data is large, a random initialized model with
high capacity can yield better performance than a pre-trained
simple model. The MS score of the random initialized model
can be lower than the pre-trained one, which does not repre-
sent the underlying generalization ability of the model. As
shown in Fig. 2, we see a clear difference for the MS perfor-
mance between dogs and aircrafts. We know that the

dogs dataset is similar to ImageNet but not aircrafts1.
It verifies that MS algorithms can fail to predict top perform-
ing models when a downstream task is very different from
the one used for training the source model.

Difficulty of incorporating prior knowledge The failures
cases of model selection are mainly due to the lack of proper
usage of model’s inductive bias for datasets with special
characteristics. Note that the inductive biases can be heuristi-
cally added to existing MS score e.g., PARC [5] incorporates
the model depth. However, adding such heuristics to MS
score requires ad-hoc tuning of the scale of the new added
score, which is hard to extend to more indicators. On the
other hand, the importance of the model inductive biases are
often associated with the dataset characteristics, which is
hard to integrate manually, e.g., “a random initialized large
model generalize better than a small pre-trained model for
a large dataset" and “a shallow model perform the same as
a deeper model for a simple task". In such cases, the effec-
tiveness of model depth is also determined by the dataset
characteristics. Therefore we need a model the connection
between characteristics of the task and inductive bias of the
model. However, existing MS methods often use a small
probe set with fixed number of training images to reduce the
computation of cost of MS computation, which neglects the
actual dataset size information.

3. Learning to Recommend

Instead of manually designing a model selection crite-
ria, we propose to learn to select models from the training
history. Given the historical training results, we can charac-
terize the features of dataset and models, and use fine-tuning
performance as the ground truth. The goal is to predict per-
formance on the target dataset. Then a model selector can
be learned to select the optimal model for a given task.

3.1. Model Selection as Recommendation

In order to frame model selection as a recommendation
system, we represent the pre-trained model �i with an el-
ement of a vector space vi, and/or a simpler vectorized
version of coarse features such as the number of parameters,
input dimension, number of classes, index of the architecture
family and pre-training dataset, etc. Similarly, we embed the
fine-tuning dataset Dj onto a set of features vj , for instance
its cardinality and dimension of the hypothesis space. In
addition, we can use any available predictive model selec-
tion score Uij . A recommendation system then implements
a learnable map that, for each pre-trained model i and down-

1Stanford Dogs [30] was built using images and annotation from Ima-
geNet for the task of fine-grained image categorization.
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Figure 1. Comparison of MS algorithms with 400+ ImageNet pre-trained models. In the first row, features are not normalized. LFC [10],
left, LogME [60] and PARC [5] (w.o. normalization) all treat ViTs (gray points) as outliers. The features are normalized in the 2nd row
and the Pearson correlation increases for all methods. The ViTs are not outliers, indicating the importance of feature normalization for
heterogeneous models.

Figure 2. Pearson Correlation of three MS methods on the 19 fine-
grained datasets with 22 models. Note that the correlation scores
for aircrafts and pneumonia are much lower than other datasets.

stream task j predicts the expected score V̂ij :

RM : [1, . . . ,M ]⇥ [1, . . . , J ] ! R
(i, j) 7! V̂ij = RM(i, j)

(6)

where V̂ij =  w(vi(�i),vj(Dj), Uij) and  w is a parame-
terized map, for instance a factorization machine, with learn-
able parameters w, trained to approximate the validation
scores V̂ij . By choosing the features vi,vj a user can factor
in additional model selection criteria besides the structure
of the data, which is often captured in the model selection
scores Uij , to guide the recommendation. Since the ana-
lytical expression for the functions ŵ(·), �̂(·) and V̂ (·) are

intractable, in this paper we study the problem in (3) empiri-
cally in the next section.

3.2. Recommendation Model

There are several options for learning the recommenda-
tion model. If the model zoo is fixed, a straight-forward
solution is to learn a classifier that directly maps a given
task to the best model [46]. The challenge lies at the usual
insufficient training samples in comparison with the high di-
mensions of the dataset representation (e.g., 2048 for ResNet
feature). And the fixed model zoo size makes it hard to adapt
when new models are added to the model zoo. Therefore,
we mainly consider following two options:

• Linear Regression (LR) A LR model can be learned
to predict performance with the concatenated task and
model features. However, LR learns the effect of each
feature independently and the interaction among features
can not be modeled.

• Factorization Machine (FM). Factorization Machine
(FM) [49] is widely used in recommender systems and
CTR prediction. FM is often preferred over Linear Re-
gression (LR) as it can learn the correlations among
different features via latent embedding, even when there
is no data point for the correlation. Given N histor-
ical transfer learning results {(di,mi,yi)}Ni=1, where
di = v(D) 2 Rd and mi = v(�) 2 Rm represents the
feature embedding of dataset D and model � for the ith

3636



fine-tuning job, d and m are their embedding length, yi
is the fine-tuning top-1 accuracy on the validation set.
Let z 2 Rd+m denote the concatenated features of the
pair of dataset and model, the predicted score of FM is

SFM(z) = w0 +

|z|X

i=1

wizi +

|z|�1X

i=1

|z|X

j=i+1

hui,ujizizj

where ui 2 Rk is the latent representation of the ith
feature. Note that the first two terms is actually LR. With
the third term, FM considers interactions among features
in addition to linear combination of features.

In the next sub-section, we will describe the feature em-
bedding for datasets and models in detail.

3.3. Characterizing Datasets and Models

Dataset Embedding We explore the following descriptors
for describing a task:

• Task difficulty: If a task can be solved with a model’s
initial weights without much change, then the task is
relatively easy for the model, e.g., linear probing (fixed
embedding + SVM) is often used as a baseline for trans-
fer learning. If a task gets high performance with linear
probing, then it indicates the dataset is relatively easy
to solve with a simple linear classifier. A MS score
calculated with a fixed backbone (e.g., ResNet-18) can
estimate the relative difficulty of the dataset.

• number of samples: The dataset size affects the task dif-
ficulty and model selection. A few-shot task is generally
harder than tasks with large sizes and requires a strong
model. The larger the dataset size, the more possibility
of choosing a model without a strong initialization. Note
that current MS algorithms (e.g., LFC [10]) usually use a
prob set with fixed size, while in reality the prob set size
could vary significantly.

• number of classes: When the total images are fixed, the
task difficulty usually increase as the number of classes.

Model Embedding To characterize the model’s inductive
bias, we use the following features for model embedding:

• architecture family: architectures of the same family
usually have similar inductive biases as they consist of
similar modules, blocks and activation functions. We use
the architecture family to categorize the inductive biases
of models of the same family, such as ConvNeXt, ViT,
Swin-Transformers, EfficientNet and etc.

• input size: it is reported higher resolution usually helps
for downstream tasks [31], and we see this is true for
fine-grained tasks (e.g., EfficientNet-B3 works best for

cars and aircrafts as seen in Appendix). On the
other hand, simple cases (e.g., MNIST) may not benefit
from higher resolutions.

• model capacity: a model with high capacity usually
generalizes better with more data. This is measured by
the number of parameters.

• model complexity: the calculation cost (GMACs) can
represent the complexities.

• pre-trained domain: the pre-trained domain matters for
the downstream task performance. If the source dataset
is available, then the domain distance between the source
domain and the target domain can be a indicator. How-
ever, such information is not always available. We have
models pre-trained on ImageNet-1K and ImageNet-22K.

Additional Features The advantage of recommender sys-
tem is that features related to the prediction can always be
added, which makes the solution scalable to new features.
Beyond the embedding of datasets and models, we can add
additional features that are relevant to the performance pre-
diction. The existing MS scores can be treated as additional
features, as it considers the feasibility of the model’s initial
features (Eq 5). Other features such as the semantic distance
between the target task and the model’s source task can also
be added as additional feature, which could be useful for
few-shot or zero-shot learning. We will leave this extension
for future works.

4. Experiments

4.1. Settings

Datasets We collected three benchmarks and a total of 40
image classification tasks, including 19 fine-grained datasets,
DomainNet [45] and the VTAB [61]. Those datasets cover
a wide range of domains and applications, such as scenes,
objects, food, texture, art and medical imaging. DomainNet
consists of 6 datasets of different domains with the same
labels. VTAB consists of various tasks which can be cate-
gorized into natural, structured and special. More details
about the datasets can be found in Appendix.

Models The TIMM model zoo collected more than 550
ImageNet pre-trained models. We evaluated all pre-trained
models and keep 409 models that can be fine-tuned with
batch size 32 with a single v100 GPU. We evaluated their
single image inference latency and identified the Pareto fron-
tier in their latency-accuracy trade-off plot (see Appendix).
We select 22 models that are near the Pareto Front curve,
which covers a wide range of common architecture families,
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including ReseNet [17], DenseNet [21], MobileNet [20], Ef-
ficientNet [53], ViTs [11], Swin-T [36] and ConvNeXt [37].
The complete model list can be found in Appendix.

Training History The models in the TIMM model zoo
usually have ImageNet validation accuracy. Those results
are obtained by training the model from scratch. If we reini-
tialize the last layer of each pre-trained model and fine-tune
on ImageNet, we should expect the performance same with
the reported results. In addition, we fine-tuned the selected
22 models end-to-end with HPO to obtain their best Top-
1 accuracy on the 40 downstream tasks. All pre-trained
models are trained with a single V100 GPU with the same
range of hyperparameters. More details about the models
and fine-tuning settings can be found in Appendix.

Evaluation Metrics We measure MS performance on a
given dataset (or probe set) with Pearson correlation coeffi-
cient, which measures linear correlation between MS score
and oracle transfer performance, which is the covariance of
the two variables divided by the product of their standard
deviations. We use the mean Pearson correlation over all
datasets in a benchmark to for comparison.

Dataset Sub-Sampling For feature-based MS on Ima-
geNet, we sample 2,000 images from the ImageNet training
set, with the number of images per class set to 2. We use the
fixed sub-sampled prob set for evaluating all models. For
MS on downstream tasks, we sample at most 2,000 images
with the constraint that no class has more than 25 images.

Recommendation Tasks We consider the following sce-
narios for model recommendation: a) Learn from the training
history of one dataset with a subset of models and evaluate
unseen models on the same dataset (e.g., ImageNet). b)
Learn from the training history of one dataset and evaluate
with the same models on unknown downstream tasks. c)
Learning from the training history of both ImageNet and
downstream tasks, and evaluate MS with known models on
unseen tasks. Note that the diversity and amount of training
samples (number of datasets and models) increases in these
settings progressively. An illustration of the three settings
can be seen in Fig. 3.
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Figure 3. An illustration of the three evaluation settings. The green
boxes represent the available training pairs of dataset and model
with fine-tuning accuracy, and the yellow boxes indicate the pairs
of dataset and model to be predicted for their performance.

4.2. Recommendation Results

4.2.1 Learning from the training history on ImageNet

and evaluating unseen models on the same dataset

The ImageNet pre-trained model zoo provides off-the-shelf
Top-1 accuracy for 400+ models, which can be used as
the groundtruth performance. Note that given the volume
of ImageNet, it is expected that models with or without
ImageNet pre-training will converge to the same accuracy.
To evaluate the learned MS on predicting the performance
of unseen architectures on ImageNet, we randomly split the
400+ models with 80% of them for training and the rest 20%
for evaluation. In Table 1, we compare the learned MS with
different training features with the traditional feature-based
MS methods.

With the pre-trained model weights, we see that learned
MS (both LR and FM) with only meta features perform bet-
ter than SLogME. When the MS score is used as additional
feature, the performance is better than using simply meta
features or the MS score itself. When the models are ran-
domly initialized, the feature-based MS methods fail to rank
the models due to the randomness of extracted feature. In
contrast, learning based method still get reasonable corre-
lation score and is robust even when the noisy MS score
is added as additional feature. The knowledge that larger
models usually generalizes better can still be learned.

Note that since all training data are based on ImageNet
training history, the dataset features are the same for all
training data, and the correlation between dataset feature
and model feature cannot be well learned. The learned MS
score is mainly determined by the model feature, i.e., models
with large capacity has better performance. Thus we see FM
does not show advantage over a simple LR model, which
is expected. We will see difference when expanding the
training set in Sec. 4.2.3.

Table 1. MS learned with only ImageNet training history. The
ImageNet benchmark samples 80% of the 409 models as training
set while the rest of models are used for evaluation. The experiment
is repeated 10 times and the mean/std values are reported.

Methods Features ImageNet
Pre-trained Random Init.

feature-based
SLFC [10] 0.65 ± 0.07 0.03 ± 0.10
SLogME [60] 0.35 ± 0.09 0.04 ± 0.08
SPARC [5] 0.83 ± 0.04 0.08 ± 0.09

LR (ours)

d,m 0.53 ± 0.07 0.57 ± 0.10
d,m, SLFC 0.73 ± 0.06 0.56 ± 0.10
d,m, SLogME 0.55 ± 0.08 0.56 ± 0.09
d,m, SPARC 0.85 ± 0.04 0.57 ± 0.11

FM (ours)

d,m 0.54 ± 0.06 0.57 ± 0.10
d,m, SLFC 0.70 ± 0.12 0.56 ± 0.10
d,m, SLogME 0.55 ± 0.09 0.56 ± 0.10
d,m, SPARC 0.84 ± 0.05 0.57 ± 0.11
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Table 2. We evaluate the average Pearson correlation of predicted performance and the groundtruth performance of 22 models on each
benchmark. The ImageNet column is the MS learned with all 409 ImageNet training jobs. The column of LOO (leave-one-out) denotes MS
learned with combined training history of ImageNet jobs and all downstream jobs except jobs on the test dataset.

Methods Features 19 fine-grained 6 DomainNet 15 VTAB

feature-based MS
SLFC [10] 0.55 0.63 0.14
SLogME [60] 0.54 0.52 0.20
SPARC [5] 0.54 0.50 0.13

ImageNet LOO ImageNet LOO ImageNet LOO

LR (ours)

d,m 0.53 0.66 0.80 0.82 0.29 0.37
d,m, SLFC 0.67 0.74 0.84 0.85 0.38 0.41

d,m, SLogME 0.54 0.65 0.81 0.84 0.30 0.36
d,m, SPARC 0.54 0.66 0.81 0.85 0.30 0.40

FM (ours)

d,m 0.53 0.65 0.81 0.85 0.35 0.39
d,m, SLFC 0.64 0.74 0.82 0.87 0.39 0.41
d,m, SLogME 0.60 0.67 0.82 0.86 0.31 0.40
d,m, SPARC 0.56 0.69 0.86 0.86 0.30 0.43

4.2.2 Learning from ImageNet training history and

evaluating known models on downstream tasks

To evaluate the transferability of learned MS on new datasets,
we use all 400+ ImageNet pre-training history as the train-
ing data and predict the performance of 22 models on three
benchmarks. As shown in the ImageNet columns of Table 2,
the learned MS gets comparable or significantly better mean
Pearson correlation than feature-based MS on all bench-
marks, especially on DomainNet. We see adding extra MS
feature can improve performance over learning with only
meta features. Note that the Pearson correlation of all MS
methods are relatively low on the VTAB benchmark which
consists of structured and special tasks that are much differ-
ent from ImageNet. It verifies that feature based MS may not
transfer well for tasks that are very different from the source
task. Since the training data contains 400+ off-the-shelf
models are pre-trained on ImageNet-1K or ImageNet-22K,
it is prone to learn MS rules such as bigger models lead
to better performance, which is mostly true on ImageNet.
Because the training data only consists of ImageNet, the lack
of dataset diversity leads to the learning of such inductive
biases. FM does not show much advantage over LR.

4.2.3 Learning from all training history and evaluating

known models on new tasks.

The power of the recommendation formulation is that its
performance will improve as more training data is available.
For example, if the training history contains models perfor-
mance on a similar dataset as the target dataset, it is possible
that the model works well on the reference dataset will rank
higher for the given task. We further increase the number
and diversity of training history for learning based methods.
For each dataset in a benchmark, we train the MS model with
all available training history except the ones for that dataset,
i.e., leave-one-out (LOO) training data. Table 2 shows that
with more training data added, the LOO results improve sig-
nificantly over the results learned only from ImageNet. Also
both LR and FM learned with only meta features (underline)
are comparable with the ones trained with additional MS
features.

4.3. Ablation Study

Comparing Feature-based MS and Learned MS To un-
derstand which datasets benefit from the learned MS, we
compare the learned MS models with feature-based MS (e.g.,

Figure 4. Comparison of learned MS with feature-based MS on each dataset. The FM-ImageNet model is learned with ImageNet only
training history and FM-LOO refers to using all datasets except the testing set. Both are trained with only meta feature d and m.

3639



Figure 5. The correlation of selected latent features of FM learned with the ImageNet only training history (a and c) and all training history
(b and d). a) and b) select the latent features of dataset IDs, while c) and d) show the correlation of scalar features of d and m.

PARC) on each dataset. As shown in Fig. 4, the learned FM
with LOO outperform PARC on 13/19 fine-grained datasets,
6/6 DomainNet datasets, and 10/15 VTAB datasets. The FM
model learned with ImageNet only training history trans-
fers well to benchmarks that are similar to ImageNet (e.g,
dogs, mit67, birds, dtd, clipart, real, and sketch, cifar100,

svhn) but underperforms or fails on dissimilar datasets such
as cars, pneumonia, tile, and cell. On the other hand, with
more diverse training data, LOO trained model performs sig-
nificantly better than PARC or ImageNet-only trained model
on datasets such as aircrafts, tile, logo, smart, dsprites_ori,

diabetic_ret and resisc45.

Learned Feature Correlations Fig. 5 visualizes the co-
variance matrix of learned latent representation u of selected
features in FMs trained with different data. Fig. 5 (a-b)
shows the correlation of latent representation of dataset IDs.
When only ImageNet history is used, the latent features of
other datasets remains random. We see more structured cor-
relation among datasets when more diverse training data is
added, i.e., datasets that are similar to each other also have
high correlation in their latent representations, such as dogs

and pets. Fig. 5 (c-d) shows clear correlation among scalar
features of d and m emerges when more data is used, such
as dataset size and MACs/parameters, which indicates that
larger dataset and larger models weights more. We can also
see less correlation among class number and other features.
Note that more advanced algorithms such as field-aware fac-
torization machine (FFM) [26] could further improve the
performance, in which the correlation of features belonging
to the same filed (e.g., dataset features) are not learned.

5. Related Work

Model Selection MS methods can be categorized based
on whether the source dataset is available. When source data
is available, models are in the same architecture and differ
only in pre-trained domains, the features and labels of source
data and target data can be compared with methods such as
EMD [9] and NCE [54]. Probabilistic based methods such as
H-Score [2], LEEP [42], NLEEP [35] and LogME [60] esti-
mate the likelihood or the marginalized likelihood of labeled

target examples, assuming that a linear classifier is added on
top of the pre-trained model. Recent TransRate [22] mea-
sures the mutual information between the backbone features
and the labels, and also extends to layer selection. LFC [10]
approximates the fine-tuning dynamics by looking at a lin-
earization of the source model around the pre-trained weights
with the assumption that fine-tuned weights tend to remain
close to the pre-trained weights. PARC [5] main differs with
LFC with the choice of correlation metric. Note that an
improved PARC adds model depth with heuristic weight,
which is essentially a linear combination of MS score with
model’s meta feature.

Learning to Recommend There are also learning based
methods to recommend dataset, hyperparameters and tech-
niques for a given task. Neural Data Server [59] provides a
search engine to find the most useful transfer learning data
for the target domain. MS can also be viewed as a hyperpa-
rameter selection problem. HyperStar [40] learns to predict
the performance of a hyperparameter set for a given image
classification task with a end-to-end trained CNN. The work
[14] is most relevant to us, in which a general probabilistic
model matrix factorization is learned for ML pipeline se-
lection. A learning based approach for MS is [46], which
introduced a model routing algorithm for a large number of
expert models. Its domain prediction method classifies the
expert from the image via an auxiliary network, which is a
classification-based approach as we mentioned in Sec 3.2.

6. Conclusion

The nature of long-tailed tasks determines that no single
model works best for all tasks, which makes model selec-
tion in a model zoo with diverse inductive biases necessary.
Instead of manually designing MS criteria, learning the re-
lationship between tasks and models via recommendation
models can be more efficient, effective and scalable to new
meta features and models, and it can be continuously im-
proved with the growing volume of training history. This
makes the framework applicable to other selection problems
as well such as selecting optimal models and hyperparame-
ters at the same time.
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